共查询到20条相似文献,搜索用时 0 毫秒
1.
The metabolism of [ 14C]succinate and acetate was examined in leaf slices of winter wheat ( Triticum aestivum L. cv Frederick) in the dark and in the light (1000 micromoles per second per square meter photosynthetically active radiation). In the dark [1,4- 14C]succinate was rapidly taken up and metabolized into other organic acids, amino acids, and CO 2. An accumulation of radioactivity in the tricarboxylic acid cycle intermediates after 14CO 2 production became constant indicates that organic acid pools outside of the mitochondria were involved in the buildup of radioactivity. The continuous production of 14CO 2 over 2 hours indicates that, in the dark, the tricarboxylic acid cycle was the major route for succinate metabolism with CO 2 as the chief end product. In the light, under conditions that supported photorespiration, succinate uptake was 80% of the dark rate and large amounts of the label entered the organic and amino acids. While carbon dioxide contained much less radioactivity than in the dark, other products such as sugars, starch, glycerate, glycine, and serine were much more heavily labeled than in darkness. The fact that the same tricarboxylic acid cycle intermediates became labeled in the light in addition to other products which can acquire label by carboxylation reactions indicates that the tricarboxylic acid cycle operated in the light and that CO 2 was being released from the mitochondria and efficiently refixed. The amount of radioactivity accumulating in carboxylation products in the light was about 80% of the 14CO 2 release in the dark. This indicates that under these conditions, the tricarboxylic acid cycle in wheat leaf slices operates in the light at 80% of the rate occurring in the dark. 相似文献
2.
Peperomia camptotricha, a tropical epiphyte from Mexico, shows variable forms of Crassulacean acid metabolism (CAM). Young leaves exhibit CAM-cycling, while mature leaves show an intermediate type of metabolism, between CAM and CAM-cycling, having approximately the same amount of nighttime gas exchange as daytime. Metabolism of young leaves appears independent of daylength, but mature leaves have a tendency toward more CAM-like metabolism under short days (8 hours). Large differences in the physical appearance of plants were found between those grown under short daylengths and those grown under long daylengths (14 hours). Some anatomical differences were also detected in the leaves. Water stress caused a switch to CAM in young and mature leaves, and as water stress increased, they shifted to CAM-idling. 相似文献
3.
This work examined three possible explanations of growth rateresponses to leaf area index (LAI) in which growth rate perunit of ground area (crop growth rate, CGR) increased to a plateaurather than decreasing above an optimum LAI at which all lightwas intercepted. Single leaf photosynthetic measurements, andwhole plant 24 h photosynthesis and respiration measurementswere made for isolated plants and plants in stands using Amaranlhushybridus, Chenopodium album, and two cultivars of Glycine maxgrown at 500 and 1000 µimol m 2 S 1 photosyntheticphoton flux density at 25 °C. CGR, relative growth rate(RGR), and LAI were determined from 24 h carbon dioxide exchangeand leaf area and biomass measurements. Respiration increasedrelative to photosynthesis with crowding in A. hybridus andthere was an optimum LAI for CGR. In contrast, the ratio ofrespiration to photosynthesis was constant across plant arrangementin the other species and they had a plateau response of CGRto LAI. Neither increased leaf photosynthetic capacity at highLAI nor a large change in biomass compared to the change inLAI could account for the plateau responses. It was calculatedthat maintenance respiration per unit of biomass decreased withdecreasing RGR in C. album and G. max, but not A. hybridus,and accounted for the plateau response of CGR to LAI. Sincesimilar decreases in maintenance respiration per biomass atlow RGR have been reported for several other species, a constantratio of respiration to photosynthesis may occur in more speciesthan constant maintenance respiration per unit of biomass. Amaranlhus hybridus L., Chenopodium album L., Glycine max L Merr, soybean, photosynthesis, respiration, growth, leaf area index 相似文献
4.
