首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 941 毫秒
1.
The current studies describe a new, robust cell-based functional assay useful to characterize L-type voltage-dependent calcium channels and their antagonists. The basis of this assay is measurement in plate format of Ca2+ influx through the L-type Ca2+ channel complex (alpha1C, alpha2delta, and beta2a subunits) in response to potassium-mediated depolarization; EC(50)=11 mM [K+](o). The Ca2+ influx was inhibited by the L-type Ca2+ channel antagonist, nimodipine; IC(50)=59 nM. These cells were also transfected with the Kir2.3 inward rectifier K(+) channel, which allows for changing the cell membrane potential by modulation of extracellular [K](o); -65 mV in physiological [K](o) and -28 mV in 30 mM [K](o) containing buffer. The conformational state of the voltage-sensitive Ca2+ channel is altered under these different conditions. Under the depolarized condition, nimodipine was a more potent antagonist, inhibiting Ca2+ influx with an IC(50) value of 3 nM. The results demonstrate that the interaction of nimodipine and other antagonists with the channel is modulated by changes in membrane potential and thus the state of the channel. Overall, this novel assay can be used to identify state-dependent calcium channel antagonists and should be useful for evaluating state-dependent inhibitory potency of a large number of samples.  相似文献   

2.
The effect of bradykinin on intracellular free Ca2+ and neurotransmitter secretion was investigated in the rat pheochromocytoma cell line PC12. Bradykinin was shown to induce a rapid, but transient, increase in intracellular free Ca2+ which could be separated into an intracellular Ca2+ release component and an extracellular Ca2+ influx component. The bradykinin-induced stimulation of intracellular free Ca2+ displayed a similar time course, concentration dependencies and extracellular Ca2+ dependence as that found for neurotransmitter release, indicating an association between intracellular free Ca2+ levels and neurotransmitter secretion. The selective BK1-receptor antagonist des-Arg9,[Leu8]BK (where BK is bradykinin) did not significantly affect the stimulation of intracellular free Ca2+ or neurotransmitter release. In contrast, these effects of bradykinin were effectively blocked by the selective BK2-receptor antagonist [Thi5,8,D-Phe7]BK, and mimicked by the BK2 partial agonist [D-Phe7]BK in a concentration-dependent manner. The stimulation of intracellular free Ca2+ and neurotransmitter release induced by bradykinin was shown not to involve voltage-sensitive Ca2+ channels, since calcium antagonists had no effect on either response at concentrations which effectively inhibit depolarization-induced responses. These results indicate that bradykinin, acting through the interaction with the BK2 receptor, stimulates an increase in intracellular free Ca2+ leading to neurotransmitter secretion. Furthermore, bradykinin-induced responses involve the release of intracellular Ca2+ and the influx of extracellular Ca2+ that is not associated with the activation of voltage-sensitive Ca2+ channels.  相似文献   

3.
Cells of the 7315a prolactin-secreting tumour express biochemically normal cell-surface receptors for dopamine. However, dopamine inhibits prolactin release from these cells only when the basal rate of prolactin release is augmented by increasing the intracellular and/or extracellular calcium concentration of the tumour cells. This suggests that dopaminergic modulation of calcium ion flux could have a central physiological role in these neoplastic cells. In 7315a cells we examined the ability of dopamine to regulate 45Ca2+ influx and fractional 45Ca2+ efflux under conditions of enhanced calcium flux using the calcium channel activator, maitotoxin. It was observed that unidirectional calcium influx stimulated by maitotoxin was significantly inhibited by dopamine. Maitotoxin stimulated fractional efflux and prolactin release from the tumour cells and dopamine simultaneously inhibited both processes by a haloperidol-reversible mechanism. Therefore, in 7315a cells dopamine receptor activation is coupled to inhibition of calcium flux as at least one component in the regulation of prolactin release. These cells may provide further opportunity to study intracellular signalling mechanisms that are modulated by dopamine receptor activity.  相似文献   

