首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Serotonin: an inducer of collagenase in myometrial smooth muscle cells.   总被引:1,自引:0,他引:1  
Rat myometrial smooth muscle cells in culture actively produce collagenase in medium containing fetal bovine serum, but not in medium containing newborn bovine serum or containing fetal serum adsorbed with dextran-coated charcoal. A dialyzable molecule has been isolated from fetal bovine serum, which restores the ability of the smooth muscle cells to produce collagenase. The molecule has been purified and identified as serotonin (5-hydroxytryptamine). Cells cultured in medium depleted of serotonin for 3 days fail to produce collagenase, as assessed both enzymatically and immunologically. Addition of serotonin promptly restores the ability of the cells to produce the enzyme. The EC50 for serotonin is approximately 2 microM; maximum stimulation of collagenase production is observed at 5 microM. The response is specific for serotonin: a wide variety of compounds tested, either related to serotonin or of potential reproductive significance, were without effect in the induction of collagenase production by the cells. No changes in DNA content, general protein synthesis, or cellular collagen production were observed as a consequence of serotonin depletion or restoration, suggesting a selective effect of the compound on collagenase production. The effect of serotonin was also selective to myometrial smooth muscle cells; collagenase-producing fibroblasts from skin and cervix displayed no serotonin requirement for enzyme production. Studies using specific agonists or antagonists for a variety of serotonin receptor subtypes suggest that the 5-HT-2 receptor mediates the serotonin induction of collagenase in these cells. Preliminary evidence indicates that cultured human myometrial smooth muscle cells are also dependent upon serotonin for collagenase production. The evidence in this study suggests the possibility that serotonin serves as a signal to begin the massive collagen degradation that occurs in the postpartum uterus.  相似文献   

2.
3.
Interleukin-1 (IL-1) has been implicated as a participant in preterm labor that is induced by bacterial infection. Previously, we showed that serotonin-induced production of IL-1alpha by myometrial smooth muscle cells in vitro is also essential for the synthesis of interstitial collagenase. It is therefore likely that IL-1alpha production in uterine tissues has implications for both the normal physiology of involution and for the pathophysiological mechanisms of preterm labor. The objective of this study was to characterize the serotonin-induced production of IL-1alpha by myometrial cultures in vitro and to assess the production of IL-1alpha and its relationship to collagenase production in vivo during pregnancy and the postpartum period. Immunohistochemistry demonstrated IL-1alpha protein in the nuclei and cytoplasm of serotonin-treated myometrial cells. IL-1alpha levels were decreased by treatment with progesterone or IL-1-receptor antagonist but were unaffected by lipopolysaccharide. Western analysis of myometrium from pregnant rats showed low levels of IL-1alpha during midpregnancy with increased concentrations at days 21 and 22 and postpartum. IL-1alpha mRNA levels also increased from days 15 to 22. Levels of mRNA for IL-1beta also increased, although to a lesser degree than IL-1alpha. Both mRNAs decreased postpartum. Conversely, mRNA for interstitial collagenase was barely detectable at term but increased postpartum. Together, these data show that serotonin stimulates IL-1alpha production in vitro and indicate that normal myometrium from pregnant rats is an identifiable source of IL-1 during late pregnancy. The findings are consistent with the possibility that myometrial IL-1alpha participates in normal labor as well as the postpartum production of interstitial collagenase.  相似文献   

4.
Modulation of neurotransmitter-gated membrane ion channels by protein kinase C (PKC) has been the subject of a number of studies. However, less is known about PKC modulation of the serotonin type 3 (5-HT3) receptor, a ligand-gated membrane ion channel that can mediate fast synaptic transmission in the central and peripheral nervous system. Here, we show that PKC potentiated 5-HT3 receptor-mediated current in Xenopus oocytes expressing 5-HT3A receptors and mouse N1E-115 neuroblastoma cells. In addition, using a specific antibody directed to the extracellular N-terminal domain of the 5-HT3A receptor, treatment with the PKC activator, 4 beta-phorbol 12-myristate 13-acetate (PMA), significantly increased surface immunofluorescence. PKC also increased the amount of 5-HT3A receptor protein in the cell membrane without affecting the amount receptor protein in the total cell extract. The magnitude of PMA potentiation of 5-HT3A receptor-mediated responses is correlated with the magnitude of PMA enhancement of the receptor abundance in the cell surface membrane. PMA potentiation is unlikely to occur via direct phosphorylation of the 5-HT3A receptor protein since the potentiation was not affected by point mutation of each of the putative sites for PKC phosphorylation. However, preapplication of phalloidin, which stabilizes the actin polymerization, significantly inhibited PMA potentiation of 5-HT-activated responses in both N1E-115 cells and oocytes expressing 5-HT3A receptors. On the other hand, latrunculin-A, which destabilizes actin cytoskeleton, enhanced the PMA potentiation of 5-HT3A receptors. The observations suggest that PKC can modulate 5-HT3A receptor function and trafficking through an F-actin-dependent mechanism.  相似文献   

