首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Metal-mediated base pairs formed by the interaction between metal ions and artificial bases in oligonucleotides have been developed for potential applications in nanotechnology. We recently found that a natural C:C mismatched base pair bound to an Ag(+) ion to generate a novel metal-mediated base pair in duplex DNA. Preparation of the novel C-Ag-C base pair involving natural bases is more convenient than that of metal-mediated base pairs involving artificial bases because time-consuming base synthesis is not required. Here, we examined the thermodynamic properties of the binding between the Ag(+) ion and each of single and double C:C mismatched base pair in duplex DNA by isothermal titration calorimetry. The Ag(+) ion specifically bound to the C:C mismatched base pair at a 1:1 molar ratio with 10(6) M(-1) binding constant, which was significantly larger than those for nonspecific metal ion-DNA interactions. The specific binding between the Ag(+) ion and the single C:C mismatched base pair was mainly driven by the positive dehydration entropy change and the negative binding enthalpy change. In the interaction between the Ag(+) ion and each of the consecutive and interrupted double C:C mismatched base pairs, stoichiometric binding at a 1:1 molar ratio was achieved in each step of the first and second Ag(+) binding. The binding affinity for the second Ag(+) binding was similar to that for the first Ag(+) binding. Stoichiometric binding without interference and negative cooperativity may be favorable for aligning multiple Ag(+) ions in duplex DNA for applications of the metal-mediated base pairs in nanotechnology.  相似文献   

2.
Rapid isothermal nucleic acid amplification technologies can enable diagnosis of human pathogens and genetic variations in a simple, inexpensive, user-friendly format. The isothermal exponential amplification reaction (EXPAR) efficiently amplifies short oligonucleotides called triggers in less than 10 min by means of thermostable polymerase and nicking endonuclease activities. We recently demonstrated that this reaction can be coupled with upstream generation of trigger oligonucleotides from a genomic target sequence, and with downstream visual detection using DNA-functionalized gold nanospheres. The utility of EXPAR in clinical diagnostics is, however, limited by a nonspecific background amplification phenomenon, which is further investigated in this report. We found that nonspecific background amplification includes an early phase and a late phase. Observations related to late phase background amplification are in general agreement with literature reports of ab initio DNA synthesis. Early phase background amplification, which limits the sensitivity of EXPAR, differs however from previous reports of nonspecific DNA synthesis. It is observable in the presence of single-stranded oligonucleotides following the EXPAR template design rules and generates the trigger sequence expected for the EXPAR template present in the reaction. It appears to require interaction between the DNA polymerase and the single-stranded EXPAR template. Early phase background amplification can be suppressed or eliminated by physically separating the template and polymerase until the final reaction temperature has been reached, thereby enabling detection of attomolar starting trigger concentrations.  相似文献   

3.
A novel electrochemical biosensor was developed for detecting short DNA oligonucleotide of Bacillus thuringiensis (Bt) transgenic sequence based on Ag nanoparticle aggregates. To fabricate this DNA biosensor, the thiol-modified capture DNA (cDNA) was first anchored on gold (Au) electrode, and then the target DNA (tDNA) was hybridized with the immobilized cDNA. Subsequently, the probe DNA (pDNA) functionalized by biotinylated Ag nanoparticle was associated with the fixed tDNA, and the single Ag nanoparticle label was obtained (cited as SAg label). Finally, dissociative biotinylated Ag nanoparticle was bound to the resultant biotinylated SAg label assembled on Au electrode by virtue of bridge molecule streptavidin (SA) through biotin-SA specific interaction, which could lead to in situ aggregate of Ag nanoparticles on Au electrode and induce a novel tag including multiple Ag nanoparticles (cited as MAg tag). The novel tag exhibited excellent electroactive property in the solid-state Ag/AgCl process and was successfully applied to Bt transgenic sequence assay. A detection limit of 10 fM was achieved, which was improved by three orders of magnitude as compared to the SAg label. Furthermore, this novel DNA biosensor demonstrated a good selectivity towards tDNA.  相似文献   

