首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Calcareous nannoplankton assemblages from a Late Quaternary deep-sea core (GC07; 46°09′S, 146°17′E) south of Australia provide information on regional palaeoceanography and palaeoclimate changes in the Southern Ocean, in particular the movement of the Subtropical Front for the past 130 ka years. Marine Isotope Stages 1–5 are identified through changes in calcareous nannoplankton assemblages, supported by 14C dates, and oxygen isotope and %CaCO data.Two distinct assemblages are recognised: a warm water assemblage with higher abundances of Calcidiscus leptoporus, Emiliania huxleyi, Helicosphaera.carteri, Syracosphaera pulchra, Gephyrocapsa caribbeanica and Gephyrocapsa oceanica; and, a cold water assemblage with higher abundances of Gephyrocapsa muellerae and Coccolithus pelagicus. Alternation between these two assemblages downcore in GC07 reflect movement of the Subtropical Front across the location and can be correlated to Marine Isotope Stages (MIS) 1–5. Sediments with a cold water assemblage indicate the position of the Subtropical Front equatorward of the site when transitional to sub-antarctic waters were overlying the site. Conversely sediments with a warm water assemblage indicate the Subtropical Front was poleward of GC07 when warmer, subtropical waters were over the site. MIS 1 and 5 are interpreted as warmer than MIS 3 (based on species composition) with the Subtropical Front more poleward than for MIS 3. During MIS 3 the Subtropical Front is interpreted as adjacent to or immediately poleward of GC07. Some species including C. leptoporus and C. pelagicus show negative covariance and are considered to be reliable species in identifying glacial and interglacial intervals in this region.Comparison with established biostratigraphy based on calcareous nannoplankton showed the datum event for the reversal between E. huxleyi and G. muellerae of 73 ka in transitional waters is not applicable in this region. The reversal between these two species occurs between 48 and 30 cm downcore in GC07 with a 14C date of 11 020 year BP at 49–48 cm, i.e. the reversal event is younger than this date.  相似文献   

2.
Preservation of calcareous nannoplankton in surface sediment samples from the Southern Ocean south of Australia and adjacent to New Zealand record a single assemblage. The dominant species are Emiliania huxleyi, Gephyrocapsa muellerae, Calcidiscus leptoporus, Helicosphaera carteri and Coccolithus pelagicus. The assemblage varies little in abundance and diversity with minor correlation to present-day overlying surface water masses and oceanic fronts. Increase in abundance of H. carteri and C. pelagicus in the region of the Subtropical Front may reflect higher nutrients associated with this front. The assemblage, although altered by dissolution, represents a warmer climatic interval than present-day with the presence of preferentially dissolved, warm-water species preserved as far south as the Polar Front. The presence of warm-water species under sub-Antarctic waters at the Polar Front is interpreted as a relic population from the Holocene climatic optimum of 10–8 ka. The absence of coccoliths in sediments poleward of the Polar Front suggests an equatorward shift of this front following the climatic optimum, resulting in increased productivity of siliceous phytoplankton associated with the colder waters and increased dissolution of coccoliths. Movement of the Subtropical Front for the same interval is not recorded in the preserved coccoliths. The more heavily calcified form of E. huxleyi which dominates the living assemblage north of the Subtropical Front is subject to dissolution in this region and is poorly preserved in the sediment assemblage.  相似文献   

