首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Tumor cyclooxygenase-2 (COX-2) expression is known to be associated with enhanced tumor invasiveness. In the present study, we evaluated the importance of the COX-2 product prostaglandin E2 (PGE2) and its signaling through the EP4 receptor in mediating non-small cell lung cancer (NSCLC) invasiveness. Genetic inhibition of tumor COX-2 led to diminished matrix metalloproteinase (MMP)-2, CD44, and EP4 receptor expression and invasion. Treatment of NSCLC cells with exogenous 16,16-dimethylprostaglandin E2 significantly increased EP4 receptor, CD44, and MMP-2 expression and matrigel invasion. In contrast, anti-PGE2 decreased EP4 receptor, CD44, and MMP-2 expression in NSCLC cells. EP4 receptor signaling was found to be central to this process, because antisense oligonucleotide-mediated inhibition of tumor cell EP4 receptors significantly decreased CD44 expression. In addition, agents that increased intracellular cAMP, as is typical of EP4 receptor signaling, markedly increased CD44 expression. Moreover, MMP-2-AS treatment decreased PGE2-mediated CD44 expression, and CD44-AS treatment decreased MMP-2 expression. Thus, PGE2-mediated effects through EP4 required the parallel induction of both CD44 and MMP-2 expression because genetic inhibition of either MMP-2 or CD44 expression effectively blocked PGE2-mediated invasion in NSCLC. These findings indicate that PGE2 regulates COX-2-dependent, CD44- and MMP-2-mediated invasion in NSCLC in an autocrine/paracrine manner via EP receptor signaling. Thus, blocking PGE2 production or activity by genetic or pharmacological interventions may prove to be beneficial in chemoprevention or treatment of NSCLC.  相似文献   

2.
The long noncoding RNAs (lncRNAs) SBF2 antisense RNA 1 (SBF2-AS1) was found to act as an oncogenic lncRNA in non–small-cell lung cancer (NSCLC), but the role of SBF2-AS1 in small-cell lung cancer (SCLC) was still unclear. The purpose of this study was to provide the clinical significance and biological function of SBF2-AS1 in SCLC. In our results, SBF2-AS1 was found to be upregulated in SCLC tissues compared with NSCLC tissues or adjacent normal lung tissues. Besides, SBF2-AS1 expression was also elevated in SCLC cell lines compared with the normal bronchial epithelial cell line or NSCLC lines. Moreover, high expression of SBF2-AS1 was associated with clinical stage, tumor size, lymph node metastasis and distant metastasis in SCLC patients. Survival analysis showed SCLC patients with high expression of SBF2-AS1 had shorter overall survival than patients with low expression of SBF2-AS1, and high expression of SBF2-AS1 acted as an independent poor prognostic factor for overall survival in SCLC patients. The study in vitro suggested inhibition of SBF2-AS1 obviously depressed cell proliferation, migration, and invasion in SCLC. In conclusion, SBF2-AS1 acts as a novel oncogenic lncRNA in SCLC.  相似文献   

3.
Long noncoding RNAs participate in carcinogenesis and tumor progression in non–small-cell lung carcinoma (NSCLC), but the mechanisms underlying NSCLC tumorigenesis remain to be fully elucidated. Here, we reported the functional role and potential mechanism of long noncoding RNA syntaxin-binding protein 5-antisense RNA 1 (STXBP5-AS1) in NSCLC. First, our data revealed that the expression levels of STXBP5-AS1 in 31 NSCLC tissues were lower than in adjacent tissues using quantitative polymerase chain reaction (qPCR) and its expression was significantly associated with tumor metastasis of NSCLC patients. Moreover, CCK-8, scratch wound healing and transwell assay suggested that upregulation of STXBP5-AS1 repressed the proliferation, migration, and invasion in A549, NCI-H292, and NCI-H460 cells. To explore the potential mechanism of STXBP5-AS1 in NSCLC, we first investigated the relationship among STXBP5-AS1, STXBP5, and AKT1 in A549 cells. Results indicated that STXBP5-AS1 was negatively related with STXBP5 and AKT1 at messenger RNA expression level using qPCR. In addition, we observed that STXBP5-AS1 had reverse effects on the protein levels of STXBP5 and phosphorylated AKT1 (p-AKT1) in A549 cells via Western blot assay, despite no significant effects on AKT1. Subsequently, LY294002, as the phosphatidylinositol 3 kinase/protein kinase B (PI3K/AKT) pathway inhibitor, was used to further confirm the regulatory mechanism of STXBP5-AS1, which showed that knockdown of STXBP5-AS1 could rescue the expression of STXBP5 and p-AKT1 protein expression levels in A549 cells. Taken together, our results suggested that STXBP5-AS1, as a tumor suppressor, inhibits cell proliferation, migration, and invasion by preventing the PI3K/AKT against STXBP5 expression in NSCLC.  相似文献   