4.
The characteristics of Ca2+ entry activated by surface receptor agonists and membrane depolarization were studied in the rat pancreatoma cell line, AR4-2J. Ca2+ mobilization activated by substance P, bombesin, or muscarinic receptor stimulation was found to involve both Ca2+ release and entry. In addition, depolarization of the surface membrane of AR4-2J cells with elevated concentrations of K+ activated Ca2+ entry. Ca2+ entry induced by membrane depolarization was inhibited by the L-channel antagonist, nimodipine, while that due to surface receptor agonists was not inhibited by this agent. The microsomal Ca(2+)-ATPase inhibitor, thapsigargin, caused both depletion of the agonist-sensitive intracellular Ca2+ pool and sustained Ca2+ influx indistinguishable from that produced by bombesin or methacholine. These results confirm that, unlike the pancreatic acinar cells from which they are presumably derived, AR4-2J cells express voltage-sensitive, dihydropyridine-inhibitable Ca2+ channels. However, in contrast to previous reports with this cell line, in the AR4-2J cells in use in our laboratory, and under our experimental conditions, surface receptor agonists (including substance P) do not cause Ca2+ influx through voltage-sensitive Ca2+ channels. Instead, we conclude that agonist-activated Ca2+ mobilization is initiated by (1,4,5)IP3-mediated intracellular Ca2+ release and that Ca2+ influx is regulated primarily, if not exclusively, by the state of depletion of the (1,4,5)IP3-sensitive intracellular Ca2+ pool.  相似文献   

5.
Previously we reported that treating human fibroblasts in cell culture with high-voltage, pulsed galvanic stimulation (HVPGS) can significantly increase cellular protein and DNA synthesis (Bourguignon and Bourguignon: FASEB J., 1:398-402, 1987). In this study we have identified two of the early cellular events which occur following exposure to HVPGS: 1) an increase in Ca2+ uptake from the external medium and 2) an increase in the number of insulin receptors on the fibroblast cell surface. The increase in Ca2+ uptake begins within the first minute of electric stimulation while increased insulin binding is not detected until the second minute of stimulation. The HVPGS-induced increase in insulin binding can be inhibited by bepridil, a specific Ca2+ channel blocker, suggesting that the Ca2+ influx is required for the exposure of additional insulin receptors on the cell surface. Furthermore, we have determined that the addition of insulin to electrically stimulated cultures results in 1) an immediate, second increase in Ca2+ uptake and 2) significant increases in both protein and DNA synthesis compared to cells which were not stimulated. All three of these insulin-dependent effects are also inhibited by bepridil. Based on these results, we propose that HVPGS initially triggers the opening of voltage-sensitive calcium channels in the fibroblast plasma membrane. The increased level of intracellular Ca2+ then induces the exposure of additional insulin receptors, the fibroblasts will significantly increase both protein and DNA synthesis.  相似文献   

6.
The activation of endothelial cells by endothelium-dependent vasodilators has been investigated using bioassay, patch clamp and 45Ca flux methods. Cultured pulmonary artery endothelial cells have been demonstrated to release EDRF in response to thrombin, bradykinin, ATP and the calcium ionophore A23187. The resting membrane potential of the endothelial cells was -56 mV and the cells were depolarized by increasing extracellular K+ or by the addition of (0.1-1.0 mM)Ba2+ to the bathing solution. The electrophysiological properties of the cultured endothelial cells suggest that the membrane potential is maintained by an inward rectifying K+ channel with a mean single channel conductance of 35.6 pS. The absence of a depolarization-activated inward current and the reduction of 45Ca influx with high K+ solution suggests that there are no functional voltage-dependent calcium or sodium channels. Thrombin and bradykinin were shown to evoke not only an inward current (carried by Na+ and Ca2+) but also an increase in 45Ca influx suggesting that the increase in intracellular calcium necessary for EDRF release is mediated by an opening of a receptor operated channel. High doses of thrombin and bradykinin induced intracellular calcium release, however, at low doses of thrombin no intracellular calcium release was observed. We propose that the increased cytosolic calcium concentration in endothelial cells induced by endothelium dependent vasodilators is due to the influx of Ca2+ through a receptor operated ion channel and to a lesser degree to intracellular release of calcium from a yet undefined intracellular store.  相似文献   

