首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
Phenotypic variation can arise from differences in the protein coding sequence and in the regulatory elements. However, little is known about the contribution of regulatory difference to the expression divergence, especially the cis and trans regulatory variation to the expression divergence in intraspecific populations. In this study, we used two different yeast strains, BY4743 and RM11‐1a/α, to study the regulatory variation to the expression divergence between BY and RM under oxidative stress condition. Our results indicated that the expression divergence of BY and RM is mainly due to trans regulatory variations under both normal and oxidative stress conditions. However, cis regulatory variation seems to play a very important role in oxidative stress response in yeast because 36% of genes showed an increase in cis regulatory variation effect compared with 13% of genes that showed an increase in trans regulatory variation effect after oxidative stress. Our data also indicated that genes located on the longer arm of the chromosomes are more susceptible to cis variation effect under oxidative stress than genes on the shorter arm of the chromosomes.  相似文献   

10.
11.
Is genetic evolution predictable? Evolutionary developmental biologists have argued that, at least for morphological traits, the answer is a resounding yes. Most mutations causing morphological variation are expected to reside in the cis‐regulatory, rather than the coding, regions of developmental genes. This “cis‐regulatory hypothesis” has recently come under attack. In this review, we first describe and critique the arguments that have been proposed in support of the cis‐regulatory hypothesis. We then test the empirical support for the cis‐regulatory hypothesis with a comprehensive survey of mutations responsible for phenotypic evolution in multicellular organisms. Cis‐regulatory mutations currently represent approximately 22% of 331 identified genetic changes although the number of cis‐regulatory changes published annually is rapidly increasing. Above the species level, cis‐regulatory mutations altering morphology are more common than coding changes. Also, above the species level cis‐regulatory mutations predominate for genes not involved in terminal differentiation. These patterns imply that the simple question “Do coding or cis‐regulatory mutations cause more phenotypic evolution?” hides more interesting phenomena. Evolution in different kinds of populations and over different durations may result in selection of different kinds of mutations. Predicting the genetic basis of evolution requires a comprehensive synthesis of molecular developmental biology and population genetics.  相似文献   

12.
13.
Regulation of alternative splicing is controlled by pre-mRNA sequences (cis-elements) and trans-acting protein factors that bind them. The combinatorial interactions of multiple protein factors with the cis-elements surrounding a given alternative splicing event lead to an integrated splicing decision. The mechanism of multifactorial splicing regulation is poorly understood. Using a splicing-sensitive DNA microarray, we assayed 352 Caenorhabditis elegans alternative cassette exons for changes in embryonic splicing patterns between wild-type and 12 different strains carrying mutations in a splicing factor. We identified many alternative splicing events that are regulated by multiple splicing factors. Many splicing factors have the ability to behave as splicing repressors for some alternative cassette exons and as splicing activators for others. Unexpectedly, we found that the ability of a given alternative splicing factor to behave as an enhancer or repressor of a specific splicing event can change during development. Our observations that splicing factors can change their effects on a substrate during development support a model in which combinatorial effects of multiple factors, both constitutive and developmentally regulated ones, contribute to the overall splicing decision.  相似文献   

14.
All‐trans retinoic acid is a key regulator of early development. High concentrations of retinoic acid interfere with differentiation and migration of neural crest cells. Here we report that a dinucleotide repeat in the cis‐element of Snail2 (previously known as Slug) gene plays a role in repression by all‐trans retinoic acid. We analyzed the cis‐acting regulatory regions of the Xenopus Snail2 gene, whose expression is repressed by all‐trans retinoic acid. The analysis identified a TG/CA repeat as a necessary element for the repression. By performing a yeast one‐hybrid screen, we found that a polypyrimidine tract‐binding protein (PTB), which is known to be a regulator of the alternative splicing of pre‐messenger RNA, binds to the TG/CA repeat. Overexpression and knockdown experiments for PTB in HEK293 cells and Xenopus embryos indicated that PTB is required for repression by retinoic acid. The green fluorescent protein‐PTB fusion protein was localized in the nucleus of 293T cells. In situ hybridization for PTB in Xenopus embryos showed that PTB is expressed at the regions including neural crest at the early stages. Our results indicate that PTB plays a role in the repression of gene expression by retinoic acid through binding to the TG/CA repeats.  相似文献   

15.
Pigmentation traits in adult Drosophila melanogaster were used in this study to investigate how phenotypic variations in continuous ecological traits can be maintained in a natural population. First, pigmentation variation in the adult female was measured at seven different body positions in 20 strains from the Drosophila melanogaster Genetic Reference Panel (DGRP) originating from a natural population in North Carolina. Next, to assess the contributions of cis‐regulatory polymorphisms of the genes involved in the melanin biosynthesis pathway, allele‐specific expression levels of four genes were quantified by amplicon sequencing using a 454 GS Junior. Among those genes, ebony was significantly associated with pigmentation intensity of the thoracic segment. Detailed sequence analysis of the gene regulatory regions of this gene indicated that many different functional cis‐regulatory alleles are segregating in the population and that variations outside the core enhancer element could potentially play important roles in the regulation of gene expression. In addition, a slight enrichment of distantly associated SNP pairs was observed in the ~10 kb cis‐regulatory region of ebony, which suggested the presence of interacting elements scattered across the region. In contrast, sequence analysis in the core cis‐regulatory region of tan indicated that SNPs within the region are significantly associated with allele‐specific expression level of this gene. Collectively, the data suggest that the underlying genetic differences in the cis‐regulatory regions that control intraspecific pigmentation variation can be more complex than those of interspecific pigmentation trait differences, where causal genetic changes are typically confined to modular enhancer elements.  相似文献   