4.
Here a highly sensitive electrochemical method is described for the detection of point mutation in DNA. Polymerization extension reaction is applied to specifically initiate enzymatic electrochemical amplification to improve the sensitivity and enhance the performance of point mutation detection. In this work, 5'-thiolated DNA probe sequences complementary to the wild target DNA are assembled on the gold electrode. In the presence of wild target DNA, the probe is extended by DNA polymerase over the free segment of target as the template. After washing with NaOH solution, the target DNA is removed while the elongated probe sequence remains on the sensing surface. Via hybridizing to the designed biotin-labeled detection probe, the extended sequence is capable of capturing detection probe. After introducing streptavidin-conjugated alkaline phosphatase (SA-ALP), the specific binding between streptavidin and biotin mediates a catalytic reaction of ascorbic acid 2-phosphate (AA-P) substrate to produce a reducing agent ascorbic acid (AA). Then the silver ions in solution are reduced by AA, leading to the deposition of silver metal onto the electrode surface. The amount of deposited silver which is determined by the amount of wild target can be quantified by the linear sweep voltammetry (LSV). The present approach proved to be capable of detecting the wild target DNA down to a detection limit of 1.0×10(-14) M in a wide target concentration range and identifying -28 site (A to G) of the β-thalassemia gene, demonstrating that this scheme offers a highly sensitive and specific approach for point mutation detection.  相似文献   

5.
An electrochemical immunosensor is reported by using aptamer-based enzymatic amplification with immunoglobulin E (IgE) as the model analyte. In this method, the IgE antibody is covalently immobilized as the capture probe on the gold electrode via a self-assembled monolayer of cysteamine. After the target is captured, the biotinylated anti-IgE aptamer is used as the detection probe. The specific interaction of streptavidin-conjugated alkaline phosphatase to the surface-bound biotinylated detection probe mediates a catalytic reaction of ascorbic acid 2-phosphate substrate to produce a reducing agent ascorbic acid. Then silver ions in the solution can be reduced, leading to the deposition of metallic silver on the electrode surface. The amount of deposited silver, which is determined by the amount of IgE target bound on the electrode surface, can be quantified using the stripping voltammetry. The results obtained demonstrated that the electrochemical immunosensor possesses high specificity and a wide dynamic range with a low detection limit that possibly arises from the combination of the highly specific aptamer and the highly sensitive stripping determination of enzymatically deposited silver.  相似文献   

6.
Herein, we report an anomalous electrochemical behavior of surface-bound DNA duplex that has single-base mismatches at its distal end. Single-stranded 15-base DNA was immobilized at its 5'end onto gold electrode surfaces. After hybridization with complementary or mismatched DNA, electrochemical impedance spectra were obtained using [Fe(CN)(6)]3-/4- as redox marker ions. Hybridization with the complementary DNA reduced the charge-transfer resistance (R(CT)), whereas single-base mismatches at the distal end of the duplex largely increased the R(CT). This anomaly was found only with the distal end: the increase in R(CT) was not observed for mismatches at either the middle or the proximal end. These results indicate that electrochemical detection of single-base alterations at an end of sample DNA is exceptionally easy because of the diametrically opposite responses. This detection principle is promising for the typing of single-nucleotide polymorphisms in combination with the single-base primer extension protocol.  相似文献   

7.
A novel method for fabrication of DNA biosensors has been developed by means of self-assembling colloidal Ag (Ag) to a thiol-containing sol-gel network. The thiol groups of 3-mercaptopropyltrimethoxysilane (MPTS) serve as binding sites for the covalent attachment to gold electrode surface. Then the one-dimensional network of silane unites (1dMPTS) was combined together into a two-dimensional sol-gel network (2dMPTS) by dipping into aqueous NaOH. The second silane layer (B2dMPTS) was formed by immersing electrodes back into the MPTS solution overnight, and then the Ag nanoparticles were chemisorbed onto the thiol groups of the second silane layer. Finally, the mercapto oligonucleotide was self-assembled onto the surface via the Ag nanoparticles. The modified process was characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). In addition, we utilized the impedance spectroscopy as a platform for DNA sensing assay. The factors influencing the performance of the resulting biosensor were studied in detail. The linear range of the biosensor was from 8.0 x 10(-9) to 1.0 x 10(-6) M with a detection limit of 4.0 x 10(-9) M at 3sigma. In addition, the experiment results indicate that oligonucleotide immobilized on this way exhibits a good sensitivity and selectivity, high stability and a long-term maintenance of bioactivity.  相似文献   