7.
The two dihydropyridine enantiomers, (+)202-791 and (-)202-791, that act as voltage-sensitive Ca2+ channel agonist and antagonist, respectively, were examined for effects on cytosolic Ca2+ concentrations ([Ca2+]i) and on hormones secretion in dispersed bovine parathyroid cells and a rat medullary thyroid carcinoma (rMTC) cell line. In both cell types, small increases in the concentration of extracellular Ca2+ evoked transient followed by sustained increases in [Ca2+]i, as measured with fura-2. Increases in [Ca2+]i obtained by raised extracellular Ca2+ were associated with a stimulation of secretion of calcitonin (CT) and calcitonin gene-related peptide (CGRP) in rMTC cells, but an inhibition of secretion of parathyroid hormone (PTH) in parathyroid cells. The Ca2+ channel agonist (+)202-791 stimulated whereas the antagonist (-)202-791 inhibited both transient and sustained increases in [Ca2+]i induced by extracellular Ca2+ in rMTC cells. Secretion of CT and CGRP was correspondingly enhanced and depressed by (+)202-791 and (-)202-791, respectively. In contrast, neither the agonist nor the antagonist affected [Ca2+]i and PTH secretion in parathyroid cells. Depolarizing concentrations of extracellular K+ increased [Ca2+]i and hormone secretion in rMTC cells and both these responses were potentiated or inhibited by the Ca2+ channel agonist or antagonist, respectively. The results suggest a major role of voltage-sensitive Ca2+ influx in the regulation of cytosolic Ca2+ and hormones secretion in rMTC cells. Parathyroid cells, on the other hand, appear to lack voltage-sensitive Ca2+ influx pathways and regulate PTH secretion by some alternative mechanism.  相似文献   

8.
In isolated guinea pig gastric chief cells, pepsinogen release was stimulated by NaF in a dose-dependent manner. Cholecystokinin (CCK) and Ca2+ ionophore A23187 had no additional effect on NaF-stimulated pepsinogen release. CCK caused a rapid increase in intracellular free Ca2+ concentration ([Ca2+]i) monitored by Quin-2 and markedly stimulated inositol phosphate accumulation in chief cells. By contrast, NaF did not cause any change in [Ca2+]i. NaF, even at a maximal concentration for pepsinogen release, appeared to be relatively ineffective on inositol phosphate accumulation. On the other hand, NaF markedly stimulated Ca2+ influx into chief cells. These results suggest that F- stimulates pepsinogen release probably by increasing Ca2+ influx into chief cells. Since F- is a well known activator of guanine nucleotide regulatory proteins (G proteins), it is proposed that there may exist a G protein regulating the opening of Ca2+ channel in gastric chief cells.  相似文献   

9.
S Kaneko  E Doi  H Watanabe  Y Nomura 《Cell calcium》1990,11(4):309-317
When Xenopus oocytes injected with rat brain poly(A)+RNA were voltage-clamped in a recording solution containing Ca2+, a depolarization pulse induced a transient current, ICl(Ca), which reflects calmodulin-mediated opening of endogenous Cl- channels in response to a Ca2+ influx through Ca2+ channels of brain origin. ICl(Ca) could be repetitively observed with a steady amplitude over 1 h, whereas the response was greatly potentiated for more than 30 min after a brief stimulation of muscarinic or other Ca2(+)-mobilizing receptors. The enhancement of ICl(Ca) was mimicked by an injection of inositol-1,4,5-trisphosphate or by a treatment with A23187, but not affected by treatments that stimulate or inhibit protein kinase C activity. Isolated Ba2+ current flowing through voltage-sensitive Ca2+ channels was not augmented during the facilitation of ICl(Ca). These observations indicate that the endogenous calmodulin/Cl- channel system may memorize an over-threshold increase in the intracellular Ca2+ concentration and potentiate the Ca2(+)-sensitiveness of the Cl- channel. A long-lasting autoregulation of Ca2(+)-dependent ion channel activity is suggested.  相似文献   