3.
Calcareous nannofossil assemblages have been investigated at Ocean Drilling Program (ODP) Site 1090 located in the modern Subantarctic Zone, through the Pleistocene Marine Isotope Stages (MIS) 34–29, between 1150 and 1000 ka. A previously developed age model and new biostratigraphic constraints provide a reliable chronological framework for the studied section and allow correlation with other records. Two relevant biostratigraphic events have been identified: the First Common Occurrence of Reticulofenestra asanoi, distinctly correlated to MIS 31–32; the re-entry of medium Gephyrocapsa at MIS 29, unexpectedly similar to what was observed at low latitude sites.The composition of the calcareous nannofossil assemblage permits identification of three intervals (I–III). Intervals I and III, correlated to MIS 34–32 and MIS 30–29 respectively, are identified as characteristic of water masses located south of the Subtropical Front and reflecting the southern border of Subantarctic Zone, at the transition with the Polar Front Zone. This evidence is consistent with the hypothesis of a northward shift of the frontal system in the early Pleistocene with respect to the present position and therefore a northernmost location of the Subantarctic Front. During interval II, which is correlated to MIS 31, calcareous nannofossil assemblages display the most significant change, characterized by a distinct increase of Syracosphaera spp. and Helicosphaera carteri, lasting about 20 ky. An integrated analysis of calcareous nannofossil abundances and few mineralogical proxies suggests that during interval II, Site 1090 experienced the influence of subtropical waters, possibly related to a southward migration of the Subtropical Front, coupled with an expansion of the warmer Agulhas Current at the core location. This pronounced warming event is associated to a minimum in the austral summer insolation. The present results provide a broader framework on the Mid-Pleistocene dynamic of the ocean frontal system in the Atlantic sector of the Southern Ocean, as well as additional evidence on the variability of the Indian–Atlantic ocean exchange.  相似文献   

4.
A quantitative analysis of 37 radiolarian species in 58 deep-sea surface-sediment samples from the subtropical to the polar regions of the Indian Ocean produced four geographically distinct faunal assemblages (transitional, antarctic, subtropical, subantarctic). Geographic distributions of these assemblages coincide with present-day patterns of sea-surface temperature and water masses. The antarctic factor is almost exclusively found south of today's Antarctic Polar Front. Highest concentrations of the transitional factor are recorded at sites positioned between today's Subtropical Convergence and the Polar Front. The subtropical factor is dominant in sites north of today's Subtropical Convergence.Values of these four faunal assemblages in the surface-sediment samples were regressed onto present-day summer and winter temperatures of the surface waters overlying each of the core-top sites. Resulting transfer functions yield temperature estimates which compare favorably with observed (present-day) summer and winter sea-surface temperatures, with low standard errors of estimate (< ± 1.9°C) and no clear geographic pattern in maps of the residuals (difference between observed and estimated sea-surface temperature).  相似文献   

5.
A high resolution study of chlorophyll a and primary production distribution was carried out in the Atlantic sector of the Southern Ocean during the austral summer of 1990–91. Primary production (14C assimilation) and photosynthetic capacity levels at frontal systems were among the highest recorded during the cruise (2.8–6.3 mgC·m–3·h–1, and 1.3–4.7mgC·mgChl a –1·h–1, respectively). Blooms at ocean fronts were strongly dominated by specific size classes and species. This suggests that the increase in biomass was probably the result of an enhancement of in situ production by selected components of the phytoplankton assemblage, rather than accumulation of cells through hydrographic forces. This hypothesis is supported by the high variability of photosynthetic capacities at adjacent stations along the transects. Blooms (ca 2.7–3.5 mg Chl a·m–3) were found at three oceanic fronts (the Subtropical, Subantarctic and Antarctic Polar Fronts) during the early summer. These were equivalent to, or denser than, blooms in the Marginal Ice Zone and at the Continental Water Boundary. Seasonal effects on phytoplankton community structure were very marked. In early summer (December), netphyto-plankton (>20 m) was consistently the major component of the frontal blooms, with the chain-forming diatoms Chaetoceros spp. and Nitzschia spp. dominating at the Subantarctic and Antarctic Polar Fronts, respectively. During late summer (February), nanophytoplankton (1–20 m) usually dominated algal communities at the main frontal areas. Only at the Antarctic Polar Front did netphytoplankton dominate, with the diatom component consisting almost exclusively of Corethron criophilum. An early to late summer shift of maximum phytoplankton biomass from north to south of the Antarctic Polar Front was observed. Spatial covariance between silicate levels and water-column stability appeared to be the main factor controlling phytoplankton production at the Antarctic Polar Front. Low silicate concentrations may have limited diatom growth at the northern edge of the front, while a deep mixed layer depth reduced production at the southern edge of the front.  相似文献   