5.
The effects of vasoconstrictor-receptor (neuropeptide Y, alpha- adrenergic, serotonergic, histaminergic) stimulation on currents through ATP-sensitive potassium (KATP) channels in arterial smooth muscle cells were examined. Whole-cell KATP currents, activated by the synthetic KATP channel opener pinacidil or by the endogenous vasodilator, calcitonin gene-related peptide, which acts through protein kinase A, were measured in smooth muscle cells isolated from mesenteric arteries of rabbit. Stimulation of NPY-, alpha 1-, serotonin (5-HT2)-, and histamine (H1)-receptors inhibited KATP currents by 40- 56%. The signal transduction pathway that links these receptors to KATP channels was investigated. An inhibitor of phospholipase C (D609) and of protein kinase C (GF 109203X) reduced the inhibitory effect of these vasoconstrictors on KATP currents from 40-56% to 11-23%. Activators of protein kinase C, a diacylglycerol analogue and phorbol 12-myristate 13- acetate (PMA), inhibited KATP currents by 87.3 and 84.2%, respectively. KATP currents, activated by calcitonin gene-related peptide, were also inhibited (47-87%) by serotonin, phenylephrine, and PMA. We propose that KATP channels in these arterial myocytes are subject to dual modulation by protein kinase C (inhibition) and protein kinase A (activation).  相似文献   

6.
[32P]Phosphatidic acid (PA)-formation was quantified in calf aortic smooth muscle cultures for measuring the activation of the signal transducing system coupled to the 5-hydroxytryptamine2-(5-HT2) receptor. [32P]PA-formation was increased upon stimulation of smooth muscle cells with serotonin (5-HT) and 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane (DOM), but not with the 5-HT1 agonists N,N-dipropyl-8-hydroxy-2-aminotetralin and RU 24969. The potency of drugs to inhibit the 5-HT induced [32P]PA-formation closely corresponded to their binding affinity for 5-HT2 receptors. 24-Hour treatment of smooth muscle cultures with 5-HT or DOM resulted in a substantial decrease of 5-HT induced [32P]PA-formation. In contrast to the anomalous 5-HT2 receptor regulation in vivo, 5-HT2 receptors on smooth muscle cells appeared to be desensitized by agonist treatment.  相似文献   

7.
Fundic tone is maintained through a balance of excitatory and inhibitory input to fundic smooth muscle. The aim of this study was to determine the role of serotonin (5-HT) and 5-HT receptors in modulating murine fundic tone. Muscle strips were prepared from the murine fundus. Intracellular recordings were made from circular smooth muscle cells, and the effects of 5-HT on tone and excitatory and inhibitory junction potentials evoked by electrical field stimulation (EFS) were determined. 5-HT induced a concentration-dependent contraction and smooth muscle depolarization that was tetrodotoxin resistant. The 5-HT(1B/D) receptor antagonists GR-127935 and BRL-155172 significantly inhibited 5-HT-induced contractions. The 5-HT(1B/D) agonist sumatriptan contracted murine fundic muscle. The 5-HT(1A) receptor agonist buspirone relaxed fundic smooth muscle, and the relaxation was inhibited by WAY-100135 but not by N(omega)-nitro-l-arginine or tetrodotoxin. 5-HT enhanced both the excitatory and inhibitory responses to EFS. The 5-HT(3) receptor antagonist MDL-72222 partly inhibited both the excitatory and inhibitory response elicited by EFS, whereas the 5-HT(4) receptor antagonist GR-113808 partly inhibited the EFS-evoked inhibitory response. The 5-HT reuptake inhibitor fluoxetine contracted smooth muscle strips, a contraction that was partially inhibited by GR-127935 and abolished by tetrodotoxin. In conclusion, the data suggest that 5-HT modulates murine fundic contractile activity through several different receptor subtypes. Sustained release of 5-HT maintains fundic tone through postjunctional 5-HT(1B/D) receptors. 5-HT(3) receptors modulate excitatory neural input to murine fundic smooth muscle, and both 5-HT(3) and 5-HT(4) receptors modulate inhibitory neural input to murine fundic smooth muscle.  相似文献   