Intact chloroplasts were isolated from protoplasts of the Crassulacean acid metabolism plant Sedum praealtum D.C. Typical rates of CO 2 fixation or CO 2-dependent O 2 evolution ranged from 20 to 30 micromoles per milligram chlorophyll per hour and could be stimulated 30 to 50% by several Calvin cycle intermediates. The pH optimum for CO 2 fixation was 7.0 to 7.6 with considerable activity as low as pH 6.4. Low concentrations of orthophosphate (Pi) (optimum 0.4 millimolar) stimulated photosynthesis while high concentrations (5 millimolar) caused some inhibition. Both CO 2 fixation and CO 2-dependent O 2 evolution exhibited a relatively long lag phase (4 to 6 minutes) which remained constant between 0.4 to 5 millimolar Pi. The lag phase could be decreased by addition of dihydroxyacetone-phosphate or ribose 5-phosphate. Further results are presented which suggest these chloroplasts have a functional phosphate translocator. 相似文献
5.
In the succulent leaves of Aloe arborescens Mill diurnal oscillations of the malic acid content, being indicative of Crassulacean Acid Metabolism (CAM), were exhibited only by the green mesophyll. In contrast, the malic acid level of the central chloroplast-free water-storing tissue remained constant throughout the day-night cycle. Apart from malate, the green tissue contained high amounts of isocitrat which was lacking in the water tissue. There was no significant transfer from the green mesophyll to the water tissue of 14C fixed originally via dark 14CO 2 fixation in the mesophyll. Both isolated mesophyll and water tissue were capable of dark CO 2 fixation yielding mainly malate as the first stable product. Both tissues have phosphoenolpyruvate carboxylase. However, the enzymes derived from the both sources could be distinguished by their molecular weights and by their kinetic properties, suggesting different phosphoenolpyruvate carboxylase proteins. The conclusion drawn from the experiments is that in a. arborescens the CAM cycle proceeds exclusively in the green mesophyll and that the water tissue, though capable of malate synthesis via -carboxylation of phosphoenolpyruvate, behaves as an independent metabolic system where CAM is lacking. This view is supported by the finding that the cell walls bordering the green mesophyll from the water tissue lack plasmodesmata, hence conveniant pathways of metabolite transport.Abbreviations CAM
Crassulacean acid metabolism
- PEP
phosphoenolpyruvate
- PEP-C
phosphoenolpyruvate carboxylase 相似文献
6.
The succulent leaf of the obligate Crassulacean acid metabolism plant Crassula falcata comprises two distinct types of parenchyma. The peripheral tissue is dark green, whereas the central tissue is relatively colorless. We have investigated whether the conventional interpretation of Crassulacean acid metabolism—simply, temporal separation of light and dark CO 2 fixation within individual cells—is sufficient. Ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) and chlorophyll, indicating the photosynthetic-carbon-reduction pathway, were concentrated in peripheral tissue. Specific activities of P- enolpyruvate carboxylase (4.1.1.31) and of NAD +-malic enzyme (1.1.1.39), indicating capacity for dark CO 2 fixation and release, respectively, were high in both types of parenchyma. Measured directly as malic acid decline at the beginning of the photoperiod, CO 2 “storage” occurred in both tissues. These data indicate that there is a spatial component to Crassulacean acid metabolism in C. falcata. 相似文献
7.
The quantum requirement (QR) for photosynthesis in Sedum praealtum, a Crassulacean acid metabolism plant, was compared with that of wheat, a C 3 plant, and maize, a C 4 plant, at 30 C. During the deacidification phase in S. praealtum, approximately 16 moles quanta were absorbed per mole malate consumed. This is equivalent to 16 moles quanta per mole CO 2 fixed, assuming 1 mole CO 2 is assimilated per mole malate decarboxylated. This QR for Crassulacean acid metabolism is similar to that of the C 3 or C 4 plant under atmospheric conditions, even though there are considerable differences in the biochemistry of photosynthesis. During late-afternoon C 3-like fixation of atmospheric CO 2 in S. praealtum, the QR was relatively high with values of 41 under 21% O 2 and 19 under 2% O 2. During the deacidification phase in S. praealtum, the relatively low QR can be accounted for by the repression of photorespiration and saturation of photosynthesis from the elevated CO 2 concentration in the leaves during malate decarboxylation. 相似文献
8.