6.
Twenty-five core-top samples from the Maurice Ewing Bank (MEB) and Islas Orcadas Rise (IOR) were examined to determine the distribution of benthic foraminifera in the vicinity of the Polar Front in the southwest Atlantic Ocean. The Polar Front has a subsurface expression that effects the areal and depth distribution of benthic foraminifera in this region.Three faunal assemblages were identified by Q-mode factor analysis. The shallowest assemblage, dominated by Bulimina aculeata, is present from 1500 to 2600 m on the Maurice Ewing Bank and is associated with potential temperatures of 1.71-0.50°C, salinities of 34.74-34.70‰ and potential density values of 45.84–46.04 sigma-4. A second assemblage, dominated by Uvigerina peregrina, occurs in water depths from 2600 to 3100 m and is associated with potential temperatures of 0.40-0.26°C, salinities of 34.70-34.69‰ and potential density values of 46.05–46.07 sigma-4. The third assemblage is dominated by Nuttallides umbonifera, Ehrenbergina trigona and secondarily by Oridorsalis umbonatus and Pullenia bulloides (the N. umbonifera-E. trigona assemblage) is present form 2770 to 3120 m on the Islas Orcadas Rise. This assemblage is associated with potential temperatures of 0.36-0.14°C, salinities of 34.69-34.68‰, and potential density values of 46.06–46.09 sigma-4. Although the U. peregrina assemblage and the N. umbonifera-E. trigona assemblage overlap bathymetrically, they are present in waters of slightly different properties. The Bulimina aculeata assemblage is within the core of the Lower Circumpolar Deep Water (LCDW), while the other two assemblages occur within transition zones between the LCDW and Weddell Sea Deep Water (WSDW).The difference in the benthic foraminiferal assemblages at similar depths on the Islas Orcadas Rise and the Maurice Ewing Bank is the result of different water-mass regimes separated by the Polar Front.  相似文献   

7.
Q-mode factor analysis (CABFAC) of 38 diatom species in 66 surface sediment samples from the Labrador Sea allowed the definition of six assemblages explaining 95.69% of the total variance. The first assemblage (40.12% of the total variance) is represented by Thalassiothrix longissima, a species characteristic of the Irminger Current and associated with the West Greenland Current. The second assemblage (34.52% of the total variance) is represented by Thalassiosira gravida (resting spores), a cold water species associated with the Labrador Current. A third assemblage (11.43% of the variance) represented by Chaetoceros spp. is concentrated in the northeastern section of the Labrador Sea and associated with upwelling and high productivity. The fourth, the fifth and the sixth assemblages, represented, respectively, by Coscinodiscus marginatus, Coscinodiscus oculus iridis, and Coscinodiscus divisus, and Nitzschia frigida, are less significant and account, respectively, for 4.95, 2.62 and 2.04% of the total variance. Transfer functions derived by relating factor assemblages to surface water temperature and salinity (August and February) give standard errors of estimate of ±0.93°C (August) and ±0.64°C (February) for temperature, and of ±0.58‰ (August) and ±0.45‰ (February) for salinity. High correlations between the measured and estimated parameters confirm the validity of the paleoecological equations for the reconstruction of the Labrador Sea paleoclimate.  相似文献   

