首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A cystamine-enkephalin dimer, containing two molecules of [D-Ala2, Leu5] enkephalin cross-linked at the COOH-terminal leucine residue with cystamine, (NH2-CH2-CH2-S-)2, has been synthesized in order to examine directly the dimerization effect of an enkephalin molecule on the opiate receptor interactions. In a comparison of potencies against [3H]-[D-Ala2,D-Leu5] enkephalin (3H-DADLE) and [3H]-[D-Ala2,MePhe4,Gly-ol5] enkephalin (3H-DAGO) as delta and mu tracers, respectively, enkephalin dimer showed a very high affinity, especially for the delta opiate receptors. Dimer was almost threefold more potent than DADLE, which is one of the most utilized delta ligand to date. When the binding affinity of cystamine-dimer was compared with that of its reduced thiol-monomer, namely [D-Ala2,Leu5,cysteamine6] enkephalin, the increment in affinity was four to fivefold for both delta and mu receptors. The results strongly indicate that the dimeric enkephalin is more potent presumably due to the simultaneous interaction with the two binding sites of the opiate receptors.  相似文献   

2.
The pentapeptide leucine enkephalin induced down-regulation of enkephalin receptors in neuroblastoma-glioma NG108-15 hybrid cells in a reversible fashion, whereas the stable enkephalin analogue D-Ala2-Met-enkephalinamide (AMEA), and the potent opiate alkaloid, etorphine, had a prolonged effect. The opiate alkaloid, morphine, which has low affinity to delta-type enkephalin receptors of these cells did not induce down-regulation, whereas AMEA decreased the binding of both opiate agonists and antagonists but had no effect on the binding of the alpha 2-adrenergic ligand, [3H]yohimbine. From several experiments that were designed to remove the tightly bound AMEA, and from experiments with solubilized receptor we ruled out the possibility that the decreased binding capacity of enkephalin-treated cells reflects only receptor masking. The study suggests that down-regulation of enkephalin receptors that may also occur in vivo can account for some of the abnormal physiological responses of subjects treated chromically with opiates. However, since opiates from the morphine type can induce opiate tolerance in vivo, but not down-regulation of enkephalin receptors in the cultured cells, we suggest that down-regulation of delta-type opiate receptors may not be prerequisite for the development of the physiological tolerance/dependence on these alkaloids.  相似文献   

3.
The fluorescent amino acid, L-1-pyrenylalanine (Pya) was incorporated into [D-Ala2,Leu5]enkephalin and its methyl ester at position 4 or 5. Pya-enkephalins showed strong fluorescent intensity and displayed high binding affinity for opiate receptors. Pya4-enkephalins showed high specificity for the mu receptors, while Pya5-enkephalins showed high specificity and selectivity for the delta receptors. Particularly, [D-Ala2,Pya5]enkephalin was as potent as the most utilized delta-specific ligand of [D-Ala2,D-Leu5]enkephalin (DADLE), and yet its delta-selectivity was about 5-times greater than that of DADLE. Thus, Pya-enkephalins per se can be utilized as a fluorescent probe or tracer for the opiate receptor-binding assays.  相似文献   

4.
Opiate binding sites and endogenous opioids in Bufo viridis oocytes   总被引:1,自引:0,他引:1  
Binding sites with high affinity for [3H]naloxone, but not for [3H]morphine and [3H] (D-Ala2, D-Leu5) enkephalin, have been found in membranes of Bufo viridis oocytes. The binding is reversible and saturable. Bound [3H]naloxone is easily displaced both by unlabeled naloxone and bremazocine, much worse by morphine and SKF 10,047; (D-Ala2, D-Leu5) enkephalin and beta-endorphin practically fail to displace [3H]naloxone. Scatchard analysis is consistent with the existence of two classes of binding sites with Kd 15 nM and 10(3) nM. The number of binding sites with high affinity for naloxone is 16 pmol/mg protein of homogenized oocytes which is 20-50-fold higher than in, toad or rat brain. Oocyte extract displaces [3H]naloxone bound with oocytes' membranes and inhibits electrically evoked contractions of the rabbit vas deferens. This inhibition is reversed by naloxone. It is suggested that compounds similar to opiate kappa-agonists exist in oocytes. It cannot be ruled out that they participate via specific receptors in the regulation of oocyte maturation and egg development.  相似文献   