8.
Basic fibroblast growth factor (bFGF) is a mitogenic factor that is implicated in smooth muscle cell growth in atherosclerosis and vascular restenosis. In this study, we examined the effect of bFGF on the expression of the interstitial collagenase gene in human vascular smooth muscle cells. Results from Northern transfer analysis showed that bFGF increased collagenase mRNA levels greater than threefold as early as 24 h. Collagenase pre-mRNA levels were elevated approximately threefold by bFGF, according to RT-PCR analysis. Transient transfections of the smooth muscle cells with a 4.4-kb human collagenase promoter-CAT reporter gene, however, failed to show upregulation of the promoter activity by bFGF. Interestingly, transfections with deleted fragments containing promoter sequences from -1047 to -2271 resulted in modest stimulation of the collagenase-CAT promoter activity by bFGF. bFGF did not alter the stability of the collagenase mRNA, as demonstrated by degradation studies. The enhanced collagenase mRNA levels elicited by bFGF were reflected in increased amounts of collagenase protein that were detected by Western blot analysis. In summary, bFGF upregulates the interstitial collagenase expression, resulting in turnover of the extracellular matrix, an event that could facilitate smooth muscle cell migration and proliferation during the early stages of atherosclerosis and restenosis. J. Cell. Biochem. 65:32–41. © 1997 Wiley-Liss, Inc.  相似文献   

9.
Distribution of serotonin 5-HT1C receptor mRNA in adult rat brain   总被引:4,自引:0,他引:4  
B J Hoffman  E Mezey 《FEBS letters》1989,247(2):453-462
  相似文献   

10.
The purpose of this study was to elucidate the mechanism of 5-hydroxytryptamine (5-HT, serotonin) action on migration of vascular smooth muscle cells. Migration of cultured human aortic smooth muscle cells (HASMCs), evaluated using time-lapse microscopy, was significantly enhanced by 5-HT at concentrations of 1-100 nM. The enhancing effect of 5-HT on cell migration was markedly inhibited in the presence of ketanserin, a 5-HT2 receptor antagonist, but not by GR 55562, a 5-HT1 receptor antagonist. Activities of RhoA and ERK were increased by 5-HT, and the increase in cell migration by 5-HT was abolished in the presence of U0126, a MEK1/2 inhibitor, or Y-27632, a Rho-kinase inhibitor. Activation of ERK was strongly inhibited by Y-27632. 5-HT-induced formation of stress fiber and detachment of uropod (trailing edge) were abolished by Y-27632. Thus, 5-HT has a potent enhancing action on migration of HASMCs due to an increase in stress fiber formation by 5-HT2 receptor stimulation followed by activation of the Rho-kinase and ERK pathways.  相似文献   

11.
Expression of serotonin receptors in bone   总被引:6,自引:0,他引:6  
The 5-hydroxytryptamine (5-HT) receptors 5-HT(2A), 5-HT(2B), and 5-HT(2C) belong to a subfamily of serotonin receptors. Amino acid and mRNA sequences of these receptors have been published for several species including man. The 5-HT(2) receptors have been reported to act on nervous, muscle, and endothelial tissues. Here we report the presence of 5-HT(2B) receptor in fetal chicken bone cells. 5-HT(2B) receptor mRNA expression was demonstrated in osteocytes, osteoblasts, and periosteal fibroblasts, a population containing osteoblast precursor cells. Pharmacological studies using several agonists and antagonists showed that occupancy of the 5-HT(2B) receptor stimulates the proliferation of periosteal fibroblasts. Activity of the 5-HT(2A) receptor could however not be excluded. mRNA for both receptors was shown to be equally present in adult mouse osteoblasts. Osteocytes, which showed the highest expression of 5-HT(2B) receptor mRNA in chicken, and to a lesser extent osteoblasts, are considered to be mechanosensor cells involved in the adaptation of bone to its mechanical usage. Nitric oxide is one of the signaling molecules that is released upon mechanical stimulation of osteocytes and osteoblasts. The serotonin analog alpha-methyl-5-HT, which preferentially binds to 5-HT(2) receptors, decreased nitric oxide release by mechanically stimulated mouse osteoblasts. These results demonstrate that serotonin is involved in bone metabolism and its mechanoregulation.  相似文献   

