首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Successful cryopreservation of articular cartilage (AC) could improve clinical results of osteochondral allografting and provide a useful treatment alternative for large cartilage defects. However, successful cartilage cryopreservation is limited by the time required for cryoprotective agent (CPA) permeation into the matrix and high CPA toxicity. This study describes a novel, practical method to examine the time-dependent permeation of CPAs [dimethyl sulfoxide (DMSO) and propylene glycol (PG)] into intact porcine AC. Dowels of porcine AC (10 mm diameter) were immersed in solutions containing high concentrations of each CPA for different times (0, 15, 30, 60 min, 3, 6, and 24 h) at three temperatures (4, 22, and 37 degrees C), with and without cartilage attachment to bone. The cartilage was isolated and the amount of cryoprotective agent within the matrix was determined. The results demonstrated a sharp rise in the CPA concentration within 15-30 min exposure to DMSO and PG. The concentration plateaued between 3 and 6 h of exposure at a concentration approximately 88-99% of the external concentration (6.8 M). This observation was temperature-dependent with slower permeation at lower temperatures. This study demonstrated the effectiveness of a novel technique to measure CPA permeation into intact AC, and describes permeation kinetics of two common CPAs into intact porcine AC.  相似文献   

2.
Inactivation of the perlecan gene leads to perinatal lethal chondrodysplasia. The similarity to the phenotypes of the Col2A1 knock-out and the disproportionate micromelia mutation suggests perlecan involvement in cartilage collagen matrix assembly. We now present a mechanism for the defect in collagen type II fibril assembly by perlecan-null chondrocytes. Cartilage perlecan is a heparin sulfate or a mixed heparan sulfate/chondroitin sulfate proteoglycan. The latter form binds collagen and accelerates fibril formation in vitro, with more defined fibril morphology and increased fibril diameters produced in the presence of perlecan. Interestingly, the enhancement of collagen fibril formation is independent on the core protein and is mimicked by chondroitin sulfate E but neither by chondroitin sulfate D nor dextran sulfate. Furthermore, perlecan chondroitin sulfate contains the 4,6-disulfated disaccharides typical for chondroitin sulfate E. Indeed, purified glycosaminoglycans from perlecan-enriched fractions of cartilage extracts contain elevated levels of 4,6-disulfated chondroitin sulfate disaccharides and enhance collagen fibril formation. The effect on collagen assembly is proportional to the content of the 4,6-disulfated disaccharide in the different cartilage extracts, with growth plate cartilage glycosaminoglycan being the most efficient enhancer. These findings demonstrate a role for perlecan chondroitin sulfate side chains in cartilage extracellular matrix assembly and provide an explanation for the perlecan-null chondrodysplasia.  相似文献   

3.
Articular cartilage (hyaline cartilage) defects resulting from traumatic injury or degenerative joint disease do not repair themselves spontaneously. Therefore, such defects may require novel regenerative strategies to restore biologically and biomechanically functional tissue. Recently, tissue engineering using a complex of cells and scaffold has emerged as a new approach for repairing cartilage defects and restoring cartilage function. With the advent of this new technology, accurate methods for evaluating articular cartilage have become important. In particular, in vivo evaluation is essential for determining the best treatment. However, without a biopsy, which causes damage, articular cartilage cannot be accurately evaluated in a clinical context. We have developed a novel system for evaluating articular cartilage, in which the acoustic properties of the cartilage are measured by introducing an ultrasonic probe during arthroscopy of the knee joint. The purpose of the current study was to determine the efficacy of this ultrasound system for evaluating tissue-engineered cartilage in an experimental model involving implantation of a cell/scaffold complex into rabbit knee joint defects. Ultrasonic echoes from the articular cartilage were converted into a wavelet map by wavelet transformation. On the wavelet map, the percentage maximum magnitude (the maximum magnitude of the measurement area of the operated knee divided by that of the intact cartilage of the opposite, nonoperated knee; %MM) was used as a quantitative index of cartilage regeneration. Using this index, the tissue-engineered cartilage was examined to elucidate the relations between ultrasonic analysis and biochemical and histological analyses. The %MM increased over the time course of the implant and all the hyaline-like cartilage samples from the histological findings had a high %MM. Correlations were observed between the %MM and the semiquantitative histologic grading scale scores from the histological findings. In the biochemical findings, the chondroitin sulfate content increased over the time course of the implant, whereas the hydroxyproline content remained constant. The chondroitin sulfate content showed a similarity to the results of the %MM values. Ultrasonic measurements were found to predict the regeneration process of the tissue-engineered cartilage as a minimally invasive method. Therefore, ultrasonic evaluation using a wavelet map can support the evaluation of tissue-engineered cartilage using cell/scaffold complexes.  相似文献   

