首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Parasexual recombination is a valuable tool in the laboratory, particularly for asexual fungi, and a number of developments in methodology are outlined. In biotechnology, the parasexual cycle has proved less useful than at one time predicted, but it retains a function in analysis of the products of genetic manipulation, and as a convenient detection system for environmental chemicals that may disturb mitosis. In nature, recent evidence suggests that parasexual recombination is rare, in part at least because of the prevalence of heterokaryon incompatibility of many wild fungi.  相似文献   

3.
S Stambuk  M Radman 《Genetics》1998,150(2):533-542
A genetic analysis of interspecies recombination in Escherichia coli between the linear Hfr DNA from Salmonella typhimurium and the circular recipient chromosome reveals some fundamental aspects of recombination between related DNA sequences. The MutS and MutL mismatch binding proteins edit (prevent) homeologous recombination between these 16% diverged genomes by at least two distinct mechanisms. One is MutH independent and presumably acts by aborting the initiated recombination through the UvrD helicase activity. The RecBCD nuclease might contribute to this editing step, presumably by preventing reiterated initiations of recombination at a given locus. The other editing mechanism is MutH dependent, requires unmethylated GATC sequences, and probably corresponds to an incomplete long-patch mismatch repair process that does not depend on UvrD helicase activity. Insignificant effects of the Dam methylation of parental DNAs suggest that unmethylated GATC sequences involved in the MutH-dependent editing are newly synthesized in the course of recombination. This hypothetical, recombination-associated DNA synthesis involves PriA and RecF functions, which, therefore, determine the extent of MutH effect on interspecies recombination. Sequence divergence of recombining DNAs appears to limit the frequency, length, and stability of early heteroduplex intermediates, which can be stabilized, and the recombinants mature via the initiation of DNA replication.  相似文献   

4.
The exchange of genes by crossing over and by gene conversion is a basic process in eukaryotes. Fungi have played a special role in the study of this process because they permit tetrad analysis, which provides complete information on the distribution of genes and chromosomes in meiosis. Recombination is detected by new combinations of genetic markers. The first observation gave only the simple picture of a crossover provided by two segregating loci far apart on the chromosome. Later the discovery of recombination between sites within a gene led to a revolution in our knowledge of this process. Today we carry the resolution a step further with RFLP markers, which can detect the details of recombination down to nucleotide distances. I review here observations on filamentous fungi, which have contributed to this pursuit at each stage of the emerging synthesis.  相似文献   

5.
6.
7.
Summary Development of resistance to 23P-decay of donor genetic determinants after their transfer into the female cell is dependent on unabated DNA synthesis. A similar dependence upon DNA synthesis was found in recombinational events. Both processes show a similar time-course. The DNA synthesis, involved, seems distinct from physiological replication of the chromosome. The formation of the structure resistant to 32P-decay is going on concomitantly with recombinational process and is completed within 45 to 55 minutes after transfer, before beginning of the replication of recombinant structure. The bearing of these facts on the molecular mechanism of genetic recombination is discussed.  相似文献   

8.
Summary For inhibition of DNA synthesis an antibiotic, edeine, acting specifically on DNA replication, was used. The inhibition of DNA synthesis in F cells caused only small decrease (three to four-fold) in recombination frequency. On the other hand a full inhibition of DNA synthesis in Hfr cells affected the recombination to the high extent, lowering its frequency 20–40 fold, at the same time lowering to the similar degree chromosome transfer (measured by zygotic induction frequency). However, the partial inhibition of DNA synthesis in Hfr cells, amounting to about 10 per cent of the control, permitted normal chromosome transfer and normal level of recombination. The results do not agree with Jacob and Brenner's model of chromosome transfer, yet they do not unequivocally confirm Bouck and Adelberg's model. It is possible that the limited DNA synthesis is necessary for other processes, and not for completing of the replication round. The results do not exclude also, that some residual DNA synthesis in female cells is of importance in mating.  相似文献   

9.
10.
Breeding systems in fungi and their significance for genetic recombination   总被引:2,自引:0,他引:2  
Summary Breeding systems control the bringing together of genetic material for karyogamy and meiosis as a prerequisite for recombination. Choosing the fungi as an example, the following breeding systems are described on the basis of their genetic determinants: monoecism, dioecism, homogenic incompatibility, and heterokaryosis. Heterogenic incompatibility is emphasized, since this system has been discovered quite recently. The action and interaction of these systems with respect to their control of recombination is discussed and brought into a general scheme (Fig. 7).Expanded version of a lecture given on occasion of the 300's anniversary of the university of Innsbruck/Austria.Meinem Lehrmeister Josef Straub zur Vollendung seines 60. Lebensjahres.  相似文献   

11.
12.
AM真菌在植物病虫害生物防治中的作用机制   总被引:12,自引:0,他引:12  
罗巧玉  王晓娟  李媛媛  林双双  孙莉  王强  王茜  金樑 《生态学报》2013,33(19):5997-6005
丛枝菌根(Arbuscular Mycorrhizae,AM)真菌是一类广泛分布于土壤生态系统中的有益微生物,能与大约80%的陆生高等植物形成共生体。由土传病原物侵染引起的土传病害被植物病理学界认定为最难防治的病害之一。研究表明,AM真菌能够拮抗由真菌、线虫、细菌等病原体引起的土传性植物病害,诱导宿主植物增强对病虫害的耐/抗病性。当前,利用AM真菌开展病虫害的生物防治已经引起生态学家和植物病理学家的广泛关注。基于此,围绕AM真菌在植物病虫害生物防治中的最新研究进展,从AM真菌改变植物根系形态结构、调节次生代谢产物的合成、改善植物根际微环境、与病原微生物直接竞争入侵位点和营养分配、诱导植株体内抗病防御体系的形成等角度,探究AM真菌在植物病虫害防治中的作用机理,以期为利用AM真菌开展植物病虫害的生物防治提供理论依据,并对本领域未来的发展方向和应用前景进行展望。  相似文献   