8.
In this study the coccolithophore compositions of 11 plankton depth stations along a N–S transect from the South Atlantic Subtropical Gyre to the Subantarctic Zone were examined qualitatively and quantitatively. The lateral and vertical distribution patterns of not only the most abundant taxa but also of the morphotypes of distinct species complexes, such as Calcidiscus leptoporus, Emiliania huxleyi, and Umbellosphaera tenuis were the focus. Geographic variation among morphotypes mirrors different ecological affinities of the members of a species complex. Multivariate statistics were used to infer the relationship between a set of known environmental data and species concentrations. The results of the detrended Canonical Correspondence Analysis (CCA) revealed the presence of distinct species assemblages. The Subtropical Gyre assemblage within the upper 50 m of the photic zone is mainly composed of Umbellosphaera irregularis, U. tenuis types III and IV, Discosphaera tubifera, Rhabdosphaera clavigera, S. pulchra and E. huxleyi var. corona, adapted to warm and oligotrophic conditions. In the deeper photic zone abundant Florisphaera profunda, Gephyrocapsa ericsonii and Oolithotus spp. are encountered, benefiting from higher nutrient concentrations in the vicinity of the nutricline. A well-defined Subtropical Frontal Zone (STFZ) association is clearly dominated by E. huxleyi types A and C throughout the upper 100 m of the water column. Secondary contributors in the upper photic zone are Syracosphaera spp. (mainly S. histrica, S. molischii), Michaelsarsia elegans, Ophiaster spp. and U. tenuis type II. This assemblage is associated with cooler, nutrient-rich waters. E. huxleyi type B is found deeper in the water column. Here it is accompanied by Algirosphaera robusta, G. muellerae, and S. anthos indicating a tolerance of lower light availability in environments with elevated productivity. C. leptoporus spp. leptoporus shows relatively high cell numbers in all sampled water levels throughout the STFZ. Interestingly, its coccoliths are often smaller 5 μm in lith diameter. The mean coccolithophore assemblages of a station were compared to the underlying surface sediment assemblages. For the most part, the distribution of the morphotypes is reflected in the sedimentary archive, thus proving their potential as paleoecological proxies.  相似文献   

9.
Comparison of diatom data from modern surface sediments in Prydz Bay and the Kerguelen Plateau with diatom assemblages from the Sørsdal Formation, Vestfold Hills, indicates that the climate was warmer than present during the early Pliocene (4.5–4.1 Ma). Extant, sea-ice associated diatoms are significantly less abundant throughout the Sørsdal Formation than in the modern Antarctic coastal zone. Extant diatoms in the Sørsdal Formation, including Stellarima stellaris, Thalassiosira oliverana, Fragilariopsis sublinearis, Pseudo-nitzschia turgiduloides and Eucampia antarctica var. recta, are consistent with annual sea-surface temperatures (SST) of between −1.8 and 5.0°C. The presence of S. stellaris indicates that the summer SSTs were >3°C during some intervals. The absence of calcareous coccoliths and the silicoflagellate Dictyocha suggests that the upper limit for summer SST was <5°C. These data indicate that early Pliocene summer SST were between 1.6 and 3°C warmer than today. Abundant Chaetoceros cysts infer that stratified, open-water conditions were present during summer/spring. Ice sheet models suggest that warming of the magnitude evident in the Sørsdal Formation (≤3°C) should have resulted initially in increased snow accumulation and ice sheet growth. However, ice sheet growth was probably short-lived, as the long-term response to this warming in the early Pliocene resulted in a significant decrease in ice volume and deposition of the Sørsdal Formation. Other factors, such as increased basal-ice sliding and higher discharge (icebergs and melt-water), probably led to significantly elevated ablation rates from the Pliocene ice sheet, resulting in ice sheet retreat.  相似文献   