8.
We developed a novel electrochemical sensor for Hg(2+) detection using two mercury-specific oligonucleotide probes and streptavidin-horseradish peroxidase (HRP) enzymatic signal amplification. The two mercury-specific oligonucleotide probes comprised a thiolated capture probe and a biotinated signal probe. The thiolated capture probe was immobilized on a gold electrode. In the presence of Hg(2+), the thymine-Hg(2+)-thymine (T-Hg(2+)-T) interaction between the mismatched T-T base pairs directed the biotinated signal probe hybridizing to the capture probe and yielded a biotin-functioned electrode surface. HRP was then immobilized on the biotin-modified substrate via biotin-streptavidin interaction. The immobilized HRP catalyzed the oxidation of hydroquinone (H(2)Q) to benzoquinone (BQ) by hydrogen peroxide (H(2)O(2)) and the generated BQ was further electrochemically reduced at the modified gold electrode, producing a readout signal for quantitative detection of Hg(2+). The results showed that the enzyme-amplified electrochemical sensor system was highly sensitive to Hg(2+) in the concentration of 0.5 nM to 1 μM with a detection limit of 0.3 nM, and it also demonstrated excellent selectivity against other interferential metal ions.  相似文献   

9.
We previously prepared the oligonucleotides (ODNs) conjugated to an anthraquinone (AQ) group via one carbon linker at the 2'-sugar position. When these modified ODNs bind to cDNA sequences, the AQ moiety can be intercalated into the predetermined base-pair pocket of a duplex DNA. In this paper, 2'-AQ-modified ODNs are shown to be an excellent electrochemical probe to clarify the effect of a mismatch base on the charge transfer (CT) though DNA. Two types of DNA-modified electrodes were constructed by assembly of disulfide-terminated 2'-AQ-ODN duplexes onto gold electrodes. One type of electrodes (system I) contains fully matched base pairs or a single-base mismatch in duplex DNA between the redox center and the electrode. The other (system II) consists of the mismatch but at the outside of the redox center. The modified electrodes were analyzed by cyclic voltammetry to estimate the CT rate through duplex DNA. In system I, the CT rate was found to be approximately 50 s (-1) for the fully matched AQ-ODN duplexes, while the CT rates of the mismatched DNA were considerably slower than that of the fully matched DNA. In system II, the AQ-ODN duplexes showed almost similar CT rates ( approximately 50 s (-1)) for the fully matched DNA and for the mismatched DNAs. The detection of a single-base mismatch was then performed by chronocoulometry (CC). All the DNA duplexes containing a mismatch base in system I gave the reduced electrochemical responses when compared to the fully matched DNA. In particular, the mismatched DNAs including G--A mismatch can be differentiated from fully matched DNA without using any electrochemical catalyst. We further tested the usefulness of single-stranded (ss) AQ-ODN immobilized on a gold electrode in the electrochemical detection of a single-base mismatch through hybridization assay. The ss-AQ-ODN electrodes were immersed in target-containing buffer at room temperature, and the CC measurements were carried out to see the changes in the integrated charge. Within 60 min, the mismatched DNA was clearly distinguishable by the CC differences from the fully matched target. Thus, the electrochemical hybridization assay provides an easy and convenient detection for DNA mutation that does not require any extra reagents, catalyst, target labeling, and washing steps.  相似文献   

10.
A new method for the determination of platelet-derived growth factor BB (PDGF-BB) was developed using an electrochemical immunosensor with an aptamer-primed, long-strand circular detection probe. Rabbit anti-human PDGF-B polyclonal antibody was immobilized on the electrode to serve as the capture antibody. The detection probe was synthesized via polymerase extension along a single-stranded circular plasmid DNA template with a primer headed by the anti-PDGF-B aptamer. In the presence of the analyte, the aptamer-primed circular probe was captured on the electrode via the formation of an antibody/PDGF-BB/aptamer sandwiched complex. The electroactivity indicator methylene blue was adsorbed on the electrode surface via the analyte-sandwiched complex with long-strand circular DNA, thus yielding a strong electrochemical signal for the quantification of PDGF-BB. This strategy allowed electrochemical detection with enormous signal amplification arising from the long-strand localized circular probe. The oxidation peak current of methylene blue in square wave voltammetric measurements showed a linear dependence on the concentration of PDGF-BB in the range from 50 to 500 ng mL−1, with a detection limit as low as18 pg mL−1.  相似文献   

