首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stephens DJ 《EMBO reports》2003,4(2):210-217
Transport between the endoplasmic reticulum (ER) and Golgi is mediated by the sequential action of the COPII and COPI coat complexes. COPII subunits are recruited to the ER membrane where they mediate the selection of cargo for transport to the Golgi, and also membrane deformation and vesicle formation. New ER exit sites can be generated by lateral growth and medial fission (in Pythium sp.) or by de novo formation (in Pichia pastoris) but it is not known how mammalian ER exit sites form. Here, time-lapse imaging of COPII-coated structures in live mammalian cells reveals that the number of ER export sites increases greatly during interphase by de novo formation. These results show the fusion of pre-existing ER export sites and the fission of larger structures. These three mechanisms of de novo formation, fusion and fission probably cooperate to regulate the size of these sites in mammalian cells.  相似文献   

2.
A fascinating story is unfolding at the interface between mitochondria and the ER. Two new papers, one in this issue of The EMBO Journal (Wu et al, 2016 ) and one in the journal Autophagy (Chen et al, 2016 ), further clarify the role of mitochondrial outer membrane protein FUNDC1 in autophagy and connect it to mitochondrial fission occurring at the interface between mitochondria and the ER.  相似文献   

3.
To investigate protein translocation in eukaryotes, we reconstituted a protein translocation system using the permeabilized spheroplasts (P-cells) of the fission yeast Schizosaccharomyces pombe. The precursor of a sex pheromone of Saccharomyces cerevisiae, prepro-α-factor, was translocated across the endoplasmic reticulum (ER) of S. pombe posttranslationally, and glycosylated to the same extent as in the ER of S. cerevisiae. This suggested that the size of N-linked core-oligosaccharide in the ER of S. pombe is similar to that in S. cerevisiae. This translocation into the ER of S. pombe was inhibited by puromycin, but the translocation in the P-cells of S. cerevisiae was not inhibited. This difference in sensitivity to puromycin was due to the membrane but not the cytosolic fraction. Our results suggested that the translocation machinery of S. pombe was sensitive to puromycin and different from that of S. cerevisiae.  相似文献   

4.
ER contact sites define the position of endosome bud fission during actin-dependent cargo sorting. Disrupting endosomal actin structures prevents retrograde cargo movement; however, how actin affects ER contact site formation and endosome fission is not known. Here we show that in contrast with the WASH complex, actin, its nucleator ARP2/3, and COR1C form a contained structure at the bud neck that defines the site of bud fission. We found that actin confinement is facilitated by type I coronins. Depletion of type I coronins allows actin to extend along the length of the bud in an ARP2/3-dependent manner. We demonstrate that extension of branched actin prevents ER recruitment and stalls buds before fission. Finally, our structure-function studies show that the COR1C’s coiled-coil domain is sufficient to restore actin confinement, ER recruitment, and endosome fission. Together, our data reveal how the dynamics of endosomal actin and activity of actin regulators organize ER-associated bud fission.  相似文献   

5.
Glycerol‐3‐phosphate acyltransferase (GPAT) is involved in the first step in glycerolipid synthesis and is localized in both the endoplasmic reticulum (ER) and mitochondria. To clarify the functional differences between ER‐GPAT and mitochondrial (Mt)‐GPAT, we generated both GPAT mutants in C. elegans and demonstrated that Mt‐GPAT is essential for mitochondrial fusion. Mutation of Mt‐GPAT caused excessive mitochondrial fragmentation. The defect was rescued by injection of lysophosphatidic acid (LPA), a direct product of GPAT, and by inhibition of LPA acyltransferase, both of which lead to accumulation of LPA in the cells. Mitochondrial fragmentation in Mt‐GPAT mutants was also rescued by inhibition of mitochondrial fission protein DRP‐1 and by overexpression of mitochondrial fusion protein FZO‐1/mitofusin, suggesting that the fusion/fission balance is affected by Mt‐GPAT depletion. Mitochondrial fragmentation was also observed in Mt‐GPAT‐depleted HeLa cells. A mitochondrial fusion assay using HeLa cells revealed that Mt‐GPAT depletion impaired mitochondrial fusion process. We postulate from these results that LPA produced by Mt‐GPAT functions not only as a precursor for glycerolipid synthesis but also as an essential factor of mitochondrial fusion.  相似文献   

