首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In eukaryotes, coat protein complex II (COPII) proteins are involved in transporting cargo proteins from the endoplasmic reticulum (ER) to the Golgi apparatus. The COPII proteins, Sar1, Sec23/24, and Sec13/31 polymerize into a coat that gathers cargo proteins into a coated vesicle. Structures have been recently solved of individual COPII proteins, COPII proteins in complex with cargo, and higher‐order COPII coat assemblies. In this review, we will summarize the latest developments in COPII structure and discuss how these structures shed light on the functional mechanisms of the COPII coat.  相似文献   

2.
Traffic from the endoplasmic reticulum (ER) to the Golgi complex is initiated when the activated form of the GTPase Sar1p recruits the Sec23p-Sec24p complex to ER membranes. The Sec23p-Sec24p complex, which forms the inner shell of the COPII coat, sorts cargo into ER-derived vesicles. The coat inner shell recruits the Sec13p-Sec31p complex, leading to coat polymerization and vesicle budding. Recent studies revealed that the Sec23p subunit sequentially interacts with three different binding partners to direct a COPII vesicle to the Golgi. One of these binding partners is the serine/threonine kinase Hrr25p. Hrr25p phosphorylates the COPII coat, driving the membrane-bound pool into the cytosol. The phosphorylated coat cannot rebind to the ER to initiate a new round of vesicle budding unless it is dephosphorylated. Here we screen all known protein phosphatases in yeast to identify one whose loss of function alters the cellular distribution of COPII coat subunits. This screen identifies the PP2A-like phosphatase Sit4p as a regulator of COPII coat dephosphorylation. Hyperphosphorylated coat subunits accumulate in the sit4Δ mutant in vivo. In vitro, Sit4p dephosphorylates COPII coat subunits. Consistent with a role in coat recycling, Sit4p and its mammalian orthologue, PP6, regulate traffic from the ER to the Golgi complex.  相似文献   

3.
The coat protein complex II (COPII) forms transport vesicles from the endoplasmic reticulum and segregates biosynthetic cargo from ER-resident proteins. Recent high-resolution structural studies on individual COPII subunits and on the polymerized coat reveal the molecular architecture of COPII vesicles. Other advances have shown that integral membrane accessory proteins act with the COPII coat to collect specific cargo molecules into ER-derived transport vesicles.  相似文献   

4.
Cystic fibrosis (CF) is a childhood hereditary disease in which the most common mutant form of the CF transmembrane conductance regulator (CFTR) DeltaF508 fails to exit the endoplasmic reticulum (ER). Export of wild-type CFTR from the ER requires the coat complex II (COPII) machinery, as it is sensitive to Sar1 mutants that disrupt normal coat assembly and disassembly. In contrast, COPII is not used to deliver CFTR to ER-associated degradation. We find that exit of wild-type CFTR from the ER is blocked by mutation of a consensus di-acidic ER exit motif present in the first nucleotide binding domain. Mutation of the code disrupts interaction with the COPII coat selection complex Sec23/Sec24. We propose that the di-acidic exit code plays a key role in linking CFTR to the COPII coat machinery and is the primary defect responsible for CF in DeltaF508-expressing patients.  相似文献   

5.
Sato K  Nakano A 《FEBS letters》2007,581(11):2076-2082
The evolutionarily conserved coat protein complex II (COPII) generates transport vesicles that mediate protein transport from the endoplasmic reticulum (ER). COPII coat is responsible for direct capture of cargo proteins and for the physical deformation of the ER membrane that drives the COPII vesicle formation. In addition to coat proteins, recent data have indicated that the Ras-like small GTPase Sar1 plays multiple roles, such as COPII coat recruitment, cargo sorting, and completion of the final fission. In the present review, we summarize current knowledge of COPII-mediated vesicle formation from the ER, as well as highlighting non-canonical roles of COPII components.  相似文献   

6.
COPII and the regulation of protein sorting in mammals   总被引:1,自引:0,他引:1  
Secretory proteins are transported to the Golgi complex in vesicles that bud from the endoplasmic reticulum. The cytoplasmic coat protein complex II (COPII) is responsible for cargo sorting and vesicle morphogenesis. COPII was first described in Saccharomyces cerevisiae, but its basic function is conserved throughout all eukaryotes. Nevertheless, the COPII coat has adapted to the higher complexity of mammalian physiology, achieving more sophisticated levels of secretory regulation. In this review we cover aspects of mammalian COPII-mediated regulation of secretion, in particular related to the function of COPII paralogues, the spatial organization of cargo export and the role of accessory proteins.  相似文献   