5.
A Pfeiffer  A Herz 《Life sciences》1982,31(12-13):1355-1358
The present studies were undertaken to evaluate whether different types of opiate agonists interact in a distinguishable manner with mu, delta and kappa opiate binding sites. Two approaches were employed: (a) the well known effects of metal ions on opiate agonist binding affinities of subsite selective ligands were studied at mu, delta and kappa sites in rat brain homogenates. Binding parameters were obtained by simultaneous computeranalysis of displacement curves using the prototypic ligands dihydromorphine (DHM), (D-Ala2, D-Leu5) enkephalin (DADL) and ethylketocyclazocine (EKC) of the mu, delta and kappa binding sites respectively. The results show that the effects of metal ions depend not only on the binding site, but also on the ligand under investigation. (b) The interaction of the delta agonist DADL with the mu agonist DHM was investigated at mu binding sites by characterizing the type of competition occurring between the two ligands. The interaction was of the noncompetitive type. It therefore appears that the various opiate agonists either interact preferentially with different parts of a larger receptor site area or bind to topographically distinct sites on a single receptor molecule which are coupled allosterically.  相似文献   

6.
The calcium binding protein calmodulin and the opiate receptor binding sites are unevenly distributed in various subcellular fractions of neuroblastoma-glioma NG108-15 cells. The crude mitochondrial-membrane fraction of these cells contains two membrane fractions that are separable by sucrose gradient centrifugation. These two differ in the content of both calmodulin and opiate receptors. Leucine enkephalin and D-Ala2-methionine enkephalinamide decrease the amount of membrane-bound calmodulin in the NC108-15 cells in a time- and dose-dependent manner, whereas the opiate antagonists naloxone and levallorphan have an opposite effect. Naloxone blocks the effect of leucine enkephalin and dextrallorphan has no significant effect. The opiate alkaloids entorphine and phenazocine induce changes similar to that of the enkephalins whereas morphine is inactive even at high concentrations. The alteration in the amount of membrane-bound calmodulin after a short incubation (15 min) with the enkephalins or with naloxone is reflected as an opposite change in the amount of calmodulin in the cell cytosol. Naloxone and levallorphan also increase the number of opiate receptors in NG108-15 cells but dextrallorphan has no such effect. Modulation of the intracellular distribution of calmodulin by opioid peptides and alkaloids may control the activity of various membrane-bound and cytosolic systems that are calmodulin- and/or calcium-dependent.  相似文献   

7.
M Westphal  R G Hammonds  C H Li 《Peptides》1985,6(1):149-152
Dermorphin and a camel beta-endorphin (beta c-EP) analog in which residues 1-7 correspond to the dermorphin sequence ([Dermorphin1-7]-beta c-EP) have been investigated with respect to their receptor binding characteristics using human and camel beta-EP as reference peptides. Tritiated dihydromorphine, [D-Ala2, D-Leu5]-enkephalin, ethylketocyclazocine and human beta-endorphin were used as primary ligands in the rat brain membrane preparation for radioreceptor assay. Camel beta-endorphin was the most potent peptide in all experiments. [Dermorphin1-7]-beta c-EP is significantly less potent towards 3H-ethylketocyclazocine and 3H-[D-Ala2, D-Leu5]-enkephalin but is as potent towards 3H-dihydromorphine and 3H-human beta-endorphin. Dermorphin itself weakly displaces tritiated dihydromorphine, [D-Ala2, D-Leu5]-enkephalin and ethylketocyclazocine (potency relative to camel beta-EP, 1-4%) but it is more potent (9%) in competition with tritiated human beta-endorphin. Dermorphin and the [Dermorphin-1-7]-beta c-EP appear to interact preferentially with mu opiate receptors.  相似文献   