4.
LBX2-AS1 is a long non-coding RNA that facilitates the development of gastrointestinal cancers and lung cancer, but its participation in ovarian cancer development remained uninvestigated. Clinical data retrieved from TCGA ovarian cancer database and the clinography of 60 ovarian cancer patients who received anti-cancer treatment in our facility were analysed. The overall cell growth, colony formation, migration, invasion, apoptosis and tumour formation on nude mice of ovarian cancer cells were evaluated before and after lentiviral-based LBX2-AS1 knockdown. ENCORI platform was used to explore LBX2-AS1-interacting microRNAs and target genes of the candidate microRNAs. Luciferase reporter gene assay and RNA pulldown assay were used to verify the putative miRNA-RNA interactions. Ovarian cancer tissue specimens showed significant higher LBX2-AS1 expression levels that non-cancerous counterparts. High expression level of LBX2-AS1 was significantly associated with reduced overall survival of patients. LBX2-AS1 knockdown significantly down-regulated the cell growth, colony formation, migration, invasion and tumour formation capacity of ovarian cancer cells and increased their apoptosis in vitro. LBX2-AS1 interacts with and thus inhibits the function of miR-455-5p and miR-491-5p, both of which restrained the expression of E2F2 gene in ovarian cancer cells via mRNA targeting. Transfection of miRNA inhibitors of these two miRNAs or forced expression of E2F2 counteracted the effect of LBX2-AS1 knockdown on ovarian cancer cells. LBX2-AS1 was a novel cancer-promoting lncRNA in ovarian cancer. This lncRNA increased the cell growth, survival, migration, invasion and tumour formation of ovarian cancer cells by inhibiting miR-455-5p and miR-491-5p, thus liberating the expression of E2F2 cancer-promoting gene.  相似文献   

5.
Background: MicroRNAs (miRNAs) play important roles in many biological processes, including cancer development. Among those miRNAs, miR-143 shows tumor-suppressive activity in some human cancers. However, the function and mechanism of miR-143 in lung cancer cells remains unknown. Here we explored the role of miR-143 in lung cancer. Results: According to qRT-PCR, we found that miR-143 was notably down-regulated in 19 NSCLC tissues and 5 cell lines. In vitro experiments showed us that miR-143 could significantly suppress the migration and invasion of NSCLC cell lines while it had no effects on the growth of NSCLC cell lines, and in vivo metastasis assay showed the same results. Finally, we found that the mechanism of miR-143 inhibiting the migration and invasion of NSCLC might be through targeting CD44v3. Conclusions: The up-regulated miR-143 in lung cancer could significantly inhibit cell migration and invasion, and this might work through targeting CD44v3, which was newly identified by us.  相似文献   

6.
Lung cancer is the leading cause of cancer death all over the world. The low 5-year survival rate (under 15%) has changed minimally in the last 25 years. Amongst different types of lung cancers, non-small cell lung carcinoma (NSCLC) types account 25-40%. To improve the survival of lung cancer patients, new therapeutic strategies are needed. The search for improved therapies has led to the investigation of agents that target novel pathways involved in tumor proliferation, invasion, survival and immune regulation. Cyclooxygenase-2 (COX-2) is one of the novel targets under evaluation for NSCLC therapy and chemoprevention. Although multiple genetic alterations are necessary for lung cancer invasion and metastasis, COX-2 may act as central element in orchestring these processes. COX-2 plays an important role in all aspects of tumor development and growth. It also plays a pivotal role in regulation of cytokines and immune responses in NSCLC patients. In this article, we review the experimental and clinical evidences on the possible link between COX and NSCLC.  相似文献   