10.
The aim of the present study has been to characterize the regulation by opiates of 45Ca2+ influx in rat spinal cord-dorsal root ganglion cocultures. We have demonstrated that K+-induced depolarization, in the presence of the Ca2+ channel agonist Bay K8644, stimulated Ca2+ influx (3-4-fold) via the dihydropyridine class of voltage-dependent Ca2+ channels. While mu and delta opiates had no effect, kappa opiate agonists (e.g. U50488, dynorphin) profoundly depressed the stimulated Ca2+ influx (86% inhibition at 100 microM U50488). The kappa agonist action was stereospecific and could be reversed by the opiate antagonist naloxone. The inhibition produced by kappa agonists was greatly diminished following pertussis toxin treatment, and this effect was accompanied by toxin-induced ADP-ribosylation of a 40-41-kDa protein. This suggests that kappa opiate receptors are negatively coupled to voltage-dependent Ca2+ channels, via a pertussis toxin-sensitive GTP-binding protein. Basal 45Ca2+ uptake, stimulated by adenylate cyclase activators (forskolin and cholera toxin), was potently inhibited by kappa opiates suggesting that, under conditions of neurohormonal stimulation of adenylate cyclase, kappa receptors are coupled to Ca2+ channels indirectly via the adenylate cyclase complex. In addition, cAMP-independent coupling pathways may also be involved.  相似文献   

11.
Y Nomura  M Tohda 《FEBS letters》1987,216(1):40-44
Depolarized stimulation 1.5-fold increased Ca2+ influx which was inhibited by pretreatment with verapamil or LaCl3. Treatment with pertussis toxin, islet-activating protein (IAP), induced a reduction in 50 mM K+-induced Ca2+ influx and stimulated adenylate cyclase (AC) activity in NG108-15 cells. However, addition of dibutyryl cAMP or forskolin treatment elevating cAMP level exerted no effects on a depolarization-induced Ca2+ influx. Dissociated B-oligomer of IAP after treatment with dithiothreitol and ATP increased a depolarization-evoked Ca2+ influx. It is suggested that inhibitory GTP-binding protein (G1) or other IAP substrate proteins could directly be involved in Ca2+ influx via voltage-sensitive Ca2+ channel.  相似文献   

12.
Using laser image cytometry and Indo-1 fluorescence, we investigated the intracellular free Ca2+ concentration ([Ca2+]i) of confluent A172 human glioblastoma cells stimulated by the BB homodimer of platelet-derived growth factor (PDGF-BB). The shape of the calcium transients and the delay time between stimulation and the beginning of the transient varied considerably. The percentage of responsive cells, the peak [Ca2+]i and the duration of the response were directly related to PDGF-BB dose, while the delay time was inversely related; the maximal response occurred at a PDGF-BB concentration of 20 ng/ml. Studies with EGTA and inorganic calcium-channel blockers (Ni2+, La3+) showed that the increase of [Ca2+]i resulted from initial release of intracellular stores and subsequent calcium influx across the plasma membrane. Opening of calcium channels in the plasma membrane, monitored directly by studying Mn2+ quenching of Indo-1 fluorescence, was stimulated by PDGF-BB and blocked by La3+; the opening occurred 55 +/- 10 s after the initial increase in [Ca2+]i. Therefore, in these tumor cells, intracellular release always occurs before channel opening in the plasma membrane. Depolarization of cells with high extracellular [K+] did not generally induce calcium transients but did decrease calcium influx. L-type calcium-channel blockers (verapamil, nifedipine, and diltiazem) had little or no effect on the calcium influx induced by PDGF-BB. These results indicate that PDGF-BB induces calcium influx by a mechanism independent of voltage-sensitive calcium channels in A172 human glioblastoma cells.  相似文献   