8.
[D-Ala2,Leu5,Cys6]Enkephalin (DALCE) is a synthetic enkephalin analog which contains a sulfhydryl group. DALCE binds with high affinity to delta-receptors, with moderate affinity to mu-receptors, and with negligible affinity to kappa-receptors. Pretreatment of rat brain membranes with DALCE resulted in concentration-dependent loss of delta-binding sites. Using 2 nM [3H][D-Pen2,D-Pen5]enkephalin (where Pen represents penicillamine) to label delta-sites, 50% loss of sites occurred at about 3 microM DALCE. Loss of sites was not reversed by subsequent incubation in buffer containing 250 mM NaCl and 100 microM guanyl-5'-yl imidodiphosphate (Gpp(NH)p), conditions which cause dissociation of opiate agonists. By contrast, the enkephalin analogs [D-Ala2,D-Leu5]enkephalin, [D-Ser2,Leu5,Thr6]enkephalin, [D-Pen2,D-Pen5]enkephalin, and [D-Ala2,D-Leu5,Lys6]enkephalin were readily dissociated by NaCl and Gpp(NH)p, producing negligible loss at 3 microM. This suggests that DALCE binds covalently to the receptors. Pretreatment of membranes with the reducing agents dithiothreitol and beta-mercaptoethanol had no effect on opiate binding. Thus, loss of sites required both specific recognition by opiate receptors and a thiol group. The irreversible effect of DALCE was completely selective for delta-receptors. Pretreatment with DALCE had no effect on binding of ligands to mu- or kappa-receptors. The effect of DALCE on delta-binding was: 1) markedly attenuated by inclusion of dithiothreitol in the preincubation buffer, 2) partially reversed by subsequent incubation with dithiothreitol, 3) slightly enhanced when converted to the disulfide-linked dimer, and 4) prevented by blocking the DALCE sulfhydryl group with N-ethylmaleimide or iodoacetamide. These results indicate that DALCE binds covalently to delta-receptors by forming a disulfide bond with a sulfhydryl group in the binding site. The mechanism may involve a thiol-disulfide exchange reaction.  相似文献   

9.
Enkephalin analogs containing a thiol activated by a thiomethyl (SCH3)*** or 3-nitro-2-pyridinesulfenyl (Npys) group were synthesized. Incubation of such S-activated enkephalin analogs as [D-Ala2, Leu(CH2S)SCH(3)5]enkephalin or [D-Ala2,Leu(CH2S)Npys5]enkephalin with guinea pig ileum (GPI) resulted in the continuous stimulation of the mu opiate receptors. This sustained GPI-activity was completely reversed with the antagonist naloxone, while subsequent washings elicited again the full enkephalin activity. When GPI showing full enkephalin activity was incubated with 1 mM dithiothreitol, about 70% of the activity was eliminated. Examination of enkephalin analogs containing Cys(Npys) at position 1, 5, or 6 suggested that no other thiols occur near the enkephalin binding site of the mu receptor. From these results, it is considered that only one thiol group exists near the binding site of the mu receptor in GPI. Similar results were also obtained for the mu receptors in mouse vas deferens.  相似文献   

10.
Opioid peptides are endogenous substances present in central nervous system and various tissues whose actions are mediated by opiate receptors. They belong to two different classes: short peptides like the two pentapeptides enkephalin and substances of higher molecular weight like beta-endorphin. It appears that these various peptides play a messenger role between cells, either as neurotransmitters in the case of enkephalins or as hormones in the case of beta-endorphin.  相似文献   