10.
The paleoceanography of the Tasman Sea over the past 250,000 years was studied using benthic (>75 μm size fraction) and planktonic foraminifera (>149 μm size fraction) from three cores collected along 162°E traverse between 25°S and 30°S on the Lord Howe Rise. Planktonic foraminiferal oxygen isotope stratigraphy dates the cores between OIS 1 and 11. R-mode cluster and Q-mode factor analyses were carried out on benthic foraminiferal faunas, and Q-mode factor analysis and the modern analog technique (MAT) were used in analyzing planktonic foraminiferal faunas. Distinct benthic faunas across latitude from north (25°S) to south (30°S and 35°S) reflects the difference in primary productivity level in the overlying surface water. The MAT result is thought to express latitudinal shifts of the Tasman Front over the last 250,000 years with: (1) the Tasman Front at 35°S during the oxygen isotope stage (OIS) 1 (post-glacial period); (2) migration of the front nearby 25°S during the last glacial period (OIS 2–OIS 4) and slightly northward of its present position during the penultimate glacial period (OIS 6); and (3) a return of the front to near 35°S during OIS 5 and OIS 7. Based on time-series and spatial variations of benthic foraminiferal factor typified by Pseudoparrella exigua and Uvigerina peregrina and one variety, southern-winter mixing and convection along the Tasman Front may have strengthened during the interglacial OIS 7 in particular.  相似文献   

11.
In order to assess Early Cretaceous nannoplankton biogeography, we studied a series of sites which provide a north–south transect across the Atlantic Ocean, supplemented by sections from the North Sea Basin, Barents Sea, Falkland Plateau, Weddell Sea (Antarctica), Argo Abyssal Plain (NW of Australia) and Neuquén Basin (Argentina). Quantitative assemblage data were gathered from each site for seven time-slices within the Berriasian to Barremian interval, each horizon being determined by a nannofossil datum. Trends in species relative abundance and measures of diversity, evenness and richness provide revealing biogeographic information. A broad, low- to mid-palaeolatitude zone (50°N–50°S) is flanked in both Northern and Southern Hemispheres by distinct high-palaeolatitude zones. Major changes in assemblage abundance and composition occur across a sharp biogeographic ‘front’ at around 50°N and S palaeolatitude. High-palaeolatitude assemblages are lower in species richness and diversity and characterised by the presence of abundant, typically bipolar, taxa (e.g. Crucibiscutum salebrosum). A less distinct biogeographic boundary at 40°N is distinguished by the presence/absence of rarer, but biogeographically significant, taxa, many of which have previously been assigned to Boreal or Tethyan provinces. Continental shelf sites are characterised by lower-diversity assemblages with common to dominant diagnostic taxa, which vary with palaeolatitude: Nannoconus and Micrantholithus at low palaeolatitudes, and Biscutum constans and Zeugrhabdotus spp. at higher palaeolatitudes. The latter two taxa are considered to be indicative of elevated surface-water fertility and the former two may have been similarly adapted. The genus Watznoueria is ubiquitously dominant, giving the populations an unevenness, which appears to be a common feature throughout coccolithophore history.  相似文献   

12.
P. Koubbi 《Polar Biology》1993,13(8):557-564
One of the aims of oceanographic campaign MD 68/SUZIL, carried out in austral autumn 1991 in the Indian sector of the Southern Ocean and its adjacent subtropical waters, was to investigate the influence of hydrography on the ichthyoplankton and mesopelagic fish assemblages in the Crozet Basin. It appears that, in contrast to other sectors of the Southern Ocean, the main biogeographical barriers are the Subantarctic Front and the Agulhas Front which appear to be vertical convergence fronts. The importance of the Antarctic Polar Front and the Subtropical Front as barriers to fish seems to be minimized in this area because of its particular hydrological features, such as the lack of a subantarctic zone, the maximum current intensity of the Subantarctic Front between these fronts, and their structures — they are horizontal convergence fronts.  相似文献   

