首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies have shown that the arbuscular mycorrhizal fungus (AMF) Glomus deserticola (Trappe, Bloss and Menge) can diminish the negative effect of Verticillium dahliae Kleb. on pepper yield. On the other hand, it is known that AMF can be more beneficial for plant growth and physiology under dry conditions than when soil moisture is plentiful. Therefore, our objective was to assess if a moderate water deficit imposed on pepper plants before their inoculation with V. dahliae could improve the effectiveness of G. deserticola as biocontrol agent. In the present experiment, the delay in disease development in Verticillium-inoculated plants associated with AMF did not occur under well watered conditions. In addition, the establishment of mycorrhizal symbiosis and the development of structures by AMF were delayed when both symbiotic and pathogenic fungi infected the same root. Therefore, it is suggested that the equilibrium between pepper plant, G. deserticola and V. dahliae is so complex that small changes in competition between symbiotic and pathogenic fungi for host resources can modify the efficiency of AMF as a biocontrol agent. On the other hand, water deficit enhanced the deleterious effect of V. dahliae on fruit set and yield only when pepper plants were not associated with G. deserticola, which reinforces the idea that AMF may be more important for host plants subjected to stressful conditions. However, comparing well watered non-mycorrhizal and predroughted mycorrhizal plants, we found that moderate water deficit imposed before inoculation with V. dahliae did not improve the effectiveness of G. deserticola as a biocontrol agent.  相似文献   

2.
Summary  In the present study, the influence of Bacillus subtilis JA on arbuscular mycorrhizal fungi (AMF) was evaluated by either pot culture or in vitro conditions, respectively. Under the pot culture conditions, the inoculation of B. subtilis JA decreased the frequency (% F) of the root colonization by indigenous arbuscular mycorrhizal fungi and the shoot dry weight of maize (Zea mays L.), but had no apparent effect on the intensity (% I) of AM fungal root colonization. The unknown volatile emitted from the B. subtilis JA in vitro significantly inhibited spore germination and the hyphal growth in the dual-compartment experiments. Moreover, the data from the direct interaction between B. subtilis JA and Glomus etunicatum showed that soluble antifungal lipopeptides influenced the development of AMF. Therefore, the application of antifungal Bacillus strains should take the compatibility with the indigenous beneficial fungi into consideration.  相似文献   

3.
植物根际促生菌作用机制研究进展   总被引:24,自引:0,他引:24  
植物在生长过程中可能会遭受许多生物和非生物因素胁迫,从而降低生物产量. 人们已知一些植物在不同因素的刺激诱导下,能系统化建立抵抗或忍受不利因素的机制,植物根际促生菌(PGPR)就是其中一类能定殖于根系并促进植物生长的细菌.本文对PGPR促生机制进行归纳和总结,系统阐述了诱导体系抗性和诱导体系产生忍耐力两大促生机制.PGPR的作用机制的多样性暗示着其可能在更多的农业生态系统中得到应用.  相似文献   

4.
Abstract

Azoxystrobin at three different concentrations, namely, 31.25, 62.50 and 125 g a.i. ha?1 mancozeb (1 kg ha?1) and Pseudomonas fluorescens (10 kg ha?1) were evaluated for their efficacy in inducing defense enzymes in tomato against Alternaria solani and Septoria lycopersici. The activity of defense enzymes peroxidase (PO), polyphenol oxidase (PPO), phenylalanine ammonia lyase (PAL), β-1, 3 glucanase, chitinase, catalase and defense-inducing chemicals (total phenols) was found to be increased in azoxystrobin and P. fluorescens-treated tomato plants. The activity of these defense enzymes and chemicals was higher in azoxystrobin (125 g a.i. ha?1) and P. fluorescens-treated tomato plants challenge inoculated with the pathogens compared to other treatments. Increased expression of specific isoforms of PO and PPO was also observed due to ISR induction.  相似文献   