12.
The effects of short-term phorbol ester treatment of CHO cells that stably express 900 fmol of recombinant human serotonin 5-HT1A receptor/mg of protein on coupling to the inhibition of adenylyl cyclase and on phosphorylation of the receptor were studied. Pretreatment of cell monolayers with phorbol 12-myristate 13-acetate (PMA) caused a dose- and time-dependent shift of the half-maximal dose of serotonin (5-HT) required to inhibit membrane adenylyl cyclase (from IC50 approximately 100 nM to approximately 400 nM). This desensitization (shift in IC50) was rapid, occurring with 5 min of pretreatment and being maximal by 10-15 min; it was also dose-dependent, being half-maximal at approximately 300 nM PMA. Desensitization was also induced by sn-dioctanoylglycerol (DiC8) and blocked by the protein kinase C (PKC) inhibitors sphingosine and 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7). In detached permeabilized cells, PMA pretreatment caused a rapid phosphorylation of immunoprecipitated 5-HT1A receptors, with an approximately 3-4-fold increase that was maximal after 15 min and persisted for 90 min. The phosphorylation occurred at a similar dose of PMA as that which induced desensitization (half-maximal at approximately 300 nM, maximal at 500 nM to 1 microM), could be reproduced by pretreatment with the PKC activators DiC8 or phorbol 12,13-dibutyrate (PDBu), and could be blocked by the PKC inhibitors sphingosine or H-7. The stoichiometry of the phosphorylation was approximately 2 mol of [32P]ATP/mol of receptor, suggesting the involvement at least two of three putative PKC sites within the 5-HT1A receptor. The close concordance between the PKC-induced desensitization and phosphorylation suggests a potential causative link between these two effects of PKC on the human 5-HT1A receptor.  相似文献   

13.
14.
Smooth muscle cells were dissociated from conducting cerebral arteries of adult rats and maintained in culture for 2-4 days. The calcium-sensitive fluorescent probe, fura-2, was used to study the effect of the vasoconstrictor serotonin (5-HT) on the level of free intracellular Ca2+ in these cells. The baseline level of free intracellular calcium was 39 +/- 3.6 nM. In 74 out of 110 cells, 5-HT application transiently increased the free Ca2+ content. This effect was dose-dependent and was suppressed by nanomolar concentrations of the 5-HT2 receptor antagonist, ketanserin. The 5-HT induced rise in free intracellular calcium was not prevented by the presence of Co2+, La3+, or nifedipine, blockers of voltage-sensitive calcium channels. These results indicate that 5-HT mobilizes intracellular Ca2+ in cultured smooth muscle cells derived from the rat cerebrovasculature. The mobilization of intracellular Ca2+ appears to be triggered by a 5-HT2 type receptor, although further pharmacological experiments are required to verify this hypothesis.  相似文献   

15.
Expression of serotonin receptor mRNAs in blood vessels   总被引:17,自引:0,他引:17  
Using RT-PCR we distinguished mRNAs for all known G-protein coupled serotonin receptors expressed in various rat and porcine blood vessels. Nearly all vessels expressed 5HT1 β, 5-HT2A, 5-HT2B, 5-HT4, and 5-Ht7 receptor mRNA to different extents. New splice variants of the porcine 5-HT4 receptor were observed. Similar PCR assays were performed with endothelial and smooth muscle cells from human pulmonary artery, aorta, and with endothelial cells from human coronary artery and umbilical vein. All endothelial cells expressed 5-HT1 β, 5-HT2b, and 5-HT4 receptor mRNA, whereas in smooth muscle cells 5-HT1 β, 5-HT2A, 5-HT7, and in some experiments 5-HT2B receptor mRNA were found. A model for the regulation of vascular tone by different 5-HT receptors is proposed.  相似文献   

16.
Serotonin (5-hydroxytryptamine, 5-HT) has been described as a mitogen in a variety of cell types and carcinomas. It exerts its mitogenic effect by interacting with a wide range of 5-HT receptor types. Certain studies suggest that some selective serotonin re-uptake inhibitors promote breast cancer in animals and humans. This study attempts to clarify the role of serotonin in promoting the growth of neoplastic mammary cells. Expression of the 5-HT(2A) serotoninergic receptor subtype in MCF-7 cells was determined by RT-PCR, Western blotting, and immunofluorescence analysis. The mitogenic effect of 5-HT on MCF-7 cells was determined by means of the MTT proliferation assay. We have demonstrated that the 5-HT(2A) receptor subtype is fully expressed in the MCF-7 human breast cancer cell line, in terms of encoding mRNA and receptor protein. Automated sequencing has confirmed that the 5-HT(2A) receptor present in this cell line is identical to the 5-HT(2A) receptor found in human platelets and in human cerebral cortex. Furthermore, this receptor was found by immunofluorescence to be on the plasma membrane. MTT proliferation assays revealed that 5-HT and DOI, a selective 5-HT(2A) receptor subtype agonist, stimulated MCF-7 cell. These results indicate that 5-HT plays a mitogenic role in neoplastic mammary cells. Our data also indicate that 5-HT exerts this positive growth effect on MCF-7 cells through, in part, the 5-HT(2A) receptor subtype, which is fully expressed in this cell line.  相似文献   