16.
17.
The fibroblast growth factor (FGF) family consists of 22 ligands in mice and humans. FGF signaling is vital for embryogenesis and, when dysregulated, can cause disease. Loss‐of‐function genetic analysis in the mouse has been crucial for understanding FGF function. Such analysis has revealed that multiple Fgfs sometimes function redundantly. Exploring such redundancy between Fgf3 and Fgf4 is currently impossible because both genes are located on chromosome 7, about 18.5 kb apart, making the frequency of interallelic cross‐over between existing mutant alleles too infrequent to be practicable. Therefore, we retargeted Fgf3 and Fgf4 in cis, generating an Fgf3 null allele and a conditional Fgf4 allele, subject to Cre inactivation. To increase the frequency of cis targeting, we used an F1 embryonic stem cell line that contained 129/SvJae (129) and C57BL/6J (B6) chromosomes and targeting constructs isogenic to the 129 chromosome. We confirmed cis targeting by assaying for B6/129 allele‐specific single‐nucleotide polymorphisms. We demonstrated the utility of the Fgf3Δ‐Fgf4floxcis mouse line by showing that the caudal axis extension defects found in the Fgf3 mutants worsen when Fgf4 is also inactivated. This Fgf3Δ‐Fgf4floxcis line will be useful to study redundancy of these genes in a variety of tissues and stages in development. genesis 54:91–98, 2016. Published 2016. This article is a US Government work and is in the public domain in the USA.  相似文献   

18.
In Arabidopsis, pre‐mRNAs of serine/arginine‐rich (SR) proteins undergo extensive alternative splicing (AS). However, little is known about the cis‐elements and trans‐acting proteins involved in regulating AS. Using a splicing reporter (GFP–intron–GFP), consisting of the GFP coding sequence interrupted by an alternatively spliced intron of SCL33, we investigated whether cis‐elements within this intron are sufficient for AS, and which SR proteins are necessary for regulated AS. Expression of the splicing reporter in protoplasts faithfully produced all splice variants from the intron, suggesting that cis‐elements required for AS reside within the intron. To determine which SR proteins are responsible for AS, the splicing pattern of the GFP–intron–GFP reporter was investigated in protoplasts of three single and three double mutants of SR genes. These analyses revealed that SCL33 and a closely related paralog, SCL30a, are functionally redundant in generating specific splice variants from this intron. Furthermore, SCL33 protein bound to a conserved sequence in this intron, indicating auto‐regulation of AS. Mutations in four GAAG repeats within the conserved region impaired generation of the same splice variants that are affected in the scl33 scl30a double mutant. In conclusion, we have identified the first intronic cis‐element involved in AS of a plant SR gene, and elucidated a mechanism for auto‐regulation of AS of this intron.  相似文献   

19.
Common non-waxy (Wx) rice cultivars contain two different alleles at the waxy locus, designated Wx a and Wx b, which encode different levels of granule-bound starch synthases and are hence involved in the control of endosperm amylose content. The Wx a allele was predominant in non-waxy indica cultivars, whereas the Wx b allele was common to the non-waxy japonica variety. Recently, some of the molecular mechanisms underlying the differentiation of Wx a from Wx b have been characterized. One structural difference between these two alleles was shown to be due to alternative splicing caused by a single-base substitution (AGGT to AGTT) at a donor site of the first intron within the Wx gene. In the case of waxy (wx) rice, it was not possible to distinguish whether the each wx allele was derived from Wx a or Wx b alleles by phenotypic analysis. However, we succeeded in developing a derived cleaved amplified polymorphic sequence (dCAPS) marker for the detection of the one-base splicing mutation without the need for sequencing. A mismatch primer was used to generate a restriction site in the Wx a allele (AGGT) but not in the Wx b allele (AGTT). Three hundred fifty-three waxy rice strains that are widely found in Asia were then employed for analysis using this dCAPS marker. Our findings suggested that waxy rice strains have both Wx a- and Wx b-derived alleles, but that the Wx b-derived allele was predominant, and its distribution was independent of indica-japonica differentiation. The wild relatives of cultivated rice all possessed the AGGT allele. It was concluded that the waxy mutations, and the corresponding rice cultivation, originated from japonica during the evolution and domestication process of rice and was preferentially selected by most Asian peoples.Communicated by J. Heslop-Harrison  相似文献   

20.
RNA interference (RNAi) is becoming a popular method for analyzing gene function in a variety of biological processes. We have used RNAi in cultured Drosophila cells to identify trans-acting factors that regulate the alternative splicing of endogenously transcribed pre-mRNAs. We have generated a dsRNA library comprising 70% of the Drosophila genes encoding RNA binding proteins and assessed the function of each protein in the regulation of alternative splicing. This approach not only identifies trans-acting factors regulating specific alternative splicing events, but also can provide insight into the alternative splicing regulatory networks of Drosophila. Here, we describe this RNAi approach to identify alternative splicing regulatory proteins in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号