5.
The study was aimed to search out the probable molecule behind the activation of a broad spectrum resistance during Pseudomonas aeruginosa WS-1 mediated induced systemic resistance (ISR) in Capsicum annuum where plants were challenged inoculated with its pathogen Colletotrichum capsici 24 h after induction of ISR. On the fourth day after pathogen inoculation a significant increase of pathogenesis-related (PR) proteins, other defence enzymes and phenolics as well as a two-fold increase of nitric oxide (NO) a potent defence signalling molecule were observed. Treatment of the host with NO donor also induced the same defence molecule in a similar manner. Results suggest the possible signalling role of NO in ISR during crosstalk between ISR inducing agent and pathogen within the host system.  相似文献   

6.
The fungus, Muscodor albus, was tested for nematicidal and nematostatic potential against four plant-parasitic nematode species with three different feeding modes on economically important vegetable crops in the Pacific Northwest. Meloidogyne chitwoodi, Meloidogyne hapla, Paratrichodorus allius, and Pratylenchus penetrans were exposed for 72 h to volatiles generated by M. albus cultured on rye grain in sealed chambers at 24 °C in the laboratory. In addition, the nematodes were inoculated into soil fumigated with M. albus, and incubated for 7 days prior to the introduction of host plants under greenhouse conditions. The mean percent mortality of nematodes exposed to M. albus in the chamber was 82.7% for P. allius, 82.1% for P. penetrans, and 95% for M. chitwoodi; mortality in the nontreated controls was 5.8%, 7%, and 3.9%, respectively. Only 21.6% of M. hapla juveniles died in comparison to 8.9% in controls. However, 69.5% of the treated juveniles displayed reduced motility and lower response to physical stimulus by probing, in comparison to the control juveniles. This is evidence of nematostasis due to M. albus exposure. The greenhouse study showed that M. albus caused significant reduction to all nematode species in host roots and in rhizosphere soil. The percent mortality caused by M. albus applied at 0.5% and 1.0% w/w in comparison to the controls was as follows: 91% and 100% for P. allius in the soil; 100% for P. penetrans in bean roots and soil; 85% and 95% for M. chitwoodi in potato roots, and 56% and 100% in the soil; 100% for M. hapla both in pepper roots and soil. In this study, M. albus has shown both nematostatic and nematicidal properties.  相似文献   

7.
Tomato is a popular vegetable widely grown in the tropics, which is mainly attacked by fusarium wilt incited by Fusarium oxysporum f. sp. lycopersici (FOL). In the present scenario, an ecofriendly alternative strategy such as use of fungi from rhizosphere is being explored to combat the phytopathogen invasion. This study was carried out to evaluate the efficacy of Trichoderma asperellum MSST to promote the growth and yield parameters of tomato S-22, a susceptible variety. This study was also undertaken to manage fusarium wilt disease under in vitro and in vivo conditions. Significant increase in vegetative parameters like root length, shoot length, plant weight and chlorophyll content 60 days after sowing (DAS) was observed. There was reduction in the incidence of fusarium wilt in tomato up to 85%. Increase in the level of total phenol, peroxidase, polyphenoloxidase and phenylalanine ammonium lyase activity at 10th day of pathogen inoculation showed enhancement of plant defence mechanism by T. asperellum MSST against FOL. Overall study revealed that isolate MSST was proven to be potential biocontrol agent showing induced resistance against FOL.  相似文献   

8.
The infection of tomato leaves by Phytophthora infestans was followed using cytological methods. Fungal ingress and plant reactions in untreated and induced resistant plants were studied. Systemic disease resistance was induced by a local pre-infection with the same fungus. Induction retarded fungal progress at the leaf surface, epidermis and in the mesophyll. The reduced numbers of germinated cysts indicate the presence of fungitoxic substances on the leaf surface of induced plants. Frequency of fungal penetration through the outer epidermal cell wall was reduced, but only in plants exhibiting a high level of induced resistance. Autofluor-escent material, indicating the presence of lignin-like substances, accumulated rapidly beneath some of the appressoria, but this plant response was similar in induced and non-induced plants. Staining with aniline blue indicated that callose deposition was not involved in induced resistance. Thus, none of the cytologically investigated plant reactions correlated with the reduced penetration frequency observed. In the mesophyll, however, the cytological picture corresponding to a hypersensitive reaction occurred more often in induced plants. It is concluded that reduction of disease severity by induction is the result of the combined action of several successive defence reactions.Dedicated to the memory of Professor H. Grisebach  相似文献   