11.
We report a strategy for the transduction of DNA hybridization into a readily detectable photoelectrochemical signal by means of a conformational change analogous to electrochemical DNA (E-DNA) approach. To demonstrate the effect of distance change for photosensitizer to the surface of electrode on the change of photocurrent, photosensitizer Ru(bpy)(2)(dcbpy)(2+) tagged DNA stem-loop structures were self-assembled onto a nanogold modified ITO electrode. Hybridization induced a large conformational change in DNA structure, which in turn significantly altered the electron-transfer tunneling distance between the electrode and photosensitizer. The resulting change in photocurrent was proportional to the concentration of DNA in the range of 1.0×10(-10)-8.0×10(-9)M. In order to improve the sensitivity of the photoelectrochemical biosensor, an amplified detection method based on isothermal strand displacement polymerization reaction was employed. With multiple rounds of isothermal strand replication, which led to strand displacement and constituted consecutive signal amplification, a detection limit of 9.4×10(-14)M target DNA was achieved.  相似文献   

12.
A sensitive electrochemical DNA detection method for the diagnosis of sexually transmitted disease (STD) caused by Chlamydia trachomatis was developed. The method utilizes a DNA-intercalating agent and a peroxidase promoted enzymatic precipitation reaction and involves the following steps. After hybridization of the target C. trachomatis gene with an immobilized DNA capture probe on a gold electrode surface, the biotin-tagged DNA intercalator (anthraquinone) was inserted into the resulting DNA duplex. Subsequently, the polymeric streptavidin/peroxidase complex was applied to the biotin-decorated electrode. Peroxidase catalyzed 4-chloronaphthol to produce insoluble product, which is precipitated on the electrode surface in the presence of hydrogen peroxide. Cyclic voltammograms with the gold electrode exhibited a peak current of ferrocenemethanol in electrolyte, which decreased in a proportional way to increasing concentration of target DNA owing to insulation of electrode surface by the growing insoluble precipitate. Using this strategy, we were able to detect picomolar concentrations of C. trachomatis gene in a sample taken from a real patient.  相似文献   

13.
Miao P  Ning L  Li X  Li P  Li G 《Bioconjugate chemistry》2012,23(1):141-145
We herein report a novel electrochemical method in this paper to monitor protein phosphorylation and to assay protein kinase activity based on Zr(4+) mediated signal transition and rolling circle amplification (RCA). First, substrate peptide immobilized on a gold electrode can be phosphorylated by protein kinase A. Then, Zr(4+) links phosphorylated peptide and DNA primer probe by interacting with the phosphate groups. After the introduction of the padlock probe and phi29 DNA polymerase, RCA is achieved on the surface of the electrode. As the RCA product, a very long DNA strand, may absorb a large number of electrochemical speices, [Ru(NH(3))(6)](3+), via the electrostatic interaction, localizing them onto the electrode surface, initiated by protein kinase A, a sensitive electrochemical method to assay the enzyme activity is proposed. The detection limit of the method is as low as 0.5 unit/mL, which might promise this method as a good candidate for monitoring phosphorylation in the future.  相似文献   

14.
An ultrasensitive electrochemical DNA biosensor was constructed by assembling probe labeled gold nanoparticles (ssDNA-AuNP) on electrochemically reduced graphene oxide (ERGO) modified electrode with thiol group tagged (GT) DNA strand (d(GT)(29)SH) and coupling with horseradish peroxidase (HRP) functionalized carbon sphere (CNS) as tracer. The heteronanostructure formed on the biosensor surface appeared relatively good conductor for accelerating the electron transfer, while the HRP tagged CNS provided dual signal amplification for electrochemical biosensing. The triplex signal amplification strategy produced an ultrasensitive electrochemical detection of DNA down to attomolar level (5 aM) with a linear range of 5 orders of magnitude (from 1 × 10(-17)M to 1 × 10(-13)M), and appeared high selectivity to differentiate single-base mismatched and three-base mismatched sequences of DNA. The proposed approach provided a simple and reliable method for DNA detection with high sensitivity and specificity, indicating promising application in bioanalysis and biomedicine.  相似文献   

15.
Herein we report a sensitive electrochemical biosensor for DNA detection by making use of exonuclease III and probe DNA functionalized gold nanoparticles. While probe DNA P1 modified on a gold electrode surface can self-hybridize into a stem-loop structure with an exonuclease III-resistant 3' overhang end, in the presence of target DNA, P1 may also hybridize with the target DNA to form a duplex region. Therefore, exonuclease III may selectively digest P1 from its 3'-hydroxyl termini until the duplex is fully consumed. Since a single target DNA can trigger exonuclease III digestion of numerous P1 strands, the first signal amplification is achieved. On the other hand, since the digested P1, exposing its complementary sequence to probe DNA P2, can further hybridize with P2 that has been previously modified on the surface of gold nanoparticles, many nanoparticles loaded with numerous DNA strands are immobilized onto the electrode surface. Consequently, large amount of electroactive molecules [Ru(NH(3))(6)](3+) can bind with the DNA strands to produce an intense electrochemical response as the second signal amplification. Based on the studies with cyclic voltammetry (CV) and chronocoulometry (CC) techniques, the proposed biosensor can sensitively detect specific target DNA at a picomolar level with high specificity.  相似文献   