6.
Mitochondria are essential eukaryotic organelles often forming intricate networks. The overall network morphology is determined by mitochondrial fusion and fission. Among the multiple mechanisms that appear to regulate mitochondrial fission, the ER and actin have recently been shown to play an important role by mediating mitochondrial constriction and promoting the action of a key fission factor, the dynamin‐like protein Drp1. Here, we report that the cytoskeletal component septin 2 is involved in Drp1‐dependent mitochondrial fission in mammalian cells. Septin 2 localizes to a subset of mitochondrial constrictions and directly binds Drp1, as shown by immunoprecipitation of the endogenous proteins and by pulldown assays with recombinant proteins. Depletion of septin 2 reduces Drp1 recruitment to mitochondria and results in hyperfused mitochondria and delayed FCCP‐induced fission. Strikingly, septin depletion also affects mitochondrial morphology in Caenorhabditis elegans, strongly suggesting that the role of septins in mitochondrial dynamics is evolutionarily conserved.  相似文献   

7.
In eukaryotic cells, aberrant proteins generated in the endoplasmic reticulum (ER) are degraded by the ER-associated degradation (ERAD) pathway. Here, we report on the ERAD pathway of the fission yeast Schizosaccharomyces pombe. We constructed and expressed Saccharomyces cerevisiae wild-type CPY (ScCPY) and CPY-G255R mutant (ScCPY*) in S. pombe. While ScCPY was glycosylated and efficiently transported to the vacuoles in S. pombe, ScCPY* was retained in the ER and was not processed to the matured form in these cells. Cycloheximide chase experiments revealed that ScCPY* was rapidly degraded in S. pombe, and its degradation depended on Hrd1p and Ubc7p homologs. We also found that Mnl1p and Yos9p, proteins that are essential for ERAD in S. cerevisiae, were not required for ScCPY* degradation in S. pombe. Moreover, the null-glycosylation mutant of ScCPY, CPY*0000, was rapidly degraded by the ERAD pathway. These results suggested that N-linked oligosaccharides are not important for the recognition of luminal proteins for ERAD in S. pombe cells.  相似文献   

8.
Mitochondrial homeostasis is essential for providing cellular energy, particularly in resource‐demanding neurons, defects in which cause neurodegeneration, but the function of interferons (IFNs) in regulating neuronal mitochondrial homeostasis is unknown. We found that neuronal IFN‐β is indispensable for mitochondrial homeostasis and metabolism, sustaining ATP levels and preventing excessive ROS by controlling mitochondrial fission. IFN‐β induces events that are required for mitochondrial fission, phosphorylating STAT5 and upregulating PGAM5, which phosphorylates serine 622 of Drp1. IFN‐β signaling then recruits Drp1 to mitochondria, oligomerizes it, and engages INF2 to stabilize mitochondria–endoplasmic reticulum (ER) platforms. This process tethers damaged mitochondria to the ER to separate them via fission. Lack of neuronal IFN‐β in the Ifnb –/– model of Parkinson disease (PD) disrupts STAT5‐PGAM5‐Drp1 signaling, impairing fission and causing large multibranched, damaged mitochondria with insufficient ATP production and excessive oxidative stress to accumulate. In other PD models, IFN‐β rescues dopaminergic neuronal cell death and pathology, associated with preserved mitochondrial homeostasis. Thus, IFN‐β activates mitochondrial fission in neurons through the pSTAT5/PGAM5/S622Drp1 pathway to stabilize mitochondria/ER platforms, constituting an essential neuroprotective mechanism.  相似文献   