7.
Long noncoding RNAs have been reported to be essential regulators in several human diseases, including tumorigenesis. A recent report revealed that FLVCR1-AS1 promotes the progression of hepatocellular carcinoma. However, whether FLVCR1-AS1 is involved in lung cancer remains unclear. In this study, we found that the expression of FLVCR1-AS1 was increased in lung cancer tissues according to The Cancer Genome Atlas database. Similarly, FLVCR1-AS1 was significantly upregulated in lung cancer cell lines. Knockdown of FLVCR1-AS1 dramatically reduced the cell proliferation, migration, and invasion of SPCA1 and A549. Mechanistically, we found that the expression levels of CTNNB1, SOX4, CCND1, CCND2, c-MYC, as well as nucleus β-catenin were decreased in lung cancer cells after FLVCR1-AS1 silencing. Thus, FLVCR1-AS1 positively regulates the activation of the Wnt/β-catenin pathway. Overexpression of CTNNB1 reversed the effect of FLVCR1-AS1 knockdown on A549 cells. In sum, FLVCR1-AS1 silencing inhibited the proliferation, migration, and invasion of lung cancer cells by inhibiting the activity of the Wnt/β-catenin signaling pathway.  相似文献   

8.
It is increasingly recognized that the tumor microenvironment plays a critical role in the initiation and progression of lung cancer. In particular interaction of cancer cells, macrophages, and inflammatory response in the tumor microenvironment has been shown to facilitate cancer cell invasion and metastasis. The specific molecular pathways in macrophages that immunoedit tumor growth are not well defined. Triggering receptor expressed on myeloid cells 1 (TREM-1) is a member of the super immunoglobulin family expressed on a select group of myeloid cells mainly monocyte/macrophages. Recent studies suggest that expression of TREM-1 in tumors may predict cancer aggressiveness and disease outcomes in liver and lung cancer however the mechanism of TREM-1 expression in the setting of cancer is not defined. In this study we demonstrate that tumor tissue from patients with non-small cell lung cancer show an increased expression of TREM-1 and PGE2. Immunohistochemistry and immunofluorescence confirmed that the expression of TREM-1 was selectively seen in CD68 positive macrophages. By employing an in vitro model we confirmed that expression of TREM-1 is increased in macrophages that are co-cultured with human lung cancer cells. Studies with COX-2 inhibitors and siCOX-2 showed that expression of TREM-1 in macrophages in tumor microenvironment is dependent on COX-2 signaling. These studies for the first time define a link between tumor COX-2 induction, PGE2 production and expression of TREM-1 in macrophages in tumor microenvironment and suggest that TREM-1 might be a novel target for tumor immunomodulation.  相似文献   

9.
The involvement of miR-204 in lung cancer development is unclear. In our study, we analyzed the expression of miR-204 in tumor- and adjacent-tissue samples from 141 patients with non-small cell lung cancer (NSCLC). MiR-204 expression was decreased in tumor samples compared with non-cancerous tissue-derived controls. Moreover, miR-204 expression negatively correlated with homeobox protein SIX1 expression, tumor size and metastasis. MiR-204 silencing in miR-204-positive NSCLC cell lines promoted cell invasion and proliferation. Concomitantly, MiR-204 overexpression resulted in reduced cell proliferation and invasion, upregulated E-cadherin and downregulated N-cadherin and Vimentin expression. SIX1 was identified as a potential target of miR-204, and SIX1 silencing partially compromised the invasive and proliferative capacity of miR-204-deficient cells. Thus, miR-204 may be involved in the NSCLC development.  相似文献   