7.
Molecular mechanisms of COPII vesicle formation   总被引:1,自引:0,他引:1  
The first step in protein secretion from eukaryotic cells is mediated by COPII vesicles, known for the cytoplasmic coat proteins that are the minimal machinery required to generate these small transport carriers. The five COPII coat components coordinate to create a vesicle by locally generating membrane curvature and populating the incipient bud with the appropriate cargo. This review describes the molecular details of how the COPII coat sculpts vesicles from the endoplasmic reticulum and highlights some unresolved questions regarding the regulation of this process in the complex environment of the eukaryotic cell.  相似文献   

8.
COPII coat assembly and selective export from the endoplasmic reticulum   总被引:2,自引:0,他引:2  
The coat protein complex II (COPII) generates transport vesicles that mediate protein transport from the endoplasmic reticulum (ER). Recent structural and biochemical studies have suggested that the COPII coat is responsible for direct capture of membrane cargo proteins and for the physical deformation of the ER membrane that drives the transport vesicle formation. The COPII-coated vesicle formation at the ER membrane is triggered by the activation of the Ras-like small GTPase Sar1 by GDP/GTP exchange, and activated Sar1 in turn promotes COPII coat assembly. Subsequent GTP hydrolysis by Sar1 leads to disassembly of the coat proteins, which are then recycled for additional rounds of vesicle formation. Thus, the Sar1 GTPase cycle is thought to regulate COPII coat assembly and disassembly. Emerging evidence suggests that the cargo proteins modulate the Sar1 GTP hydrolysis to coordinate coat assembly with cargo selection. Here, I discuss the possible roles of the GTP hydrolysis by Sar1 in COPII coat assembly and selective uptake of cargo proteins into transport vesicles.  相似文献   

9.
The events regulating coat complex II (COPII) vesicle formation involved in the export of cargo from the endoplasmic reticulum (ER) are unknown. COPII recruitment to membranes is initiated by the activation of the small GTPase Sar1. We have utilized purified COPII components in both membrane recruitment and cargo export assays to analyze the possible role of kinase regulation in ER export. We now demonstrate that Sar1 recruitment to membranes requires ATP. We find that the serine/threonine kinase inhibitor H89 abolishes membrane recruitment of Sar1, thereby preventing COPII polymerization by interfering with the recruitment of the cytosolic Sec23/24 COPII coat complex. Inhibition of COPII recruitment prevents export of cargo from the ER. These results demonstrate that ER export and initiation of COPII vesicle formation in mammalian cells is under kinase regulation.  相似文献   

10.
Coat protein complexes contain an inner shell that sorts cargo and an outer shell that helps deform the membrane to give the vesicle its shape. There are three major types of coated vesicles in the cell: COPII, COPI, and clathrin. The COPII coat complex facilitates vesicle budding from the endoplasmic reticulum (ER), while the COPI coat complex performs an analogous function in the Golgi. Clathrin-coated vesicles mediate traffic from the cell surface and between the trans-Golgi and endosome. While the assembly and structure of these coat complexes has been extensively studied, the disassembly of COPII and COPI coats from membranes is less well understood. We describe a proteomic and genetic approach that connects the J-domain chaperone auxilin, which uncoats clathrin-coated vesicles, to COPII and COPI coat complexes. Consistent with a functional role for auxilin in the early secretory pathway, auxilin binds to COPII and COPI coat subunits. Furthermore, ER–Golgi and intra-Golgi traffic is delayed at 15°C in swa2Δ mutant cells, which lack auxilin. In the case of COPII vesicles, we link this delay to a defect in vesicle fusion. We propose that auxilin acts as a chaperone and/or uncoating factor for transport vesicles that act in the early secretory pathway.  相似文献   

11.
The export of newly synthesized proteins from the endoplasmic reticulum is fundamental to the ongoing maintenance of cell and tissue structure and function. After co-translational translocation into the ER, proteins destined for downstream intracellular compartments or secretion from the cell are sorted and packaged into transport vesicles by the COPII coat protein complex. The fundamental discovery and characterization of the pathway has now been augmented by a greater understanding of the role of COPII in diverse aspects of cell function. We now have a deep understanding of how COPII contributes to the trafficking of diverse cargoes including extracellular matrix molecules, developmental signalling proteins, and key metabolic factors such as lipoproteins. Structural and functional studies have shown that the COPII coat is both highly flexible and subject to multiple modes of regulation. This has led to new discoveries defining roles of COPII in development, autophagy, and tissue organization. Many of these newly emerging features of the canonical COPII pathway are placed in a context of procollagen secretion because of the fundamental interest in how a coat complex that typically generates 80-nm transport vesicles can package a cargo reported to be over 300 nm. Here we review the current understanding of COPII and assess the current consensus on its role in packaging diverse cargo proteins.  相似文献   