Plants of Sedum rubrotinctum R. T. Clausen were studied in a green-house over a 2-year period without watering. Only the apical leaves survived and were turgid at the end of the experiment. The midday leaf water potential of these apical leaves was −1.20 megapascals, while the leaf water potential of comparable leaves on well-watered control plants was −0.20 megapascals. The unwatered plants appear to have maintained turgor by means of an osmotic adjustment. After 2 years without water the plants no longer exhibited a nocturnal accumulation of titratable acidity. However, the daytime levels of titratable acidity of the unwatered plants were more than 2-fold greater than the levels in well-watered control plants. Well-watered plants of S. rubrotinctum exhibited seasonal shifts in biomass stble carbon isotope ratios, indicating a greater proportion of day versus night CO 2 uptake in the winter than in the summer. The imposition of water stress prevented the expression of this seasonal rhythm and restricted the plants to dark CO 2 uptake. 相似文献
10.
Fructose-1,6-bisphosphatase (FBPase) and sedoheptulose-1,7-bisphosphatase (SBPase) were identified and purified from the Crassulacean acid metabolism (CAM) plant, Kalanchoë daigremontiana. FBPase and SBPase showed respective molecular weights of 180,000 and 76,000, and exhibited immunological cross-reactivity with their counterparts from chloroplasts of C 3 (spinach) and C 4 (corn) plants. Based on Western blot analysis, FBPase was composed of four identical 45,000-dalton subunits and SBPase of two identical 38,000-dalton subunits. Immunological evidence, together with physical properties, indicated that both enzymes were of chloroplast origin. Kalanchoë FBPase and SBPase could be activated by thioredoxin f reduced chemically by dithiothreitol or photochemically by a reconstituted Kalanchoë ferredoxin/thioredoxin system. Both enzymes were activated synergistically by reduced thioredoxin f and thier respective substrates. Kalanchoë FBPase could be partially activated by Mg2+ at concentrations greater than 10 millimolar; however, such activation was considerably less than that observed in the presence of reduced thioredoxin and Ca2+, especially in the pH range between 7.8 and 8.3. In contrast to FBPase, Kalanchoë SBPase exhibited an absolute requirement for a dithiol such as reduced thioredoxin irrespective of Mg2+ concentration. However, like FBPase, increased Mg2+ concentrations enhanced the thioredoxin-linked activation of this enzyme. In conjunction with these studies, an NADP-linked malate dehydrogenase (NADP-MDH) was identified in cell-free preparations of Kalanchoë leaves which required reduced thioredoxin m for activity. These results indicate that Kalanchoë FBPase, SBPase, and NADP-MDH share physical and regulatory properties with their equivalents in C3 and C4 plants. In contrast to previous evidence, all three enzymes appear to have the capacity to be photoregulated in chloroplasts of CAM plants, thereby providing a means for the functional segregation of glucan synthesis and degradation. 相似文献
11.
Crassulacean acid metabolism (CAM) evolved in arid environments as a water-saving alternative to C 3 photosynthesis. There is great interest in engineering more drought-resistant crops by introducing CAM into C 3 plants. However, it is unknown whether full CAM or alternative water-saving modes would be more productive in the environments typically experienced by C 3 crops. To study the effect of temperature and relative humidity on plant metabolism in the context of water saving, we coupled a time-resolved diel (based on a 24-h day-night cycle) model of leaf metabolism to an environment-dependent gas-exchange model. This combined model allowed us to study the emergence of CAM as a trade-off between leaf productivity and water saving. We show that vacuolar storage capacity in the leaf is a major determinant of the extent of CAM. Moreover, our model identified an alternative CAM cycle involving mitochondrial isocitrate dehydrogenase as a potential contributor to initial carbon fixation at night. Simulations across a range of environmental conditions show that the water-saving potential of CAM strongly depends on the daytime weather conditions and that the additional water-saving effect of carbon fixation by isocitrate dehydrogenase can reach 11% total water saving for the conditions tested. 相似文献
12.