16.
17.
Electrochemically induced oxidative damage to DNA was studied with double-stranded calf thymus DNA immobilized directly on a gold electrode surface. Pre-polarization of the DNA-modified electrodes at +0.5 V versus Ag/AgCl reference electrode, in a free from DNA blank buffer solution, pH 7.4, allowed for subsequent detection of direct electrochemical oxidation of adsorbed on gold DNA, in the potential range from +0.7 to +0.8 V. The redox potential of the process corresponded to the potentials of the oxidation of guanine bases in DNA. It is shown that with increasing potential scan rate, v, the mechanism of electrochemical oxidation of DNA changes from the irreversible 4e oxidative damage of DNA at low v to reversible 1e oxidation at high v, keeping the electrochemical activity of the adsorbed DNA layer virtually the same.  相似文献   

18.
A sensitive electrochemical aptasensor was successfully fabricated for the detection of adenosine triphosphate (ATP) by combining three-dimensionally ordered macroporous (3DOM) gold film and quantum dots (QDs). The 3DOM gold film was electrochemically fabricated with an inverted opal template, making the active surface area of the electrode up to 9.52 times larger than that of a classical bare flat one. 5′-thiolated ATP-binding aptamer (ABA) was first assembled onto the 3DOM gold film via sulfur–gold affinity. Then, 5′-biotinated complementary strand (BCS) was immobilized via hybridization reaction to form the DNA/DNA duplex. Since the tertiary structure of the aptamer was stabilized in the presence of target ATP, the duplex can be denatured to liberate BCS. The reaction was monitored by electrochemical stripping analysis of dissolved QDs which were bound to the residual BCS through biotin-streptavidin system. The decrease of peak current was proportional to the amount of ATP. The unique interconnected structure in 3DOM gold film along with the "built-in" preconcentration remarkably improved the sensitivity. ATP detection with high selectivity, wide linear dynamic range of 4 orders of magnitude and high sensitivity down to 0.01 nm were achieved. The results demonstrated that the novel strategy was feasible for sensitive ATP assay and provided a promising model for the detection of small molecules.  相似文献   

19.
The interaction between silver ion and DNA has been followed by submarine gel electrophoresis. When pBR322 plasmid DNA was allowed to interact with silver(I) acetate, it was found to contain Form I and Form II bands whose intensity remained unchanged as the concentration of Ag(+) was increased from 0 to 50 mM. However, the mobility of the bands decreased as the concentration of Ag(+) was increased, indicating the occurrence of increased covalent binding of the metal ion with DNA. When 1:1 mixtures of silver(I) acetate and ascorbate were allowed to interact with plasmid and genomic DNAs, it was found that the mixtures were much more damaging to plasmid as well as genomic DNAs than silver(I) acetate or ascorbate alone. In the case of pBR322 plasmid DNA, the mixture at 12.5 mM concentration was found to be more damaging than the mixtures at both higher and lower concentrations. The increased DNA damage is believed to be due to free radicals produced from the oxidation of ascorbate by molecular oxygen where the metal ion was playing a catalytic role.  相似文献   

20.
Sequence-known short-stranded hepatitis B virus (HBV) DNA fragment (181 bps) was obtained by PCR method. The strategy for its electrochemical detection was designed by covalently immobilizing single-stranded HBV DNA on gold electrode surface via carboxylate ester as a linkage between 3′-hydroxy end of DNA and carboxyl group of thioglycolic acid (TGA) self-assembled monolayer. The hybridization reaction on surface was evidenced by electrochemical methods using ferrocenium hexafluorophosphate (FcPF6) as an electroactive indicator. The interactions of Fc+ with single-stranded (ss) and double-stranded (ds) HBV DNA immobilized on TGA monolayer were studied. The difference between the responses of Fc+ at ss- and ds-DNA/Au electrodes suggested that this hybridization biosensor could be conveniently used to monitor DNA hybridization with a high sensitivity. AC impedance and XPS techniques have been employed to characterize the immobilization of ss-DNA on the gold surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号