12.
Coat protein complex II (COPII) is a multi-subunit protein complex responsible for the formation of membrane vesicles at the endoplasmic reticulum. The assembly of this complex on the endoplasmic reticulum membrane needs to be tightly regulated to ensure efficient and specific incorporation of cargo proteins into nascent vesicles. Recent studies of a genetic disease affecting COPII function, and a structural analysis of COPII subunit interactions emphasize the central role of the Sec23 subunit in COPII coat assembly. Similarly, the demonstration that Sec23 interacts physically and functionally with proteins involved in both vesicle tethering and the transport along microtubules indicates that the Sec23 subunit is crucially important in linking COPII vesicle formation to anterograde transport events.  相似文献   

13.
Proteins trafficking through the secretory pathway must first exit the endoplasmic reticulum (ER) through membrane vesicles created and regulated by the COPII coat protein complex. Cranio-lenticulo-sutural dysplasia (CLSD) was recently shown to be caused by a missense mutation in SEC23A, a gene encoding one of two paralogous COPII coat proteins. We now elucidate the molecular mechanism underlying this disease. In vitro assays reveal that the mutant form of SEC23A poorly recruits the Sec13-Sec31 complex, inhibiting vesicle formation. Surprisingly, this effect is modulated by the Sar1 GTPase paralog used in the reaction, indicating distinct affinities of the two human Sar1 paralogs for the Sec13-Sec31 complex. Patient cells accumulate numerous tubular cargo-containing ER exit sites devoid of observable membrane coat, likely representing an intermediate step in COPII vesicle formation. Our results indicate that the Sar1-Sec23-Sec24 prebudding complex is sufficient to form cargo-containing tubules in vivo, whereas the Sec13-Sec31 complex is required for membrane fission.  相似文献   

14.
COPI and COPII are vesicle coat complexes whose assembly is regulated by the ARF1 and Sar1 GTPases, respectively. We show that COPI and COPII coat complexes are recruited separately and independently to ER (COPII), pre-Golgi (COPI, COPII), and Golgi (COPI) membranes of mammalian cells. To address their individual roles in ER to Golgi transport, we used stage specific in vitro transport assays to synchronize movement of cargo to and from pre-Golgi intermediates, and GDP- and GTP-restricted forms of Sar1 and ARF1 proteins to control coat recruitment. We find that COPII is solely responsible for export from the ER, is lost rapidly following vesicle budding and mediates a vesicular step required for the build-up of pre-Golgi intermediates composed of clusters of vesicles and small tubular elements. COPI is recruited onto pre-Golgi intermediates where it initiates segregation of the anterograde transported protein vesicular stomatitis virus glycoprotein (VSV-G) from the retrograde transported protein p58, a protein which actively recycles between the ER and pre-Golgi intermediates. We propose that sequential coupling between COPII and COPI coats is essential to coordinate and direct bi-directional vesicular traffic between the ER and pre-Golgi intermediates involved in transport of protein to the Golgi complex.  相似文献   

15.
Secretory proteins are transported from the endoplasmic reticulum (ER) in vesicles coated with coat protein complex II (COPII). To investigate the molecular mechanism of protein sorting into COPII vesicles, we have developed an in vitro budding reaction comprising purified coat proteins and cargo reconstituted proteolipsomes. Emp47p, a type-I membrane protein, is specifically required for the transport of an integral membrane protein, Emp46p, from the ER. Recombinant Emp46/47p proteins and the ER resident protein Ufe1p were reconstituted into liposomes whose composition resembles yeast ER membranes. When the proteoliposomes were mixed with COPII proteins and GMP-PNP, Emp46/47p, but not Ufe1p, were concentrated into COPII vesicles. We also show here that reconstituted Emp47p accelerates the GTP hydrolysis by Sar1p as stimulated by its GTPase-activating protein, Sec23/24p, both of which are components of the COPII coat. Furthermore, this GTP hydrolysis decreases the error of cargo sorting. We suggest that GTP hydrolysis by Sar1p promotes exclusion of improper proteins from COPII vesicles.  相似文献   