Two lectins have been isolated from leaves of Aloe arborescens Mill by salt precipitation, pH-dependent fractionation and gel filtration. One lectin (P-2) has a molecular weight of approximately 18,000, consists of two subunits (alphabeta) and contains more than 18% by weight of neutral carbohydrate. The smaller subunit (alpha) has a molecular weight of approximately 7,500 and the larger subunit (beta) a molecular weight of approximately 10,500. The other lectin (S-1) has a molecular weight of approximately 24,000, consists of two subunits (gamma2) with a molecular weight of approximately 12,000 and contains more than 50% by weight of neutral carbohydrate. An interesting feature of the amino acid compositions of these lectins is the high proportion of acidic amino acids, such as aspartic acid and glutamic acid, and the low proportion of methionine and histidine. S-1 has a strong hemagglutinating activity. On the other hand, P-2 has not only hemagglutinating activity but also mitogenic activity on lymphocytes, precipitate-forming reactivity with serum proteins, one of which is alpha2-macroglobulin, and complement C3 activating activity via the alternate pathway. 相似文献
15.
NAD-malic enzyme (NAD-ME) functions to decarboxylate malatein the light in leaves of certain species displaying Crassulaceanacid metabolism (CAM). The properties of NAD-ME in desaltedextracts from the inducible CAM species, Mesembryanthemum crystallinumwere examined. The shapes of the malate saturation curve andthe activity versus pH curve at 10 mM malate were dependenton the presence of the activator CoA. The malate saturationcurve was sigmoidal in the absence of an activator and hyperbolicin the presence of CoA. The pH optimum with 10mM malate andMn 2+ as cofactor was as low as 6.5 without an activator, andincreased to 7.2 in the presence of CoA. Fumarate activationwas synergistic with CoA above pH 7.2. The enzyme displayedhysteretic behavior under suboptimal assay conditions. Rapid extraction and desalting of the enzyme (<1.5 mim) followedimmediately by assay did not reveal any difference in the propertiesof the enzyme on a day/night basis. It is proposed that diurnalregulation of the enzyme in vivo is mediated by pH and malatelevel without a change in the oligomeric form of the enzyme.The molecular weight of the enzyme was approximately 350,000at pH 6.5 or 7.8. The enzyme obtained from M. crystallinum inthe C 3 mode was very similar to the CAM enzyme except that itdisplayed a lower V max.
3 Current address: MSU-DOE Plant Research Lab, Michigan StateUniversity, E. Lansing, Michigan, U.S.A. 48824. (Received October 2, 1984; Accepted December 20, 1984) 相似文献
16.
Diurnal patterns of CO 2 exchange and fluctuations of tissuemalic acid concentrations were investigated in three speciesof Commelinaceae: Callisia fragrans and Tripogandra multiflorafrom Jamaica, and Tradescantia brevifolia from southern Texas.Very low levels of CAM gas exchange were induced by droughtstress in C. fragrans and T. multiflora. In addition, past indicationsof CAM-cycling in the two Jamaican species were confirmed indrought-stressed plants; however, only C. fragrans exhibitedCAM-cycling under well-watered conditions. CAM-cycling underdrought stress was also found in T. brevifolia. This constitutesthe first report of CAM ( sensu lato) in the genus Tradescantia.The importance of low-level CAM in these three species is discussedas a potential adaptation to drought. Copyright 1994, 1999 AcademicPress Callisia fragrans, Tradescantia brevifolia, Tripogandra multiflora, Commelinaceae, CO 2 exchange, Crassulacean acid metabolism, CAM-cycling, CAM-idling, drought stress, malic acid fluctuations 相似文献
17.