11.
The novel fluorescent amino acid, L-1-pyrenylalanine (L-Pya), was prepared by the asymmetric hydrogenation of cyclic dehydrodipeptide. Fluorescent enkephalins containing one or two Pya residues at position 1,4 or 5 of [D-Ala2, Leu5]enkephalin were synthesized by the solution method. Mono-Pya-enkephalins showed strong fluorescence intensities and potent binding affinities with specificity and selectivity for opiate receptors. However, di-Pya-enkephalins showed markedly decreased receptor binding affinities. These results indicate that the incorporation of two Pya residues into enkephalin makes the peptide unable to interact with the opiate receptors, although introduction of one Pya residue is effective to elicit a specific receptor interaction. Di-Pya-enkephalins showed intramolecular excimer spectra, indicating that the peptides are able to take possible folded conformations.  相似文献   

12.
NMB: a human neuroblastoma cell line with specific opiate binding sites   总被引:1,自引:0,他引:1  
The human neuroblastoma cell line designated NMB (Brodeur et al., 1977, Cancer 40: 2256) has been shown to have specific opiate binding sites. These sites are highly stereospecific. Two characteristic delta specific peptides, D-Ala2-D-Leu5 enkephalin and D-Thr2-D-Thr6 enkephalin, have high affinity for the binding sites. Morphine binds specifically but with a much lower affinity. Dextrorphan and the mu specific peptide morphiceptin (Tyr-Pro-Phe-Pro-CO-NH2) do not bind to the site. The binding sites are heat and trypsin sensitive. Sodium ions specifically lower agonist binding to the sites. Approximately 14,000 binding sites per cell are found. The binding characteristics of these sites are very similar to those of the delta sites characterized on mouse neuroblastoma cell lines.  相似文献   

13.
Our observations that opioid peptides have direct effects on islet insulin secretion and liver glucose production prompted a search for endogenous opiates and their receptors in these peripheral tissues. Mu-, delta- and kappa-receptor-active opiates were demonstrated in brain, pancreas and liver extracts by displacement studies using selective ligands for the three opiate receptor subtypes [( 3H][D-Ala2,MePhe4,Gly5-ol]enkephalin, [3H][D-Ala2,D-Leu5]enkephalin and [3H]dynorphin respectively). Receptor-active opiates in brain extracts exhibited a stronger preference for delta-opiate-receptor sites than for mu and kappa sites. Pancreatic extract opiates demonstrated a similar activity at mu and delta sites, but substantially less at kappa sites. Liver extracts displayed similar selectivity for all three sites. The affinities of the receptor-active opiates for mu-, delta- and kappa-receptor subtypes displayed a rank order of potency: brain much greater than pancreas greater than liver. Total immunoreactive beta-endorphin and [Met5]enkephalin levels in liver and hepatocytes were greater than those in brain. Immunoreactive [Met5]enkephalin levels in pancreas were similar to, but beta-endorphin levels were substantially higher than, those in brain. Delta and kappa opiate-binding sites of high affinity were identified in crude membrane preparations of islets of Langerhans, but no specific opiate-binding sites could be demonstrated in liver membrane preparations. Immunoreactive dynorphin and beta-endorphin were demonstrated by immunogold labelling in rat pancreatic islet cells. No positive staining of liver sections for opioids was observed. These results suggest that the tissue content of opiate-receptor-active compounds in the pancreas and the liver is very significant and could contribute to the regulation of normal blood glucose levels.  相似文献   

14.
Some kinetic features of D-Ala2-[Tyr-3.5-3H]enkephalin (5-D-Leu) binding to opiate receptors of rat brain were studied. It was shown that the Leu-enkephalin D analog interacts with the high and low affinity binding sites of opiate receptors, the equilibrium constants being equal to 0.71 and 8.4 nM, respectively. The rate constant for the label association with the high affinity binding sites in 2 . 10(8) M-1 min-1; those for the label dissociation from the opiate receptor binding sites with high and low affinities are 7.2 . 10(-3) and 0.16 min-1, respectively. Hence, the half-life time of these complexes is 95.7 and 4.3 min, respectively. Na+, K+ and Li+ markedly decrease the specific finding of the label, while Mg2+, Mn2+ and Ca2+ at the concentrations studied markedly increase its specific binding. It is concluded that the Leu-enkephalin D-analog under study acts as a morphine agonist and reveals a much higher affinity for rat brain opiate receptors than does Leu- or Met-enkephalin. This makes it a useful tool for study of the enkephalin reception under normal and pathological conditions.  相似文献   