10.
Lung cancer is frequently complicated by pulmonary infections which may impair prognosis of this disease. Therefore, we investigated the effect of bacterial lipopolysaccharides (LPS) on tumor proliferation in vitro in the non-small cell lung cancer (NSCLC) cell line A549, ex vivo in a tissue culture model using human NSCLC specimens and in vivo in the A549 adenocarcinoma mouse model. LPS induced a time- and dose-dependent increase in proliferation of A549 cells as quantified by MTS activity and cell counting. In parallel, an increased expression of the proliferation marker Ki-67 and cyclooxygenase (COX)-2 was detected both in A549 cells and in ex vivo human NSCLC tissue. Large amounts of COX-2-derived prostaglandin (PG)E2 were secreted from LPS-stimulated A549 cells. Pharmacological interventions revealed that the proliferative effect of LPS was dependent on CD14 and Toll-like receptor (TLR)4. Moreover, blocking of the epidermal growth factor receptor (EGFR) also decreased LPS-induced proliferation of A549 cells. Inhibition of COX-2 activity in A549 cells severely attenuated both PGE2 release and proliferation in response to LPS. Synthesis of PGE2 was also reduced by inhibiting CD14, TLR4 and EGFR in A549 cells. The proliferative effect of LPS on A549 cells could be reproduced in the A549 adenocarcinoma mouse model with enhancement of tumor growth and Ki-67 expression in implanted tumors. In summary, LPS induces proliferation of NSCLC cells in vitro, ex vivo in human NSCLC specimen and in vivo in a mouse model of NSCLC. Pulmonary infection may thus directly induce tumor progression in NSCLC.  相似文献   

11.
Background

ZNF674-AS1, a recently characterized long noncoding RNA, shows prognostic significance in hepatocellular carcinoma and glioma. However, the expression and function of ZNF674-AS1 in non-small cell lung cancer (NSCLC) are unclear.

Methods

In this work, we investigated the expression of ZNF674-AS1 in 83 pairs of NSCLC specimens and adjacent noncancerous lung tissues. The clinical significance of ZNF674-AS1 in NSCLC was analyzed. The role of ZNF674-AS1 in NSCLC growth and cell cycle progression was explored.

Results

Our data show that ZNF674-AS1 expression is decreased in NSCLC compared to normal tissues. ZNF674-AS1 downregulation is significantly correlated with advanced TNM stage and decreased overall survival of NSCLC patients. Overexpression of ZNF674-AS1 inhibits NSCLC cell proliferation, colony formation, and tumorigenesis, which is accompanied by a G0/G1 cell cycle arrest. Conversely, knockdown of ZNF674-AS1 enhances the proliferation and colony formation of NSCLC cells. Biochemically, ZNF674-AS1 overexpression increases the expression of p21 through downregulation of miR-423-3p. Knockdown of p21 or overexpression of miR-423-3p blocks ZNF674-AS1-mediated growth suppression and G0/G1 cell cycle arrest. In addition, ZNF674-AS1 expression is negatively correlated with miR-423-3p in NSCLC specimens.

Conclusions

ZNF674-AS1 suppresses NSCLC growth by downregulating miR-423-3p and inducing p21. This work suggests the therapeutic potential of ZNF674-AS1 in the treatment of NSCLC.