13.
Essential role of calcineurin in response to endoplasmic reticulum stress   总被引:11,自引:0,他引:11  
Depletion of calcium ions (Ca2+) from the endoplasmic reticulum (ER) of yeast cells resulted in the activation of the unfolded protein response (UPR) signaling pathway involving Ire1p and Hac1p. The depleted ER also stimulated Ca2+ influx at the plasma membrane through the Cch1p-Mid1p Ca2+ channel and another system. Surprisingly, both Ca2+ influx systems were stimulated upon accumulation of misfolded proteins in the ER even in the presence of Ca2+. The ability of misfolded ER proteins to stimulate Ca2+ influx at the plasma membrane did not require Ire1p or Hac1p, and Ca2+ influx and signaling factors were not required for initial UPR signaling. However, activation of the Ca2+ channel, calmodulin, calcineurin and other factors was necessary for long-term survival of cells undergoing ER stress. A similar calcium cell survival (CCS) pathway operates in the pathogenic fungi and promotes resistance to azole antifungal drugs. These findings reveal an unanticipated new regulatory mechanism that couples ER stress to Ca2+ influx and signaling pathways, which help to prevent cell death and promote resistance to an important class of fungistatic drugs.  相似文献   

14.
OX1 orexin receptors (OX1R) have been shown to activate receptor-operated Ca2+ influx pathways as their primary signalling pathway; however, investigations are hampered by the fact that orexin receptors also couple to phospholipase C, and therewith inositol-1,4,5-trisphosphate (IP3)-dependent Ca2+ release. We have here devised a method to block the latter signalling in order to focus on the mechanism of Ca2+ influx activation by OX1R in recombinant systems. Transient expression of the IP3-metabolising enzymes IP3-3-kinase-A (inositol-1,4,5-trisphosphate-->inositol-1,3,4,5-tetrakisphosphate) and type I IP3-5-phosphatase (inositol-1,4,5-trisphosphate-->inositol-1,4-bisphosphate) almost completely attenuated the OX1R-stimulated IP3 elevation and Ca2+ release from intracellular stores. Upon attenuation of the IP3-dependent signalling, the receptor-operated Ca2+ influx pathway became the only source for Ca2+ elevation, enabling mechanistic studies on the receptor-channel coupling. Attenuation of the IP3 elevation did not affect the OX1R-mediated ERK (extracellular signal-regulated kinase) activation in CHO cells, which supports our previous finding of the major importance of receptor-operated Ca2+ influx for this response.  相似文献   