4.
Mechanical properties of human tracheal cartilage.   总被引:3,自引:0,他引:3  
Biomechanical changes in airway cartilage could influence the mechanics of maximal expiratory flow and cough and the degree of shortening of activated airway smooth muscle. We examined the tensile stiffness of small samples of human tracheal cartilage rings in specimens obtained at autopsy from 10 individuals who ranged in age from 17 to 81 yr. The tensile properties of the cartilage were compared with its content of water (%water), glycosaminoglycans (chondroitin sulfate equivalents, mg/mg dry wt), and hydroxyproline content (mg hydroxyproline/mg dry weight). The average values for tensile stiffness ranged between 1 and 15 MPa and increased significantly with increasing age [tensile stiffness = 0.19 x (age in yr) + 2.02; r = 0.83, P less than 0.05]. The outermost layer of cartilage was the most stiff in all individuals, and the deeper layers were progressively less stiff. Water content and hydroxyproline content both decreased with increasing age. Thus tensile stiffness correlated inversely with water content and hydroxyproline content [tensile stiffness = -0.83 x (%water) + 16.4; r = 0.82, P less than .05 and tensile stiffness = -342 x (hydroxyproline content) + 25; r = 0.87, P less than 0.05]. Total tissue content of glycosaminoglycans did not change with age, although changes in glycosaminoglycan type and proteoglycan structure with increasing age have been described. We conclude that there are age-related changes in the biomechanical properties and biochemical composition of airway cartilage that could influence airway dynamics.  相似文献   

5.
Long-Evans rats were exposed to a single dose of head X-irradiation (600 rads) at 2 days of age. Experimental and sham irradiated rats were sacrificed at 14, 20-21, 23, 41-45, and 70-71 days. Tibial epiphyseal width and the number of cells in the epiphyseal plate were determined. Histochemical and electron microscopic studies were carried out on both costal and epiphyseal cartilage. Histochemical techniques revealed a reduction in chondroitin sulfate at 14 days in both costal and epiphyseal cartilage of X-irradiated rats. Epiphyseal cartilage demonstrated recovery subsequently, and this was followed by a normal decrease of chondroitin sulfate with increasing age, but costal cartilage did not recover. Collagen synthesis was also reduced in both costal and epiphyseal cartilage, but not as dramatically as chondroitin sulfate. Except for some electron dense cells and reduced scalloping of the cell membrane, costal chondrocytes from irradiated rats did not show major ultrastructural alterations. In contrast, epiphyseal chondrocytes demonstrated radiation induced alterations in organelles, in enhanced glycogen deposition, and in retardation of chondrocyte maturation. Extracellularly in both costal and epiphyseal cartilage of irradiated rats, collagen density and matrix granules were reduced, while calcification of the matrix was enhanced. Beyond 45 days, the effects of irradiation were markedly reduced. Comparisons of the histochemical results with metabolic studies carried out previously in cartilage from the same animals indicated a more direct concordance of the histochemical results with the pattern of physical growth and supported the usefulness of morphologic and histochemical techniques in the analysis of the growth disorder in the head-irradiated rat.  相似文献   

6.
Changes in the composition of the extracellular matrix (ECM) are characteristic of injury or disease in cartilage tissue. Various imaging modalities and biochemical techniques have been used to assess the changes in cartilage tissue but lack adequate sensitivity, or in the case of biochemical techniques, result in destruction of the sample. Fourier transform near infrared (FT-NIR) spectroscopy has shown promise for the study of cartilage composition. In the current study NIR spectroscopy was used to identify the contributions of individual components of cartilage in the NIR spectra by assessment of the major cartilage components, collagen and chondroitin sulfate, in pure component mixtures. The NIR spectra were obtained using homogenous pellets made by dilution with potassium bromide. A partial least squares (PLS) model was calculated to predict composition in bovine cartilage samples. Characteristic absorbance peaks between 4000 and 5000 cm−1 could be attributed to components of cartilage, i.e. collagen and chondroitin sulfate. Prediction of the amount of collagen and chondroitin sulfate in tissues was possible within 8% (w/dw) of values obtained by gold standard biochemical assessment. These results support the use of NIR spectroscopy for in vitro and in vivo applications to assess matrix composition of cartilage tissues, especially when tissue destruction should be avoided.  相似文献   

7.
This study aimed to optimise methods of cryopreserving human articular cartilage (AC) tissue for the isolation of late chondrocytes. Human AC specimens from osteoarthritis patients who had undergone total knee replacement were used to optimise the chondrocyte isolation process and the choice of cryoprotective agent (CPA). For AC tissue cryopreservation, intact cored cartilage discs (5 mm diameter) and diced cartilage (0.2–1 mm cubes) from the same sized discs were step cooled and stored in liquid nitrogen for up to 48 h before chondrocyte isolation and in vitro assay of cell viability and proliferative potential. The results showed that 10 % dimethyl sulphoxide in 90 % foetal bovine serum was a successful CPA for chondrocyte cryopreservation. Compared with intact cored discs, dicing of AC tissue into 0.2–1 mm cubes significantly increased the viability and proliferative capacity of surviving chondrocytes after cryopreservation. In situ cross-section imaging using focused ion beam microscopy revealed that dicing of cored AC discs into small cubes reduced the cryo-damage to cartilage tissue matrix. In conclusion, modification of appropriate factors, such as the size of the tissue, cryoprotective agent, and isolation protocol, can allow successful isolation of viable chondrocytes with high proliferative capacity from cryopreserved human articular cartilage tissue. Further studies are required to determine whether these cells may retain cartilage differentiation capacity and provide sufficient chondrocytes for use as implants in clinical applications.  相似文献   

8.