  相似文献   

12.
BACKGROUND: Cyclooxygenase-2 (COX-2) over-expression and subsequent prostaglandin E2 (PGE2) production are frequently associated with human non-small-cell lung cancer (NSCLC) and are involved in tumor proliferation, invasion, angiogenesis, and resistance to apoptosis. Here, we report that ciglitazone downregulates PGE2 in NSCLC cells. METHODS: PGE2 ELISA assay and COX-2 ELISA assay were performed for measuring PGE2 and COX-2, respectively, in NSCLC. The mRNA level of COX-2 was measured by semi-quantitative RT-PCR. The transient transfection experiments were performed to measure COX-2 and peroxisome proliferator-response element (PPRE) promoter activity in NSCLC. Western blots were unitized to measure PGE synthase (PGES) and 15-hydroxyprostaglandin dehydrogenase (15-PGDH) protein expression. RESULTS: COX-2 ELISA assays suggested that ciglitazone-dependent inhibition of PGE2 occurs through the suppression of COX-2. Ciglitazone treatment suppressed COX-2 mRNA expression and COX-2 promoter activity while upregulating PPRE promoter activity. Ciglitazone did not modify the expression of enzymes downstream of COX-2 including PGES and 15-PGDH. Utilization of a dominant-negative PPARgamma showed that the suppression of COX-2 and PGE2 by ciglitazone is mediated via non-PPAR pathways. CONCLUSION: Taken together, our findings suggest that ciglitazone is a negative modulator of COX-2/PGE2 in NSCLC.  相似文献   

13.
目的研究lncRNA MAGI2-AS3对肺癌A549细胞增殖、迁移、侵袭和凋亡的影响和潜在的分子机制。方法根据转染载体不同将A549细胞分为pcDNA3.1组(转染pcDNA3.1)、pcDNA3.1-MAGI2-AS3组(转染pcDNA3.1-MAGI2-AS3)、anti-miR-NC组(转染anti-miR-NC)、anti-miR-31-5p组(转染anti-miR-31-5p)、pcDNA3.1-MAGI2-AS3+miR-NC组(共转染pcDNA3.1-MAGI2-AS3和miR-NC)、pcDNA3.1-MAGI2-AS3+miR-31-5p组(共转染pcDNA3.1-MAGI2-AS3和miR-31-5p mimics)。实时荧光定量PCR(qRT-PCR)检测miR-31-5p和MAGI2-AS3 RNA的表达,四氮唑蓝(MTT)法测定A549细胞增殖活性,Transwell实验检测细胞迁移和侵袭能力,双荧光素酶报告系统验证MAGI2-AS3与miR-31-5p的调控关系,流式细胞术检测细胞凋亡与周期。两组间比较采用独立样本t检验进行分析;多组间比较采用单因素方差分析,组内多重比较采用SNK-q检验。结果与人正常肺细胞HBE相比,肺癌细胞A549中的MAGI2-AS3表达量(0.48±0.03比1.29±0.06)降低,miR-31-5p表达量(1.01±0.05比0.25±0.02)升高;与pcDNA3.1组比较,pcDNA3.1-MAGI2-AS3组A549细胞活力(0.48±0.04比0.77±0.06)、迁移[(81.33±2.87)个比(124.33±3.09)个]和侵袭[(32.00±2.83)个比(53.00±3.27)个]细胞数、S期细胞所占比例(23.01﹪±1.00﹪比32.95﹪±1.06﹪)均降低,凋亡率(19.95﹪±1.25﹪比7.23﹪±0.51﹪)、G0-G1期细胞所占比例(43.58﹪±2.15﹪比33.56﹪±1.23﹪)均升高;与anti-miR-NC组比较,anti-miR-31-5p组A549细胞活力(0.53±0.04比0.78±0.06)、迁移[(76.00±3.74)个比(108.33±2.87)个]和侵袭[(30.00±1.63)个比(42.33±2.05)个]细胞数、S期细胞所占比例(24.43﹪±1.13﹪比32.91﹪±1.08﹪)降低,凋亡率(18.21﹪±1.24﹪比7.29﹪±0.51﹪)、G0-G1期细胞所占比例(41.56﹪±2.19﹪比33.53﹪±1.27﹪)升高,差异有统计学意义(P均<0.05);双荧光素酶报告系统结果显示,MAGI2-AS3靶向负调控miR-31-5p的表达。与pcDNA3.1-MAGI2-AS3+miR-NC组比较,pcDNA3.1-MAGI2-AS3+miR-31-5p组A549细胞活力(0.68±0.06比0.50±0.04)、迁移[(91.00±1.63)个比(52.67±2.62)个]和侵袭[(62.67±2.49)个比(31.67±4.03个)]细胞数升高,凋亡率(10.59﹪±1.0﹪比21.11﹪±1.14﹪)降低,差异有统计学意义(P均<0.05)。结论lncRNA MAGI2-AS3通过靶向miR-31-5p抑制A549细胞的增殖、迁移和侵袭,促进细胞凋亡。lncRNA MAGI2-AS3是肺癌潜在分子治疗靶点。  相似文献   