13.
During the EPOS leg 2 cruise of the RV Polarstern, carried out in late austral spring of 1988–1989, the composition of phytoplankton in relation to the distribution of hydrographic parameters was studied in four successive transects carried out along 49°W and 47°W, across the Weddell-Scotia Confluence (WSC) and the marginal ice zone (which overlapped in part). In all transects, a maximum of phytoplankton biomass was found in the WSC, in surface waters stabilized by ice melting. Different phytoplankton assemblages could be distinguished. North of the Scotia Front (the northern limit of the WSC) diatoms with Chaetoceros neglectus, Nitzschia spp. and (Thalassiosira gravida) dominated the phytoplankton community. This assemblage appeared to have seeded a biomass maximum which occupied, during the first transect, an area of the WSC, south of the Scotia Front. The southernmost stations of the first transect and all the stations to the south of the Scotia Front in the other transects were populated by a flagellate assemblage (with a cryptomonad, Pyramimonas spp. and Phaeocystis sp.) and an assemblage of diatoms (Corethron criophilum and Tropidoneis vanheurkii among others) associated to the presence of ice. During the last three transects, the flagellate assemblage formed a bloom in the low salinity surface layers of the WSC zone. The bulk of the biomass maximum was formed by the cryptomonad which reached concentrations up to 4×106 cells l–1 towards the end of the cruise. Multivariate analysis is used to summarize phytoplankton composition variation. The relationships between the distribution of the different assemblages and the hydrographic conditions indicate that the change of dominance from diatoms to flagellates in the WSC zone was related to the presence of water masses from different origin.Data presented here were collected during the European Polarstern Study (EPOS) sponsored by the European Science Foundation  相似文献   

14.
The distribution of forty-four coccolithophore species in one hundred deep-sea core-tops from the southwest Indian Ocean is described. Three coccolith assemblages have been recognised (Maputo, Agulhas Current and deep water) by the relative abundances of four ecologically significant coccolithophore species (Gephyrocapsa oceanica, Emiliania huxleyi, Calcidiscus leptoporus and Umbilicosphaera sibogae). Their biogeographical distribution appears to be related to water temperature, nutrient concentration and dissolution.The degree of preservation of coccoliths and foraminifera indicates that the carbonate lysocline lies somewhere between 3500 and 4000 m, resulting in the concentration of dissolution-resistant microfossils below this depth.Stable oxygen isotope ratios of the planktonic foraminiferal species Globigerinoides sacculifer range between −1.5 to −1.0‰ PDB (equal to 22.8–25.1°C) and occur in a narrow band on the sea floor beneath the “A” route of the Agulhas Current.These values are about 0.5 per mil PDB lighter than samples analyzed on either side of this band and can be explained by the Agulhas Current's elevated temperature at the ocean surface of 2–3°C. Thus an oxygen isotope imprint of the Agulhas Current exists beneath it on the sea floor.The Agulhas Current is probably the major factor influencing sedimentation, sediment-distribution patterns and geological features in the study area. At present it is voluminous and fast flowing, possibly eroding sediments up to 2500 m below the surface.The oxygen-isotope ratios and nannoplankton counts obtained in this study indicate, however, that the majority of samples are most probably recent or at least not older than 85,000 years. This implies that sediments are accumulating on the ocean floor and that the Agulhas Current does not have a pronounced erosional influence, at least in areas from which cores were retrieved for this study.  相似文献   

15.
The primary goal of this study was to assess the importance of food in regulating densities of zooplankton in 3 northern Canadian lakes, where algal availability was low compared to temperate zone water bodies. Collections were made every 2 weeks during the summer and monthly during the winter from April 1978 to April 1979. Since the lakes were similar in most respects, including nannoplankton density, net phytoplankton density, temperature, depth, oxygen concentration and phosphorus levels, the seasonal cycles of the main species (Keratella cochlearis, Kellicottia longispina, Polyarthra remata, Polyarthra vulgaris, Cyclops spp., Diaptomus spp.) were generally similar throughout the study area. Changes in the densities of herbivorous species were poorly correlated with fluctuations in nannoplankton and net plankton availability, implying that food did not limit development. Although predatory copepods, particularly Cyclops spp., were abundant, they also had no measurable impact on the main species. It was therefore concluded that temperature controlled the seasonal cycles and the ultimate population size of most zooplankters.  相似文献   