9.
The recruitment of DRP1 to mitochondrial membranes prior to fission is facilitated by the wrapping of endoplasmic reticulum (ER) membranes around the mitochondria. To investigate the complex interplay between the ER membranes and DRP1 in the context of mitochondrial structure and function, we downregulate two key ER shaping proteins, RTN4 and CLIMP-63, and demonstrate pronounced mitochondrial hyperfusion and reduced ER-mitochondria contacts, despite their differential regulation of ER architecture. Although mitochondrial recruitment of DRP1 is unaltered in cells lacking RTN4 or CLIMP-63, several aspects of mitochondrial function, such as mtDNA-encoded translation, respiratory capacity and apoptosis are significantly hampered. Further mechanistic studies reveal that CLIMP-63 is required for cristae remodeling (OPA1 proteolysis) and DRP1-mediated mitochondrial fission, whereas both RTN4 and CLIMP-63 regulate the recruitment of BAX to ER and mitochondrial membranes to enable cytochrome c release and apoptosis, thereby performing novel and distinct roles in the regulation of mitochondrial structure and function.Subject terms: Cell biology, Cancer  相似文献   

10.
In recent years, it has become evident that peroxisomes form part of the endomembrane system. Peroxisomes can form from the ER via a maturation process and they can multiply by growth and division, whereby the ER provides membrane for growth and ongoing fission (Figure 1). Until very recently, it was widely accepted that most peroxisomal membrane proteins (PMPs) insert directly into peroxisomes, whereas a small subset of PMPs traffic via the ER. In this minireview, we focus mainly on PMP biogenesis, and highlight recent advances in peroxisomal matrix protein import, fission and segregation in yeast.  相似文献   

11.
Two complementary AC electrokinetic techniques electrorotation (ER) and electroorientation (EO) enabled the dielectric characterization of the rod-shaped fission yeast Schizosaccharomyces pombe. The use of microstructured electrodes allowed both ER and EO measurements to be performed over wide ranges of field frequency and medium conductivity. Due to their layered structure, living S. pombe cells exhibited up to three well resolved peaks in their ER spectra and also two distinct orientations, i.e., parallel or perpendicular to the imposed linear field. Heat treatment and enzymatic protoplast isolation led to dramatic changes in the electrokinetic behavior of fission yeast. Application of the theoretical models linking the ER and EO spectra yielded the dielectric parameters of the major structural units of S. pombe cells (cell wall, plasma membrane and cytosol). The dielectric characterization of yeasts has an enormous impact in biotechnology and biomedicine, because electric field pulse techniques (electrofusion and electropermeabilization) are widely used for production of transgenic yeast strains of economic importance. The present study also showed that combined ER and EO measurements can be employed as a powerful diagnostic tool for analyzing changes in yeast structure and physiology upon exposure to various stress conditions.  相似文献   

12.
The mechanism of coat protein (COP)II vesicle fission from the endoplasmic reticulum (ER) remains unclear. Lysophospholipid acyltransferases (LPATs) catalyze the conversion of various lysophospholipids to phospholipids, a process that can promote spontaneous changes in membrane curvature. Here, we show that 2,2-methyl- N -(2,4,6,-trimethoxyphenyl)dodecanamide (CI-976), a potent LPAT inhibitor, reversibly inhibited export from the ER in vivo and the formation of COPII vesicles in vitro . Moreover, CI-976 caused the rapid and reversible accumulation of cargo at ER exit sites (ERESs) containing the COPII coat components Sec23/24 and Sec13/31 and a marked enhancement of Sar1p-mediated tubule formation from ERESs, suggesting that CI-976 inhibits the fission of assembled COPII budding elements. These results identify a small molecule inhibitor of a very late step in COPII vesicle formation, consistent with fission inhibition, and demonstrate that this step is likely facilitated by an ER-associated LPAT.  相似文献   