15.
X Z Khawaja  I C Green 《Life sciences》1992,50(17):1273-1281
The effect of glucose on the binding characteristics of opiate receptor subtypes was investigated in brain membranes from normoglycaemic lean Aston (C57BL/6J) mice using [3H][D-Ala2,MePhe4,Gly5-ol]enkephalin (DAMGO), [3H][D-Pen2,D-Pen5]enkephalin (DPDPE) and [3H]U69,593 as selective ligands for mu, delta and kappa opiate receptors respectively. The equilibrium dissociation constants (Kd) and maximal binding capacities (Bmax) of [3H]DAMGO and [3H]DPDPE were unaltered by 20mM glucose in vitro. Similarly, [3H]U69,593 binding was not modified by increasing the concentration of glucose from 0 to 20mM (P between 0.10 and 0.05), or by the presence of 20mM fructose and of 20mM 3-O-me-glucose, a non-metabolisable sugar, in the incubation medium. The nonselective opiate ligand, [3H]diprenorphine, bound with similar affinity and binding capacity to brain membranes prepared from control and streptozotocin-diabetic Swiss (CD1) mice. The addition of 20mM glucose or of 20mM fructose in vitro induced no changes in their binding parameters. The affinity and binding capacity of [3H]U69,593 to STZ-diabetic Swiss mouse brain membranes was not significantly different to that of normoglycaemic controls; 20mM glucose in vitro had no effect on ligand binding to kappa sites in STZ-diabetic mouse brain membranes. We conclude that glucose does not interact directly with the opiate receptor to modfy it in such as way as could explain the altered sensitivity to different opioid agonists seen in obese and hyperglycaemic animal models in vivo.  相似文献   

16.
For the elucidation of structural elements in the opiate receptors, a thiol-containing enkephalin analog [D-Ala2, cysteamine 5]enkephalin, and its dimeric analog were synthesized and evaluated in the radio-ligand receptor binding assays using rat brain membranes. The dimeric analog was very potent in both delta and mu assays. Comparison of receptor affinities of the thiol-containing enkephalin with those of standard mu or delta receptor specific ligands suggested that the mu receptor contains an essential thiol group which may interact with the thiol group at the C-terminus of the enkephalin analog. It also appears that no metal-ion site, postulated for the delta receptors, is present in the delta binding site.  相似文献   

17.
The ability of opioids to influence rectal temperature after injection into the periaqueductal grey region (PAG) of rat brain was investigated. Both morphine and beta-endorphin caused a dose-dependent increase in rectal temperature of up to 2 degrees C. By using selective ligands of the subclasses of opiate receptor such as [D-Ala2,D-Leu5]enkephalin for delta-receptors and ethylketocyclazocine, dynorphin(1-17) and dynorphin(1-8) for kappa-receptors, it was possible to show that neither the delta- nor the kappa-opiate receptor was involved in the hyperthermic response. However, [D-Ala2,MePhe4,Gly-ol5]enkephalin (DAGO), a mu-receptor ligand, did produce a dose-dependent hyperthermia. The ability of naltrexone, an opiate receptor antagonist, to reverse the hyperthermia induced by beta-endorphin and DAGO suggests that the opioid-stimulated increase in body temperature via the PAG is mediated through the mu-opiate receptor. Since the application of opioids to the PAG produces a hyperthermic response, it is possible that this brain site may have a role in the peptidergic control of body temperature.  相似文献   