16.
Summary To compare the spatial and temporal (seasonal) distribution of dinoflagellates, vertical net hauls were taken along similar cruise tracks in the Scotia Sea, Weddell Sea and across the Polar Front Zone in the austral spring and the austral fall. Sixty-three species of armored dinoflagellates were identified and enumerated. Chisquare and hierarchical cluster analyses were performed to define spatial and seasonal patterns in genera and species assemblages. The dominant genera were Protoperidinium, Dinophysis and Ceratium. The Polar Front Zone was an important biogeographical barrier with Blepharocysta, Gonyaulax, Heteroschisma, Oxytoxum and Podolampas occurring mainly north of the Front. Species found primarily in the austral spring were Ceratium fusus, Ceratium lineatum, Dinophysis antarctica, Dinophysis simplex, Gonyaulax digitale, Protoperidinium pyriforme and Protoperidinium variegatum. Austral fall species included Dinophysis tuberculata and Protoperidinium elegantissum. Distribution of armored dinoflagellates in the Southwestern Atlantic Ocean is influenced at the generic level by spatial considerations, particular with relation to the Polar Front Zone, whereas species composition can be effected by both region and season.  相似文献   

17.
Quantitative study on calcareous nannofossil assemblages has been performed in high time resolution (2–3 kyr) at the Ocean Drilling Program Site 1090. The location of this site in the Southern Ocean is crucial for the comprehension of thermohaline circulation and frontal boundary dynamics, and for testing the employ of nannoflora as paleoceanographical tool. The chronologically well constrained investigated record spans between Marine Isotope Stage (MIS) 35 and 15, through an interval of global paleoclimate and paleoceanographical modification also known as mid-Pleistocene revolution (MPR). Measures of ecological (Shannon–Weaver diversity and paleoproductivity) and dissolution indices together with spectral and wavelet analyses carried out on the acquired time series provide valuable information for interpretation of data in terms of paleoecology and paleoceanography. Assemblages are mainly represented by dominant small Gephyrocapsa, common Calcidiscus leptoporus s.l., Coccolithus pelagicus s.l., Gephyrocapsa (4-5.5 μm), the extinct Pseudoemiliania lacunosa and Reticulofenestra spp. (R. asanoi and Reticulofenestra sp.). Morphotypes discriminated within Calcidiscus leptoporus s.l. and Coccolithus pelagicus s.l., reveal that they may have had different ecological preferences during Pleistocene with respect to the present. The composition and fluctuation in nannofossil assemblage and their comparison with the available Sea Surface Temperature (SST) and C-org curves suggest a primary ecological response to paleoenvironmental changes; relationships to different surface water features and boundary dynamics, as well as to different efficiencies and motions of the intermediate and deep water masses have been inferred. A more northward position of Subantarctic Front (SAF) during most of the Early Pleistocene record has been highlighted based on assemblage composition characterised by common Calcidiscus leptoporus s.l., Coccolithus pelagicus s.l., medium Gephyrocapsa (4–5.5 μm), and by the rarity or absence of Umbilicosphaera spp., Rhabdosphaera spp., Pontosphaera spp., Oolithotus fragilis. Exceptions are the more intense interglacials MIS 31, 17, and probably MIS 15, when a southward displacement of frontal system occurred, coincident with peaks in abundance of Helicosphaera spp. and Syracosphaera spp. Higher nutrient content and more dynamic conditions occurred between MIS 32 and MIS 25, in relation to shallower location of nutrient-rich Antarctic Intermediate Water (AAIW) core and to reduction of glacial–interglacial variability. A nannofossil barren interval is coincident with the known stagnation of South Atlantic deep water circulation during MIS 24, when North Atlantic Deep Water (NADW) was reduced or suppressed and an enhanced northward deep penetration of the more corrosive Circumpolar Deep Water (CPDW) took place. An event of strong instability in nutricline dynamics characterised the transition MIS 23–22 as suggested by sharp fluctuations in paleoproductivity proxies, linked to major changes in oceanographic circulation and to the first distinct increase of larger ice volumes at this time. From MIS 21 upward the nannofossil variations seem to be primarily controlled by glacial–interglacial cyclicity and temperature fluctuations. The cyclic fluctuation recognised in nannofossil abundance seems to be linked to orbitally-forced climatic variation, primarily to the obliquity periodicity recorded in the patterns of C. leptoporus intermediate (5–8 μm) and C. pelagicus pelagicus (6–10 μm); however no obvious and linear relations may be always observed between nannoflora fluctuation and Milankovitch parameters, suggesting more complex and unclear relationships between nannofossils and environmental change.  相似文献   