13.
Peroxisomes are unique organelles which display properties of autonomous organelles, as they can multiply by fission of pre‐existing ones. Peroxisomes, however, can also develop from the endoplasmic reticulum (ER). This process has convincingly been shown in peroxisome‐deficient yeast cells, upon reintroduction of the corresponding gene. Whether peroxisomes also are formed from the ER in wild‐type cells that contain peroxisomes is still under debate. Also, the existence of vesicular transport pathways between peroxisomes and the ER is still unresolved. Several new proteins and pathways that play a role in peroxisome proliferation have been identified in the last few years. A surprising finding was that proteins well known for their function in mitochondrial fission (Fis1, Dnm1) are responsible for peroxisome fission as well. In this contribution we discuss recent advancements in research on peroxisome proliferation.  相似文献   

14.
Yeast peroxisomes multiply by growth and division   总被引:9,自引:0,他引:9       下载免费PDF全文
Peroxisomes can arise de novo from the endoplasmic reticulum (ER) via a maturation process. Peroxisomes can also multiply by fission. We have investigated how these modes of multiplication contribute to peroxisome numbers in Saccharomyces cerevisiae and the role of the dynamin-related proteins (Drps) in these processes. We have developed pulse-chase and mating assays to follow the fate of existing peroxisomes, de novo-formed peroxisomes, and ER-derived preperoxisomal structures. We find that in wild-type (WT) cells, peroxisomes multiply by fission and do not form de novo. A marker for the maturation pathway, Pex3-GFP, is delivered from the ER to existing peroxisomes. Strikingly, cells lacking peroxisomes as a result of a segregation defect do form peroxisomes de novo. This process is slower than peroxisome multiplication in WT cells and is Drp independent. In contrast, peroxisome fission is Drp dependent. Our results show that peroxisomes multiply by growth and division under our assay conditions. We conclude that the ER to peroxisome pathway functions to supply existing peroxisomes with essential membrane constituents.  相似文献   

15.
The fission yeast Schizosaccharomyces pombe undergoes “closed” mitosis in which the nuclear envelope (NE) stays intact throughout chromosome segregation. Here we show that Tts1, the fission yeast TMEM33 protein that was previously implicated in organizing the peripheral endoplasmic reticulum (ER), also functions in remodeling the NE during mitosis. Tts1 promotes insertion of spindle pole bodies (SPBs) in the NE at the onset of mitosis and modulates distribution of the nuclear pore complexes (NPCs) during mitotic NE expansion. Structural features that drive partitioning of Tts1 to the high-curvature ER domains are crucial for both aspects of its function. An amphipathic helix located at the C-terminus of Tts1 is important for ER shaping and modulating the mitotic NPC distribution. Of interest, the evolutionarily conserved residues at the luminal interface of the third transmembrane region function specifically in promoting SPB-NE insertion. Our data illuminate cellular requirements for remodeling the NE during “closed” nuclear division and provide insight into the structure and functions of the eukaryotic TMEM33 family.  相似文献   

16.
Two complementary AC electrokinetic techniques electrorotation (ER) and electroorientation (EO) enabled the dielectric characterization of the rod-shaped fission yeast Schizosaccharomyces pombe. The use of microstructured electrodes allowed both ER and EO measurements to be performed over wide ranges of field frequency and medium conductivity. Due to their layered structure, living S. pombe cells exhibited up to three well resolved peaks in their ER spectra and also two distinct orientations, i.e., parallel or perpendicular to the imposed linear field. Heat treatment and enzymatic protoplast isolation led to dramatic changes in the electrokinetic behavior of fission yeast. Application of the theoretical models linking the ER and EO spectra yielded the dielectric parameters of the major structural units of S. pombe cells (cell wall, plasma membrane and cytosol). The dielectric characterization of yeasts has an enormous impact in biotechnology and biomedicine, because electric field pulse techniques (electrofusion and electropermeabilization) are widely used for production of transgenic yeast strains of economic importance. The present study also showed that combined ER and EO measurements can be employed as a powerful diagnostic tool for analyzing changes in yeast structure and physiology upon exposure to various stress conditions.  相似文献   