16.
SNARE selectivity of the COPII coat   总被引:16,自引:0,他引:16  
Mossessova E  Bickford LC  Goldberg J 《Cell》2003,114(4):483-495
The COPII coat buds transport vesicles from the endoplasmic reticulum that incorporate cargo and SNARE molecules. Here, we show that recognition of the ER-Golgi SNAREs Bet1, Sed5, and Sec22 occurs through three binding sites on the Sec23/24 subcomplex of yeast COPII. The A site binds to the YNNSNPF motif of Sed5. The B site binds to Lxx-L/M-E sequences present in both the Bet1 and Sed5 molecules, as well as to the DxE cargo-sorting signal. A third, spatially distinct site binds to Sec22. COPII selects the free v-SNARE form of Bet1 because the LxxLE sequence is sequestered in the four-helix bundle of the v-/t-SNARE complex. COPII favors Sed5 within the Sed5/Bos1/Sec22 t-SNARE complex because t-SNARE assembly removes autoinhibitory contacts to expose the YNNSNPF motif. The COPII coat seems to be a specific conductor of the fusogenic forms of these SNAREs, suggesting how vesicle fusion specificity may be programmed during budding.  相似文献   

17.
The coat protein II (COPII)–coated vesicular system transports newly synthesized secretory and membrane proteins from the endoplasmic reticulum (ER) to the Golgi complex. Recruitment of cargo into COPII vesicles requires an interaction of COPII proteins either with the cargo molecules directly or with cargo receptors for anterograde trafficking. We show that cytosolic phosphatidic acid phospholipase A1 (PAPLA1) interacts with COPII protein family members and is required for the transport of Rh1 (rhodopsin 1), an N-glycosylated G protein–coupled receptor (GPCR), from the ER to the Golgi complex. In papla1 mutants, in the absence of transport to the Golgi, Rh1 is aberrantly glycosylated and is mislocalized. These defects lead to decreased levels of the protein and decreased sensitivity of the photoreceptors to light. Several GPCRs, including other rhodopsins and Bride of sevenless, are similarly affected. Our findings show that a cytosolic protein is necessary for transit of selective transmembrane receptor cargo by the COPII coat for anterograde trafficking.  相似文献   

18.
Although vesicular transport in eukaryotic cells involves a number of different carriers, one common feature is that most of them use small GTPases to direct coat assembly at the donor membrane. COPII coated vesicles bud from the endoplasmic reticulum to selectively export secretory cargo en route to the Golgi complex. Vesicle formation involves the stepwise recruitment of the small GTPase Sar1 and two large heterodimeric complexes Sec23-Sec24 and Sec13-Sec31 to the membrane. A new structural study now provides breathtaking molecular insights into the formation of the Sec23-Sec24-Sar1 pre-budding complex and into COPII coat assembly.  相似文献   

19.
The COPII coat produces ER-derived transport vesicles. Recent findings suggest that the COPII coat is a highly dynamic polymer and that efficient capture of cargo molecules into COPII vesicles depends on several parameters, including export signals, membrane environment, metabolic control and the presence of a repertoire of COPII subunit homologues.  相似文献   

20.
In addition to its role in forming vesicles from the endoplasmic reticulum (ER), the coat protein complex II (COPII) is also responsible for selecting specific cargo proteins to be packaged into COPII transport vesicles. Comparison of COPII vesicle formation in mammalian systems and in yeast suggested that the former uses more elaborate mechanisms for cargo recognition, presumably to cope with a significantly expanded repertoire of cargo that transits the secretory pathway. Using proTGFα, the transmembrane precursor of transforming growth factor α (TGFα), as a model cargo protein, we demonstrate in cell-free assays that at least one auxiliary cytosolic factor is specifically required for the efficient packaging of proTGFα into COPII vesicles. Using a knockout HeLa cell line generated by CRISPR/Cas9, we provide functional evidence showing that a transmembrane protein, Cornichon-1 (CNIH), acts as a cargo receptor of proTGFα. We show that both CNIH and the auxiliary cytosolic factor(s) are required for efficient recruitment of proTGFα to the COPII coat in vitro. Moreover, we provide evidence that the recruitment of cargo protein by the COPII coat precedes and may be distinct from subsequent cargo packaging into COPII vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号