14.
15.
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related mortality. Curcumin is involved in various biological pathways leading to inhibition of NSCLC growth. The purpose of this study was to evaluate the effect of curcumin on expression of nuclear factor κB-related proteins in vitro and in vivo and on growth and metastasis in an intralung tumor mouse model.H1975 NSCLC cells were treated with curcumin (0–50 μM) alone, or combined with gemcitabine or cisplatin. The effects of curcumin were evaluated in cell cultures and in vivo, using ectopic and orthotopic lung tumor mouse models. Twenty mice were randomly selected into two equal groups, one that received AIN-076 control diet and one that received the same food but with the addition of 0.6% curcumin 14 days prior to cell implantation and until the end of the experiment. To generate orthotopic tumor, lung cancer cells in Matrigel were injected percutaneously into the left lung of CD-1 nude mice. Western blot analysis showed that the expressions of IkB, nuclear p65, cyclooxygenase 2 (COX-2) and p-ERK1/2 were down-regulated by curcumin in vitro. Curcumin potentiated the gemcitabine- or cisplatin-mediated antitumor effects. Curcumin reduced COX-2 expression in subcutaneous tumors in vivo and caused a 36% decrease in weight of intralung tumors (P=.048) accompanied by a significant survival rate increase (hazard ratio=2.728, P=.036). Curcumin inhibition of COX-2, p65 expression and ERK1/2 activity in NSCLC cells was associated with decreased survival and increased induction of apoptosis. Curcumin significantly reduced tumor growth of orthotopic human NSCLC xenografts and increased survival of treated athymic mice. To evaluate the role of curcumin in chemoprevention and treatment of NSCLC, further clinical trials are required.  相似文献   

16.
In previous studies, we demonstrated an immune suppressive network in non-small cell lung cancer that is due to overexpression of tumor cyclooxygenase 2 (COX-2). In this study, we assessed the vaccination response to tumor challenge following either pharmacological or genetic inhibition of COX-2 in a murine lung cancer model. Treatment of naive mice with the COX-2 inhibitor, SC-58236, skewed splenocytes toward a type 1 cytokine response, inducing IFN-gamma, IL-12, and IFN-gamma-inducible protein 10, whereas the type 2 cytokines IL-4, IL-5, and IL-10 remained unaltered. Fifty percent of mice receiving SC-58236 and an irradiated tumor cell vaccine completely rejected tumors upon challenge. Those mice that did form tumors following challenge demonstrated a reduced tumor growth. In contrast, all mice either vaccinated with irradiated tumor cells alone or receiving SC-58236 alone showed progressive tumor growth. Studies performed in CD4 and CD8 knockout mice revealed a requirement for the CD4 T lymphocyte subset for the complete rejection of tumors. To determine the role of host COX-2 expression on the vaccination responses, studies were performed in COX-2 gene knockout mice. Compared with control littermates, COX-2(-/-) mice showed a significant tumor growth reduction, whereas heterozygous COX-2(-/+) mice had an intermediate tumor growth reduction following vaccination. In vivo depletion of IFN-gamma abrogated the COX-2 inhibitor-mediated enhancement of the vaccination effect. These findings provide a strong rationale for additional evaluation of the capacity of COX-2 inhibitors to enhance vaccination responses against cancer.  相似文献   