9.
The association between Rhizobium and legumes and that between arbuscular mycorrhizal (AM) fungi and most land plants display a remarkable degree of similarity. Both events involve the recognition of, entrance into, and coexistence within the plant root, with the development of a specialized interface that always separates the two partners and at which nutrient exchange occurs. Molecules produced by rhizobia during the early stages of the symbiosis are related to fungal chitin, and the plant responds to both microbes with an increase in the production of flavonoids, which may assist in recognition and development of the symbioses. Many of the same plant genes are up-regulated in the two symbiotic pathways, and notably plants that are Nod are often defective in the AM association as well. However, there are a number of differences between the associations, and these are important for understanding the relationship between the two symbioses. The Rhizobium and AM symbioses will be compared and the question of whether the nitrogen-fixing association evolved from the much more ancient AM symbiosis will be discussed.  相似文献   

10.
Studies were done to evaluate specific strains of plant growth promoting rhizobacteria (PGPR) for induced resistance against cucumber mosaic cucumovirus(CMV) in tomato. In greenhouse experiments where plants were challenged by mechanical inoculation of CMV, the percentage of symptomatic plants in the most effective PGPR treatments ranged from 32 to 58%,compared with 88 to 98% in the nonbacterized, challenged disease control treatment. Field experiments were conducted in 1996 and 1997 to evaluate 4 PGPR strain treatments based on superior performance in the greenhouse studies. In the 1996field experiment, tomato plants treated with 3 PGPR strains exhibited a significantly lower incidence of CMV infection and significantly higher yields, compared with nonbacterized, CMV-challenged controls. In 1997, the overall percentages of plants infected with CMV in the control and PGPR treatments was higher than in 1996. CMV symptom development was significantly reduced on PGPR-treated plants in 1997compared with the control, but the percentage of infected plants and tomato yields were not significantly different among treatments. These results suggest that PGPR-mediated induced resistance against CMV infection following mechanical inoculation onto tomato can be maintained under field conditions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
The effects of two arbuscular mycorrhizal fungi (AMF) (Glomus mosseae and G. claroideum) and a pathogenic fungus (Pythium ultimum) on the production of eight flavonoids in roots of two white clover (Trifolium repens L.) cultivars were evaluated. Quantification of AM and pathogenic fungi in the roots showed that the AM symbiosis significantly reduced P. ultimum biomass and in some cases prevented infection. The flavonoid productions in clover roots varied depending on the presence of beneficial and/or pathogenic fungi, fungal isolate or plant cultivar. Only plants colonized with G. claroideum showed detectable concentrations of either coumestrol or kaempferol (cultivar-dependant). In addition, inoculation with G. claroideum resulted in significantly higher concentrations of coumestrol in cv. Sonja and medicarpin in cv. Milo. A low production of coumestrol and kaempferol in mycorrhizal plants may be G. mosseae-specific. Only the concentrations of formononetin and daidzein increased in clover roots in response to infection with P. ultimum. These flavonoids are supposedly stress metabolites, synthesized or produced from glycosides in response to pathogen infection. However, the presence of one or both AMF significantly lowered the formononetin and daidzein concentrations, and overruled the inductive effect of P. ultimum. Therefore the antagonistic action of AM against the pathogen must take place through another mechanism.  相似文献   

12.
The potential of hyaluronic acid (HA) in inducing systemic resistance to cucumber, tomato and pepper was tested in planta. In the study, HA was found to be a potent agent for suppressing disease caused by Cucumber Mosaic Virus (CMV) (in pepper), Pseudomonas syringae pv. tomato (tomato speck disease), Xanthomonas axonopodis pv. vesicatoria (tomato spot disease), Pseudomonas syringae pv. lachrymans (cucumber angular leaf spot), and Colletotrichum orbiculare (cucumber anthracnose). Disease control was obtained with spraying, injection and drenching of plants with HA. HA did not exhibit direct antimicrobial action against the pathogens tested. Studies carried out in transgenic tobacco indicated that defense genes PR 1a and PDF 1.2 were activated upon treatment with HA, demonstrating salicylic acid (SA) and jasmonic acid (JA) pathways getting activated during defense. Further work is warranted to evaluate the use of HA-mediated disease suppression in crop plants.  相似文献   