15.
Cadmium uptake and toxicity via voltage-sensitive calcium channels   总被引:14,自引:0,他引:14  
The mechanism of cellular uptake of cadmium, a highly toxic metal ion, is not known. We have studied cadmium uptake and toxicity in an established secretory cell line, GH4C1, which has well characterized calcium channels. Nimodipine, an antagonist of voltage-sensitive calcium channels, protected cells against cadmium toxicity by increasing the LD50 for CdCl2 from 15 to 45 microM, whereas the calcium channel agonist BAY K8644 decreased the LD50. Organic calcium channel blockers of three classes protected cells from cadmium toxicity at concentrations previously shown to block high K+-induced 45Ca2+ influx and secretion. Half-maximal protective effects were obtained at 20 nM nifedipine, 4 microM verapamil, and 7 microM diltiazem. Increasing the extracellular calcium concentration from 20 microM to 10 mM also protected cells from cadmium by causing a 5-fold increase in the LD50 for CdCl2. Neither the calcium channel antagonist nimodipine nor the agonist BAY K8644 altered intracellular metallothionein concentrations, while cadmium caused a 9-20-fold increase in metallothionein over 18 h. Cadmium was a potent blocker of depolarization-stimulated 45Ca2+ uptake (IC50 = 4 microM), and the net uptake of cadmium measured with 109Cd2+ was less than 0.3% that of calcium. Although the rate of cadmium uptake was low relative to that of calcium, entry via voltage-sensitive calcium channels appeared to account for a significant portion of cadmium uptake; 109Cd2+ uptake at 30 min was increased 57% by high K+/BAY K8644, which facilitates entry through channels. Furthermore, calcium channel blockade with 100 nM nimodipine decreased total cell 109Cd2+ accumulation after 24 h by 63%. These data indicate that flux of cadmium through dihydropyridine-sensitive, voltage-sensitive calcium channels is a major mechanism for cadmium uptake by GH4C1 cells, and that pharmacologic blockade of calcium channels can afford dramatic protection against cadmium toxicity.  相似文献   

16.
The hydrolysis of phosphoinositides (PI) elicited in cerebellar granule cell cultures by agonists of metabolotropic glutamate receptors, glutmate and quisqualate, was enhanced when the cells were pretreated with concanavalin A (Con-A). A similar effect was produced by wheat germ agglutinin, but not by several other lectins tested. Con-A produced a dose-dependent effect (EC50 = 3 microM) and increased the efficacy but not the potency of the agonists. In contrast, Con-A failed to enhance PI hydrolysis evoked by N-methyl-D-aspartate, kainate, carbachol, the calcium ionophore A23187, or 50 mM K+. The Con-A stimulatory effect was prevented by simultaneous pretreatment with the agonists of ionotropic quisqualate receptors quisqualate, kainate, and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, but not by the antagonist 6-cyano-7-nitroquioxaline-2,3-dione (CNQX). CNQX, which did not inhibit quisqualate-stimulated PI hydrolysis in untreated cells, abolished the component of quisqualate response enhanced by Con-A pretreatment. The pretreatment with Con-A also increased the influx of 45Ca2+ in granule cells stimulated by quisqualate. This increase was inhibited by CNQX. Moreover, the potentiation of PI hydrolysis by Con-A, but not the response to quisqualate alone, was abolished in the absence of Ca2+ and Na+. Pretreatment of granule cells with pertussis toxin inhibited PI hydrolysis stimulated by the metabolotropic quisqualate receptor and the Con-A-potentiated response by the same percentage, but Ca2+ influx induced by quisqualate was not affected.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Abstract: Using fura-2 microfluorometry, I investigated the mechanism by which non-N-methyl-d -aspartate (NMDA) receptor agonists increase the cytosolic free calcium concentration ([Ca]in) in single cerebellar Purkinje cells isolated from 3–10-day-old rats. Kainate and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate dose-dependently increased the cytosolic free Na+ concentration, which was measured using sodium-binding benzofuran isophthalate microfluorometry, confirming the Na+ influx through ion channels linked to non-NMDA receptors. The [Ca2+] increases induced by relatively lower concentrations of agonists were entirely dependent on external Ca2+ and were reduced by removal of external Na+ or by addition of a Ca2+ channel blocker, D600. The results indicate that the non-NMDA agonist–induced [Ca]in increase was due mainly to Ca2+ influx through voltage-dependent Ca2+ channels, which were activated by a massive Na+ influx. On the other hand, higher concentrations of agonists dose-dependently increased [Ca]in under conditions in which activation of voltage-dependent Ca2+ channels were blocked by a combination of Na+ removal with D600. These [Ca]in increases were Ca2+ dependent and little affected by adding a competitive NMDA antagonist. Non-NMDA agonists also stimulated influxes of Mn2+ and Co2+, both of which can be monitored by quenching fura-2 fluorescence under the same conditions. These results suggest that ion channels linked to non-NMDA receptors on immature Purkinje cells are permeable to Ca2+, Mn2+, and Co2+.  相似文献   