17.
Serotonin (5-hydroxytryptamine, 5-HT) is an endogenous signalling molecule capable of altering small intestinal motility. Serotonin is normally present in the intestinal lumen and released by enterochromaffin cells of the mucosal epithelium. We found that intraduodenal infusion of exogenous serotonin causes a dose-dependent myoelectric response in the smooth muscle of the small intestine in the conscious rat. The response consists of repetitive bursts of action potentials (RBAP) that are characterized as short bursts of non-propagative myoelectric spiking. RBAP occur intermittently and only during the first 15 min after intralumenal serotonin infusion. After the initial 15 min period, the frequency of RBAP declines, and the myoelectric pattern shifts to prolonged and continuous spiking, eliminating the interdigestive migrating myoelectric pattern. The effects of intralumenal serotonin are not replicated by parenteral or intraperitoneal infusion nor by intralumenal infusion of 5-hydroxytryptophan or 5-hydroxyindoleacetic acid. The response to intralumenal serotonin was eliminated by several specific 5-HT receptor antagonists. On repeated intralumenal administration of serotonin, the RBAP response decreased demonstrating a decreased sensitivity of the muscle contraction on re-exposure to serotonin. We conclude that intralumenal infusion of serotonin can temporarily initiate specific small intestinal muscle events that are not generated by serotonin from other non-lumenal administration sites. We speculate that an afferent neuro-pathway is necessary for the induction of RBAP, since RBAP are not observed from in vitro muscle preparations.  相似文献   

18.
The aim of this study was to investigate if p-chloroamphetamine (PCA), which is neurotoxic to serotonin (5-HT) nerve terminals, was able to induce, like 3,4-methylenedioxymethamphetamine, a region-specific regulation of 5-HT1A receptor mRNA expression. The effect of PCA on the expression of 5-HT7 receptors, which share some pharmacological properties with 5-HT1A receptors, was comparatively studied. PCA (2 x 5 mg/kg) produced a lasting depletion of 5-HT content in the rat frontal cortex and hippocampus. In the hippocampus, the maximal 5-HT depletion was found on day 21 (-70%), whereas in the cortex, the highest 5-HT depletion was found on day 14 (-73%), with a partial but significant recovery on day 21. At the latter time point, 5-HT1A receptor mRNA expression was increased by 80% in the cortex and decreased by 50% in the hippocampus. The 5-HT1A receptor mRNA expression was also enhanced after exposure to PCA of rat cortical but not of hippocampal primary cultures. In regard to 5-HT7 receptor mRNA expression, the most remarkable change after PCA was the great increase (+200%) in the brain-stem. Binding studies to 5-HT1A receptors matched the changes in receptor mRNA expression. Gel shift assays revealed enhanced nuclear protein binding to the KB sequence with use of cortical but not hippocampal extracts of PCA-treated rats. Overall, the data show region-specific changes in 5-HT receptor-type expression that may not be entirely dependent on the neurotoxic effect of PCA on 5-HT terminals.  相似文献   

19.
Isolated porcine pial veins in the presence of active muscle tone have been shown to exhibit rhythmic contractions (RC) that are inhibited by serotonin (5-HT) in a concentration-dependent manner. The 5-HT inhibition of RC is mediated by an as yet unidentified 5-HT receptor subtype located on the vascular smooth muscle. 5-carboxamidotryptamine, which is a potent but nonselective agonist at 5-HT(7) receptors, has been shown to be the most potent inhibitor of RC in porcine pial veins. Therefore, the present study was designed to determine if the 5-HT-mediated inhibition of RC in pial veins is mediated by 5-HT(7) receptors and if 5-HT(7) receptor mRNA is expressed in endothelium-denuded pial veins; the study was done with the use of an in vitro tissue bath and RT-PCR techniques. Our findings indicated that 5-HT inhibition of RC in porcine pial veins was prevented by 5-HT(7)-receptor antagonists (clozapine, pimozide, and LY-215840) in a concentration-dependent manner. Furthermore, a strong PCR signal for the 5-HT(7) receptor was consistently detected in endothelium-denuded pial veins. Sequence analysis of the amplified products confirmed their high degree of homology with the porcine and/or human 5-HT(7)-receptor gene. Taken together, these data suggest that the 5-HT-induced inhibition of RC in porcine pial veins is at least in part mediated by 5-HT(7) receptors located on the venous smooth muscle.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号