13.
Stein C  Rissmann C  Hempel S  Renker C  Buscot F  Prati D  Auge H 《Oecologia》2009,159(1):191-205
Plant communities can be affected both by arbuscular mycorrhizal fungi (AMF) and hemiparasitic plants. However, little is known about the interactive effects of these two biotic factors on the productivity and diversity of plant communities. To address this question, we set up a greenhouse study in which different AMF inocula and a hemiparasitic plant (Rhinanthus minor) were added to experimental grassland communities in a fully factorial design. In addition, single plants of each species in the grassland community were grown with the same treatments to distinguish direct AMF effects from indirect effects via plant competition. We found that AMF changed plant community structure by influencing the plant species differently. At the community level, AMF decreased the productivity by 15–24%, depending on the particular AMF treatment, mainly because two dominant species, Holcus lanatus and Plantago lanceolata, showed a negative mycorrhizal dependency. Concomitantly, plant diversity increased due to AMF inoculation and was highest in the treatment with a combination of two commercial AM strains. AMF had a positive effect on growth of the hemiparasite, and thereby induced a negative impact of the hemiparasite on host plant biomass which was not found in non-inoculated communities. However, the hemiparasite did not increase plant diversity. Our results highlight the importance of interactions with soil microbes for plant community structure and that these indirect effects can vary among AMF treatments. We conclude that mutualistic interactions with AMF, but not antagonistic interactions with a root hemiparasite, promote plant diversity in this grassland community. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
The infection of cucumber leaves by Colletotrichum lagenarium was studied using cytological methods. Its progress in untreated plants was compared with that in plants in which systemic resistance had been induced by pre-infecting the first true leaf with the same fungus. In induced plants, a reduction of fungal development was observed at the leaf surface, in the epidermis, and in the mesophyll. On the leaf surface, formation of appressoria was slightly reduced. In the epidermis, enhanced formation of papillae beneath appressoria, and possibly increased lignification of entire cells, correlated with reduced development of infection hyphae. Papillae contained callose, identified by staining with aniline-blue fluorochrome and digestion with -1,3-glucanase, as a main structural component. In the mesophyll, reduced fungal development provided evidence for the existence of an additional induced defence reaction. The results imply that preinfection elicited a systemic, multicomponent defence reaction of the host plant against the fungus.Dedicated to the memory of Professor H. Grisebach  相似文献   

15.
Arbuscular mycorrhizal fungal (AMF) spore communities were surveyed in a long-term field fertilization experiment in Switzerland, where different amounts of phosphorus (P) were applied to soil. Plots receiving no P as well as plots systematically fertilized in excess to plant needs for 31 years were used to test the hypothesis that application of P fertilizer changes the composition and diversity of AMF communities. AMF spores were isolated from the field soil, identified, and counted so as to quantify the effect of P fertilization on AMF spore density, composition, and diversity. Trap cultures were established from field soil with four host plants (sunflower, leek, maize, and Crotalaria grahamiana), and the spore communities were then analyzed in substrate samples from the pots. Altogether, nine AMF species were detected in the soil. No evidence has been acquired for effect of P fertilization on spore density, composition, and diversity of AMF in both the field soil and in trap cultures. On the other hand, we observed strong effect of crop plant species on spore densities in the soil, the values being lowest under rapeseed and highest under Phacelia tanacetifolia covercrop. The identity of plant species in trap pots also significantly affected composition and diversity of associated AMF communities, probably due to preferential establishment of symbiosis between certain plant and AMF species. AMF spore communities under mycorrhizal host plants (wheat and Phacelia in the fields and four host plant species in trap pots) were dominated by a single AMF species, Glomus intraradices. This resulted in exceptionally low AMF spore diversity that seems to be linked to high clay content of the soil.Electronic supplementary material Supplementary material is available for this article at and accessible for authorised users.  相似文献   