17.
Bcl-2/adenovirus E1B 19-kDa interacting protein 1 (BNIP1), which is predominantly localized to the endoplasmic reticulum (ER), is a pro-apoptotic Bcl-2 homology domain 3 (BH3)-only protein. Here, we show that the expression of BNIP1 induced not only a highly interconnected ER network but also mitochondrial fragmentation in a BH3 domain-dependent manner. Functional analysis demonstrated that BNIP1 expression increased dynamin-related protein 1 (Drp1) expression followed by the mitochondrial translocation of Drp1 and subsequent mitochondrial fission. Both BNIP1-induced mitochondrial fission and the translocation of Drp1 were abrogated by Bcl-2 overexpression. These results collectively indicate that ER-specific BNIP1 plays an important role in mitochondrial dynamics by modulating the mitochondrial fission protein Drp1 in a BH3 domain-dependent fashion.  相似文献   

18.
Mitochondrial fission ensures organelle inheritance during cell division and participates in apoptosis. The fission protein hFis1 triggers caspase-dependent cell death, by causing the release of cytochrome c from mitochondria. Here we show that mitochondrial fission induced by hFis1 is genetically distinct from apoptosis. In cells lacking the multidomain proapoptotic Bcl-2 family members Bax and Bak (DKO), hFis1 caused mitochondrial fragmentation but not organelle dysfunction and apoptosis. Similarly, a mutant in the intermembrane region of hFis1-induced fission but not cell death, further dissociating mitochondrial fragmentation from apoptosis induction. Selective correction of the endoplasmic reticulum (ER) defect of DKO cells restored killing by hFis1, indicating that death by hFis1 relies on the ER gateway of apoptosis. Consistently, hFis1 did not directly activate BAX and BAK, but induced Ca(2+)-dependent mitochondrial dysfunction. Thus, hFis1 is a bifunctional protein that independently regulates mitochondrial fragmentation and ER-mediated apoptosis.  相似文献   

19.
This study establishes the role of P(5A)-type Cta4 ATPase in Ca(2+) sequestration in the endoplasmic reticulum by detecting an ATP-dependent, vanadate-sensitive and FCCP insensitive (45)Ca(2+)-transport in fission yeast membranes isolated by cellular fractionation. Specifically, the Ca(2+)-ATPase transport activity was decreased in ER membranes isolated from cells lacking a cta4(+) gene. Furthermore, a disruption of cta4(+) resulted in 6-fold increase of intracellular Ca(2+) levels, sensitivity towards accumulation of misfolded proteins in ER and ER stress, stimulation of the calcineurin phosphatase activity and vacuolar Ca(2+) pumping. These data provide compelling biochemical evidence for a P(5A)-type Cta4 ATPase as an essential component of Ca(2+) transport system and signaling network which regulate, in conjunction with calcineurin, the ER functionality in fission yeast.  相似文献   

20.
In hypoxic cells, dysfunctional mitochondria are selectively removed by a specialized autophagic process called mitophagy. The ER–mitochondrial contact site (MAM) is essential for fission of mitochondria prior to engulfment, and the outer mitochondrial membrane protein FUNDC1 interacts with LC3 to recruit autophagosomes, but the mechanisms integrating these processes are poorly understood. Here, we describe a new pathway mediating mitochondrial fission and subsequent mitophagy under hypoxic conditions. FUNDC1 accumulates at the MAM by associating with the ER membrane protein calnexin. As mitophagy proceeds, FUNDC1/calnexin association attenuates and the exposed cytosolic loop of FUNDC1 interacts with DRP1 instead. DRP1 is thereby recruited to the MAM, and mitochondrial fission then occurs. Knockdown of FUNDC1, DRP1, or calnexin prevents fission and mitophagy under hypoxic conditions. Thus, FUNDC1 integrates mitochondrial fission and mitophagy at the interface of the MAM by working in concert with DRP1 and calnexin under hypoxic conditions in mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号