The possibility that Crassulacean acid metabolism (CAM) is subject to long day photoperiodic control in Portulacaria afra (L.) Jacq., a facultative CAM plant, was studied. Periodic measurements of 14CO 2 uptake, stomatal resistance, and titratable acidity were made on plants exposed to long and short day photoperiods. Results indicates that waterstressed P. afra had primarily nocturnal CO 2 uptake, daytime stomatal closure, and a large diurnal acid fluctuation in either photoperiod. Mature leaf tissue from nonstressed plants under long days exhibited a moderate diurnal acid fluctuation and midday stomatal closure. Under short days, there was a reduced diurnal acid fluctuation in mature leaf tissue. Young leaf tissue taken from nonstressed plants did not utilize the CAM pathway under either photoperiod as indicated by daytime CO 2 uptake, lack of diurnal acid fluctuation, and incomplete daytime stomatal closure. The induction of CAM in P. afra appears to be related to the water status of the plant and the age of the leaf tissue. The photosynthetic metabolism of mature leaves may be partly under the control of water stress and of photoperiod, where CAM is favored under long days. 相似文献
18.
The relation between photosynthesis and stomatal resistance of each leaf surface in cotton leaves ( Gossypium hirsutum) was studied during ageing and with increase in light intensity. During ageing of leaves the stomatal resistance of the upper surface increases before that of the lower surface. This observation would suggest that the stomata of the upper leaf surface commence to age before those of the lower leaf surface. The earlier commencement of the increase in upper stomatal resistance results in the decline in photosynthesis at an early stage of ageing being negatively correlated with the upper stomatal resistance and not related to the lower stomatal resistance. The results indicate that in this initial phase of ageing the decrease in photosynthesis and increase in stomatal resistance of the upper surface are not causally related but occur simultaneously. At a more advanced stage of ageing the lower stomatal resistance also increases and then the decline in photosynthesis becomes related to the increase in stomatal resistance of both leaf surfaces. When illumination of leaves is increased stepwise, the resultant increase in photosynthesis is related to the reduction in stomatal resistance of each leaf surface. At low light intensities the stomatal resistance of the lower surface is low while that of the upper surface is relatively high. The difference between them decreases with increase in light intensity. This would indicate that the upper stomata require a higher light intensity to open than the lower stomata. The stormatal resistance of the two leaf surfaces is not related to the stomatal frequencey. 相似文献
19.
Cell-free preparations of the Crassulacean acid metabolism (CAM) plant, Kalanchoë daigremontiana, were analyzed for thioredoxins and ferredoxin-thioredoxin reductase. Three distinct forms of thioredoxin were identified in Kalanchoë leaves, two of which specifically activated fructose 1,6-bisphosphatase (designated f1 and f2) and a third which activated NADP-malate dehydrogenase (thioredoxin m). The apparent molecular weight of both forms of thioredoxin f was 11,000 and that of thioredoxin m was 10,000. In parallel studies, ferredoxin and ferredoxin-thioredoxin reductase were purified from Kalanchoë leaf preparations. Kalanchoë ferredoxin-thioredoxin reductase was similar to that of C 3 and C 4 plants in molecular weight (31,000) and immunological cross-reactivity. Kalanchoë ferredoxin-thioredoxin reductase exhibited an affinity for ferredoxin as demonstrated by its binding to an immobilized ferredoxin affinity column. The purified components of the Kalanchoë ferredoxin-thioredoxin system could be recombined to function in the photoregulation of chloroplast enzymes. The data suggest that the ferredoxin/thioredoxin system plays a role in enzyme regulation of all higher plants irrespective of whether they show C 3, C 4, or CAM photosynthesis. 相似文献
20.
Measurements of internal gas phase CO 2 concentration, stomatal resistance, and acid content were made in Crassulacean acid metabolism plants growing under natural conditions. High CO 2 concentrations, sometimes in excess of 2%, were observed during the day in a range of taxonomically widely separated plants ( Opuntia ficus-indica L., Opuntia basilaris Engelm. and Bigel., Agave desertii Engelm., Yucca schidigera Roezl. ex Ortiges, Ananas comosus [L.] Merr., Aloe vera L., Cattleya sp. and Phalanopsis sp.) and below ambient air concentrations were observed at night. 相似文献
|