18.
The surface sediments collected from the intertidal and shallow marine (0–20 m) regimes of Jason Bay, South China Sea contain calcareous nannoplankton assemblages in whichGephyrocapsa oceanica comprises 99% of the assemblage. The calcareous nannoplankton diversity is very low and the abundance of species tends to increase with both depth and distance offshore and becomes abundant in samples from water depths of 18 m and 20 m.Emiliania huxleyi is absent from all studied samples. The sediments from the intertidal regime contained rare calcareous nannoplankton.  相似文献   

19.
Mesozooplankton distribution and community structure in theregion of the Subtropical Convergence (STC) south of Africawere investigated during the SAAMES III cruise in austral winter(June–July) 1993. Both the STC and an associated warm-coreeddy (WCE) exhibited enhancements in zooplankton abundance,compared to the Subantarctic waters. Particularly, elevatedzooplankton densities were found in the centre of the STC andin the region north of it as well as at the edge of the WCE.Copepods (mainly Pleuromamma abdominalis and Metridia lucens),euphausiids (Euphausia spinifera, E.similis and E.recurva),pteropods (Limacina spp.) and chaetognaths (Eukrohnia hamataand Sagitta spp.) dominated numerically and accounted for >60  相似文献   

20.
A high-resolution history of paleoceanographic changes in the subpolar waters of the southern margin of the Subtropical Convergence Zone during the last 130 kyr, is present in foraminiferal assemblages of DSDP Site 594. The foraminifera indicate that sea-surface temperatures during the Last Interglacial Climax were warmer than today, and that between substage 5d through to the end of isotope stage 2, temperatures were mostly cooler than Holocene temperatures. The paleotemperatures suggest that (1) the Subtropical Convergence was located over the site during substage 5e, later moving further north, then moving southwards to near the site during the Holocene, and (2) the Polar Front was positioned over the Site during glacial stages 6, 4, 2 and possibly parts of stage 3. Several major events are indicated by the nannofloral assemblages during these large changes in sea-surface temperature and associated reorganization of ocean circulation. First, the time-progressive trends between E. huxleyi and medium to large Gephyrocapsa are unique to this site, with E. huxleyi dominating over medium Gephyrocapsa during stages 5c-a, middle part of stage 4 and after the middle point of stage 3. This unusual trend may (at least partly) be caused by the shift of the Polar Front across the site. Second, upwelling flora (E. huxleyi and small placoliths) increase in abundance during stages 1, 3 and 5, suggesting that upwelling or disturbance of water stratification took place during the interglacials. Thirdly, there are no significant differences between the distribution patterns of the various morphotypes of medium to large Gephyrocapsa, and the combined value of all medium Gephyrocapsa increases in abundance during glacials (stages 2 and 4 and the end of stage 6), similar to the abundance trends in benthic foraminifera. Finally, subordinate nannofossil taxa also show distinctive. climatic trends during the last glacial cycle: (1) Syracosphaera spp. are present in increased abundance during warmer extremes in climate (substages 5e, 5a, and stage 1); (2) Coccolithus pelagicus and Calcidiscus leptoporus dominate the subordinate nannofossil taxa, and their relative proportions seem to provide a useful paleoceanographic index, with C. pelagicus dominating when the Polar Front Zone is over the site (stages 6, 4 and 2), whilst C. leptoporus is relatively more abundant when the STC is positioned over the site (stages 1 and 5e). Increased abundance of C. pelagicus also can indicate intensified coastal upwelling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号