13.
It is generally assumed that mitochondrial genomes are uniparentally transmitted, homoplasmic and nonrecombining. However, these assumptions draw largely from early studies on animal mitochondrial DNA (mtDNA). In this review, we show that plants, animals and fungi are all characterized by episodes of biparental inheritance, recombination among genetically distinct partners, and selfish elements within the mitochondrial genome, but that the extent of these phenomena may vary substantially across taxa. We argue that occasional biparental mitochondrial transmission may allow organisms to achieve the best of both worlds by facilitating mutational clearance but continuing to restrict the spread of selfish genetic elements. We also show that methodological biases and disproportionately allocated study effort are likely to have influenced current estimates of the extent of biparental inheritance, heteroplasmy and recombination in mitochondrial genomes from different taxa. Despite these complications, there do seem to be discernible similarities and differences in transmission dynamics and likelihood of recombination of mtDNA in plant, animal and fungal taxa that should provide an excellent opportunity for comparative investigation of the evolution of mitochondrial genome dynamics.  相似文献   

14.
15.
Summary Protein synthesis by ribosomes from several cryptopleurine-resistant yeast mutants is also resistant to emetine and tubulosine. These mutants can be classified into two different types: Class I mutants which display high levels of resistance to emetine and tubulosine and Class II mutants that are only weakly resistant to tubulosine and are slightly more sensitive to emetine than those of Class I. Apparently all mutants have similar levels of resistance to cryptopleurine. The distinct phenotypes of Class I and Class II strains are expressed through their 40S ribosomal subunit. Genetic analysis has shown that the mutations to cryptopleurine resistance are allelic and that in a particular case (strain CRY6) the pleiotropic phenotype is a result of the expression of the cryl locus. It is suggested that Class I and Class II mutants arise from two independent mutational events within the cryl allele. in heterozygous (+/cryl) diploids both the sensitive and the resistant genes are expressed as shown by studies of the action of cryptopleurine on polyphenylalanine-synthesizing system derived from each parental sensitive and resistant haploid strain and heterozygous diploid strains. The apparent dominance of sensitivity over resistance which may be observed in vivo in heterozygous (+/cryl) diploids has been explained in terms of the mode of action of the inhibitors.  相似文献   

16.
Temperature sensitive dnaA recipient crossed at the restrictive temperature with HfrH, free from contaminating F+ cells, forms recombinants almost as proficiently as at the permissive temperature. The merozygotes are able to synthesize DNA at 42 degrees C, although the recipient and donor cells do not incorporate 3H-thymine. A substantial fraction of Lac+ recombinants, irrespective of the mating temperature, is temperature resistant (42 C-R); 15% from among those mated at 35 C and 30% from those mated at 42 C. The presence of dnaA mutation in these Lac+ 42 C-R recombinants was ascertained by co-transduction with ilv. Cell division at 42 C is inhibited in the Lac 42 C-R recombinants by acridine orange. The presence of F factor DNA in these recombinants was demonstrated directly by DNA: DNA hybridization. Suppression of dnaA mutation in Lac+ 42 degrees C-R recombinants and their sensitivity to acridine orange at 42 degrees C suggests that at least part of the F factor is integrated into the recombinant chromosome. A large fraction of the Lac+ 42 degrees C-R recombinants (up to 80%) is sensitive to male phage R17 and fertile. In crosses with HfrC there is a marked decrease of recombination frequency at 42 degrees C in the dnaA recipient. The fraction of Lac+ 42 degrees C-R recombinants is low (up to 10%) and the 42 degrees C-R recombinants are neither sensitive to male phage nor fertile. The results are discussed on the basis of the previously proposed model of post-conjugational recombination.  相似文献   

17.
18.
人类免疫缺陷病毒(HIV)属于逆转录病毒,包含2个正链的RNA基因组。其复制过程需要逆转录酶发生模板转换,这样极容易导致重组。重组是导致HIV多样性的重要原因,给病毒的诊断、治疗以及疫苗研发带来巨大困难。本文综述了HIV-1重组的条件、机制、特性以及重组对于HIV-1防控和疫苗研究的影响。  相似文献   

19.
Mechanism for polarized recombination in Streptomyces   总被引:1,自引:0,他引:1  
Summary Recombination between pairs of mutations in a cluster of seven cistrons controlling histidine biosynthesis is highly polarized. The polarity is opposite at the opposite ends of the region. In experiments involving three his mutations it has been shown that recombination is the result of the transfer, from one parent to the other, of a segment going from the distal selected his + allele to the end of the region. The rate of transfer is inversely proportional to the distance of the transferred his + allele from the end of the region, at its side. A model of the process of recombination is discussed.This work was supported by the Italian C.N.R.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号