18.
The action of exogenous ATP on cytoplasmic free Ca2+ ([Ca2+]i) was studied in insulin secreting cells using fura-2. Stimulation of clonal pancreatic beta-cells (HIT) with ATP (range 2-20 microM) evoked a sustained elevation in [Ca2+]i. ATP selectively promoted Ca2+ influx and not Ca2+ mobilization since (1) the effect required external Ca1+ and (2) was observed in cells in which internal stores were depleted with ionomycin (3) the rate of Mn2+ influx, measured as the quenching of the fura-2 signal, was accelerated by ATP. The action of ATP was unaffected by the voltage-sensitive Ca2+ channel blockers nifedipine and verapamil as well as by a depolarizing concentration of K+. The effect on [Ca2+]i was highly specific for ATP since AMP, ADP, adenosine 5'-[gamma-thio]triphosphate, adenosine 5'-[beta, gamma-methylene]triphosphate, GTP and adenosine were ineffective. In normal pancreatic islet cells, both exogenous ATP (range 0.2-2 microM) and ADP induced a transient Ca2+ elevation that did not require external Ca2+. The nucleotide specificity of the effect on [Ca2+]i suggests that ATP activates P2 gamma purinergic receptors in normal beta-cells. Thus, ATP evokes a Ca2+ signal in clonal HIT cells and normal islet cells by different transducing systems involving distinct purinoreceptors. A novel mechanism for increasing [Ca2+]i by extracellular ATP is reported in HIT cells, since the nucleotide specificity and the selective activation of Ca2+ influx without mobilization of internal Ca2+ stores cannot be explained by mechanisms already described in other cell systems.  相似文献   

19.
The voltage-sensitive calcium channel in cultured chick neural retina cells was characterized by the actions of the enantiomers of Bay K 8644 and 202-791 and other 1,4-dihydropyridines. These cells showed time- and voltage-dependent Ca2+ uptake that was stimulated by K+ depolarization and blocked by the inorganic calcium channel blockers Cd2+ and Co2+. A small fraction only (15% maximum) of the uptake was inactivated by predepolarization of the cells with 80 mM K+. Ca2+ uptake was sensitive to the 1,4-dihydropyridine calcium channel antagonists and activators. (S)-Bay K 8644 and (S)-202-791 stimulated the Ca2+ uptake, and (R)-Bay K 8644 and (R)-202-791 as well as nitrendipine and PN 200-110 inhibited Ca2+ uptake stimulated by K+ depolarization or channel activators. The K+ depolarization-stimulated uptake was inhibited by 90%, but the activator-stimulated uptake was completely blocked by the 1,4-dihydropyridine antagonists. The potencies of these agents as inhibitors of Ca2+ uptake were significantly lower than the binding affinities in membrane preparations from the same cells or their binding and pharmacologic affinities in vascular smooth muscle. K+ depolarization or (S)-Bay K 8644 induced 45Ca2+ uptake was not observed in a glial cell culture. [3H]Nitrendipine and [3H]PN 200-110 bound to membrane preparations of the cells consistent with the presence of a single type of high affinity binding site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Vasopressin increases 45Ca2+ influx in rat aortic smooth muscle cells   总被引:1,自引:0,他引:1  
[Arg8]Vasopressin (AVP)-induced 45Ca2+ influx was examined in vascular smooth muscle cells derived from rat aorta. AVP stimulated the 45Ca2+ influx in a concentration-dependent manner. The effect was abolished in the presence of La3+. The dihydropyridine calcium channel antagonist darodipine did not affect the AVP-induced influx of 45Ca2+. These data suggest that AVP stimulates in these cultured aortic smooth muscle cells a receptor-operated channel (ROC) that is permeable to Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号