18.
The influence of Ca2+, Mg2+, Mn2+, Sr2+, La3+, Nd3+, Sm3+, Eu3+, and Gd3+ ions on the binding of labeled, stable enkephalin analogue, [3H-Tyr1, D-Ala2, D-Leu5]enkephalin, to opiate receptors of the rat brain membrane preparations has been investigated. The formation of the complex can be described by a scheme involving at least two independent binding sites. The high affinity site does not discriminate the divalent and trivalent metal ions: all examined cations enhanced the enkephalin affinity for this site. The ligand binding to the low affinity site is potentiated only by Mn2+, Mg2+, and lathanoides. The maximal concentration of the binding sites of the above two types is not affected by the cations. The increase in the ionic strength of the solution entails a decrease in the affinity of the ligand for the high affinity binding site. It is shown that the effect of both di- and trivalent metal cations on the [3H-Tyr1, D-Ala2, D-Leu3] enkephalin binding is mediated through one cation attachment site on the respective enkephalin receptor.  相似文献   

19.
R Simantov  D Baram  R Levy  H Nadler 《Life sciences》1982,31(12-13):1323-1326
Several clones of neuroblastoma-glioma NG108-15 hybrid cells were used to reveal whether the regulation of opiate receptor density interacts with the regulation of alpha-adrenergic or acetyl-choline receptors. Low density of alpha-adrenergic receptors in 3 selected clones was accompanied with similar reduction in the density of enkephalin receptors but not in muscarinic acetyl-choline receptors. Yet opiate antagonists that increased the number of opiate receptors in the parent NG108-15 cells in a stereospecific manner had no similar effect on the number of alpha-adrenergic receptors. Moreover, the stable enkephalin analogue D-ala-2-methionine enkephalinamide, but not the opiate alkaloid morphine, decreased the binding of 3H-DAMEA to the membranes and induced down-regulation of enkephalin receptors. Yet DAMEA had no effect on the binding of the alpha-adrenergic antagonist 3H-yohimbine. The study suggests that alpha-adrenergic and enkephalin receptors may share some common regulatory pathways but opiate peptides and antagonists selectively decrease or increase the density of enkephalin receptors, respectively, with no effect on alpha-adrenergic receptor density.  相似文献   

20.
Mizoguchi H  Narita M  Nagase H  Tseng LF 《Life sciences》2000,67(22):2733-2743
The activation of mu-, delta- and kappa1-opioid receptors by their respective agonists increases the binding of the non-hydrolyzable GTP analog guanosine-5'-(gamma-thio)-triphosphate (GTPgammaS) to G proteins. Beta-endorphin is an endogenous opioid peptide which binds nonselectively to mu-, delta- and putative epsilon-opioid receptors. The present experiment was designed to determine which opioid receptors are involved in the stimulation of [35S]GTPgammaS binding induced by beta-endorphin in the mouse pons/medulla. The mouse pons/medulla membranes were incubated in an assay buffer containing 50 pM [35S]GTPgammaS, 30 microM GDP and various concentrations of beta-endorphin. Beta-endorphin (0.1 nM-10 microM) increased [35S]GTPgammaS binding in a concentration-dependent manner, and 10 microM beta-endorphin produced a maximal stimulation of approximately 260% over baseline. This stimulation of [35S]GTPgammaS binding by beta-endorphin was partially attenuated by the mu-opioid receptor antagonist beta-funaltrexamine (beta-FNA), but not by the delta-opioid receptor antagonist naltrindole (NTI) or the kappa1-opioid receptor antagonist nor-binaltorphimine (nor-BNI). Beta-endorphin stimulated [35S]GTPgammaS binding by about 80% in the presence of 10 microM beta-FNA, 30 nM NTI and 100 nM nor-BNI. The same concentrations of these antagonists completely blocked the stimulation of [35S]GTPgammaS binding induced by 10 microM [D-Ala2,NHPhe4,Gly-ol]enkephalin, [D-Pen(2,5)]enkephalin and U50,488H, respectively. Moreover, the residual stimulation of [35S]GTPgammaS binding induced by beta-endorphin in the presence of the three opioid receptor antagonists was significantly attenuated by 100 nM of the putative epsilon-opioid receptor partial agonist beta-endorphin (1-27). These results indicate that the stimulation of [35S]GTPgammaS binding induced by beta-endorphin is mediated by the stimulation of both mu- and putative epsilon-opioid receptors in the mouse pons/medulla.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号