16.
Antagonism between entomopathogenic nematodes (EPNs) and plant-parasitic nematodes (PPNs) has been documented over the past two decades but its mechanism and ecological significance remain elusive. We investigated the effects of Steinernema carpocapsae and its symbiotic bacterium, Xenorhabdus nematophila applied to the potting medium on pyrogallol peroxidase (P-peroxidase), guaiacol peroxidase (G-peroxidase) and catalase activities in Hosta sp. and Arabidopsis thaliana leaves as components of induced systemic resistance. We found that P-peroxidase activity was significantly higher in the leaves from hosta plants treated with S. carpocapsae infective juveniles (IJs) and S. carpocapsae infected insect cadavers than in the leaves from the control plants 2 weeks after treatment. The G-peroxidase activity was significantly higher in S. carpocapsae infected cadaver and X. nematophila treatments 10 and 15 days after treatment (DAT) and in S. carpocapsae IJs treatment 5 and 15 DAT. The catalase activity in hosta leaves was significantly higher in S. carpocapsae infected cadaver and X. nematophilus treatments compared with the control 5 and 15 DAT and in S. carpocapsae IJs treatment 5 and 10 DAT. Further, the catalase activity in A. thaliana leaves was significantly higher in S. carpocapsae IJs treatment than in the control 7 DAT. We also determined the effects of S. carpocapsae infected cadavers and S. carpocapsae IJs on PR1-gene expression in transgenic A. thaliana leaves through GUS (β-glucuronidase) activity assay and found that the PR1-gene was expressed in leaves from all treatments except the control. Thus, we conclude that the EPNs and their symbiotic bacteria can induce systemic resistance in plants which may explain the elusive antagonistic effect of EPNs on PPNs.  相似文献   

17.
A study was conducted to define culture conditions for in vitro growth arbuscular mycorrhizal fungi (AMF) with liverworts as hosts. Lunularia cruciata (L.) Dumortier ex. Lindberg developed in vitro monoxenic mycothalli with both Glomus proliferum Dalpé & Declerck (MUCL 41827) and Glomus intraradices Schenck & Smith (MUCL 43204). AMF inoculated plants were co-cultured in plastic Petri dishes with semi-solidified medium supplemented with sucrose and grown under filtered light. Mycothalli of L. cruciata produced external hyphae and spores in quantities equivalent to those obtained with Ri T-DNA transformed root systems.  相似文献   

18.
19.
Arbuscular mycorrhizal (AM) fungi naturally colonize grapevines in California vineyards. Weed control and cover cropping may affect AM fungi directly, through destruction of extraradical hyphae by soil disruption, or indirectly, through effects on populations of mycorrhizal weeds and cover crops. We examined the effects of weed control (cultivation, post-emergence herbicides, pre-emergence herbicides) and cover crops (Secale cereale cv. Merced rye, × Triticosecale cv.Trios 102) on AM fungi in a Central Coast vineyard. Seasonal changes in grapevine mycorrhizal colonization differed among weed control treatments, but did not correspond with seasonal changes in total weed frequency. Differences in grapevine colonization among weed control treatments may be due to differences in mycorrhizal status and/or AM fungal species composition among dominant weed species. Cover crops had no effect on grapevine mycorrhizal colonization, despite higher spring spore populations in cover cropped middles compared to bare middles. Cover crops were mycorrhizal and shared four AM fungal species (Glomus aggregatum, G. etunicatum, G. mosseae, G. scintillans) in common with grapevines. Lack of contact between grapevine roots and cover crop roots may have prevented grapevines from accessing higher spore populations in the middles.  相似文献   

20.
Vesicular-arbuscular (VA) mycorrhizal fungi in pure patches of coastal dune plantsElymus mollis, Wedelia prostrata andZoysia macrostachya were examined for frequency of occurrence and number of spores of VA mycorrhizal fungi over one year. Six species in three genera of VA mycorrhizal fungi were recovered. Under a patch ofE. mollis, spores ofAcaulospora sp. 1,Glomus tortuosum, Glomus sp. 1,Glomus sp. 2 andScutellospora gregaria were recovered. Spores ofGlomus spp. were most common. In patches ofW. prostrata andZ. macrostachya spores ofAcaulospora sp. 1,G. tortuosum, Glomus sp. 1,Glomus sp. 2,S. gregaria andScutellospora sp. 1 were found.Contribution No. 112, Laboratories of Plant Pathology and Mycology, Institute of Agriculture and Forestry, University of Tsukuba.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号