17.
Some studies have showed that long non-coding RNA (lncRNA) HOXA10-AS acts as an oncogene and regulates the invasion and metastasis of tumor cells. However, its mechanism in the invasion and migration of hepatocellular carcinoma (HCC) cells is unclear. The purpose of this study was to analyze the expression of HOXA10-AS in HCC tissues and its clinical significance, detect the influence of HOXA10-AS on the invasion and migration of HCC cells, and explore the mechanism of HOXA10-AS in promoting the invasion and migration of HCC cells. The results of quantitative real-time PCR (qRT-PCR) showed that the expression of HOXA10-AS was significantly upregulated in HCC tissues compared with the adjacent non-HCC tissues. Age and gender did not show significant correlation with HOXA10-AS expression, while tumor size, lymphatic metastasis and distant metastasis showed significant correlation with HOXA10-AS expression. Meanwhile, the expression of HOXA10-AS in HCC cells was higher than that in normal liver cells. After interfering with HOXA10-AS in HCC cell lines HepG2 and QGY7701, Transwell invasion and scratch experiments showed that the invasion and migration ability of HOXA10-AS cells in the HOXA10-AS group was significantly lower than that in the control group. Western blotting results showed that the expression levels of vimentin and N-cadherin were significantly lower than those of the control group, while the E-cadherin expression was significantly increased. The TGFβ1/Smads signaling pathway was inhibited after HOXA10-AS interference. In summary, HOXA10-AS promotes the invasion and migration of HCC cells by the TGFβ1/Smads signaling pathway.  相似文献   

18.
目的:探讨阿霉素对口腔鳞癌干细胞迁移、侵袭、凋亡的影响及其可能的机制。方法:体外培养人口腔鳞癌细胞系SCC25,通过流式细胞术分选CD44-和CD44+细胞,RT-PCR检测CD44-和CD44+细胞的Oct4、CD133、CD44和GAPDH的m RNA表达;检测和比较CD44-和CD44+细胞的克隆形成能力。CD44+细胞用阿霉素或β-catenin抑制剂LF3进行处理,分别使用Transwell和细胞划痕检测细胞侵袭和迁移能力,一步法TUNEL检测细胞凋亡水平,WB检测β-catenin和TCF-4的蛋白表达。结果:流式细胞术成功分离CD44-和CD44+细胞,RT-PCR检测CD44+细胞高表达Oct4、CD133和CD44 m RNA,CD44-细胞弱表达Oct4m RNA,不表达CD133和CD44 m RNA;CD44+细胞的克隆形成能力显示显著强于CD44-细胞(P<0.05)。阿霉素显著降低了CD44+细胞的侵袭能力和迁移能力(P<0.05),显著提高了CD44+细胞的凋亡率(P<0.05);阿霉素显著降低了CD44+细胞β-catenin和TCF-4的蛋白表达(P<0.05),LF3对β-catenin和TCF-4蛋白表达的影响与阿霉素比较无显著差异(P>0.05)。结论:阿霉素可能通过抑制Wnt/β-catenin信号通路降低口腔鳞癌干细胞迁移、侵袭能力,促进细胞凋亡。  相似文献   

19.
20.
Although epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) gefitinib has exhibited notable clinical efficacy in non-small cell lung cancer (NSCLC) patients. However, its therapeutic efficacy is ultimately limited by the development of gefitinib resistance. The present study aimed to investigate the effects of the long non-coding RNA, RHPN1-AS1 on gefitinib resistance in NSCLC and explore the underlying mechanisms. In this study, RHPN1-AS1 was observed to be downregulated in gefitinib resistant patients and NSCLC cell lines. Besides, decreased expression of RHPN1-AS1 was found to be associated with poor prognosis of NSCLC patients. RHPN1-AS1 knockdown conferred gefitinib resistance to gefitinib sensitive NSCLC cells, whereas the overexpression of RHPN1-AS1 sensitized gefitinib resistant NSCLC cells to gefitinib treatment. Mechanistically, RHPN1-AS1 was found to positively regulate the expression of TNFSF12 by directly interacting with miR-299-3p. Collectively, RHPN1-AS1 modulates gefitinib resistance through miR-299-3p/TNFSF12 pathway in NSCLC. Our findings indicate that RHPN1-AS1 may serve as not only a prognostic biomarker for gefitinib resistance but also as a promising therapeutic biomarker and target for the treatment of NSCLC patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号