Background

Currently available methods for contrast agent-based magnetic resonance imaging (MRI) and computed tomography (CT) of articular cartilage can only detect cartilage degradation after biochemical changes have occurred within the tissue volume. Differential adsorption of solutes to damaged and intact surfaces of cartilage may be used as a potential mechanism for detection of injuries before biochemical changes in the tissue volume occur.

Methods

Adsorption of four fluorescent macromolecules to surfaces of injured and sliced cartilage explants was studied. Solutes included native dextran, dextrans modified with aldehyde groups or a chondroitin sulfate (CS)-binding peptide and the peptide alone.

Results

Adsorption of solutes to fissures was significantly less than to intact surfaces of injured and sliced explants. Moreover, solute adsorption at intact surfaces of injured and sliced explants was less reversible than at surfaces of uninjured explants. Modification of dextrans with aldehyde or the peptide enhanced adsorption with the same level of differential adsorption to cracked and intact surfaces. However, aldehyde–dextran exhibited irreversible adsorption. Equilibration of explants in solutes did not decrease the viability of chondrocytes.

Conclusions and general significance

Studied solutes showed promising potential for detection of surface injuries based on differential interactions with cracked and intact surfaces. Additionally, altered adsorption properties at surfaces of damaged cartilage which visually look healthy can be used to detect micro-damage or biochemical changes in these regions. Studied solutes can be used in in vivo fluorescence imaging methods or conjugated with MRI or CT contrast agents to develop functional imaging agents.  相似文献   

9.
Proteoglycans (PGs) are closely associated with cartilage calcification. We have examined the hypertrophic zone of rat epiphyseal cartilage, in which calcification is occurring, using the high-iron diamine-thiocarbohydrazide-silver proteinate (HID-TCH-SP) method for sulfated glycosaminoglycans, an immunoferritin method specific for chondroitin sulfate A, and the tannic acid-ferric chloride (TA-Fe) method to stain cartilage matrix granules (MGs) presumed to be PG monomers. HID-TCH-SP produced stain deposits with a diameter of 11.2 +/- 3.2 nm (mean +/- SD; n = 200) in the MGs. However, HID-TCH-SP staining was not discernible in membrane-limited matrix vesicles (MVs). In areas of advanced calcification, partially disrupted MVs and globular bodies (GBs), derived in part from disrupted and/or degenerated MVs, contained a few too many small HID-TCH-SP stain deposits. Further down the epiphyseal cartilage, intact MVs markedly decreased and the GBs, containing many small HID-TCH-SP stain deposits, significantly increased in number. These GBs were found exclusively in the longitudinal septa rather than in the transverse septa. After enzyme digestion with testicular hyaluronidase, small (7.2 +/- 1.2 nm in diameter) stain deposits remained in the MGs and GBs, presumably localized to keratan sulfate. Immunoferritin localizing chondroitin sulfate strongly stained MGs, whereas MVs and GBs lacked staining. TA-Fe staining of glycoconjugates in the GBs demonstrated a striking decrease in the diameter of MGs associated with calcification in the GBs as compared with those in the noncalcifying area around the GBs. These results indicate that the GBs containing needle-like apatite crystals in morphologic preparations represent sites of chondroitin sulfate degradation. Testicular hyaluronidase-resistant sulfated glycosaminoglycans presumed to be keratan sulfate and partially degraded PGs selectively remain within the GBs as a probable requisite for expansion of the initial calcification in MVs.  相似文献   

10.
Articular cartilage is a highly specialized smooth connective tissue whose proper functioning depends on the maintenance of an extracellular matrix consisting of an integrated assembly of collagens, glycoproteins, proteoglycans (PG), and glycosaminoglycans. Isomeric chondroitin sulfate glycoforms differing in position and degree of sulfation and uronic acid epimerization play specific and distinct functional roles during development and disease onset. This work introduces a novel glycosaminoglycan extraction method for the quantification of mixtures of chondroitin sulfate oligosaccharides from intact cartilage tissue for mass spectral analysis. Glycosaminoglycans were extracted from intact cartilage samples using a combination of ethanol precipitation and enzymatic release followed by reversed-phase and strong anion exchange solid-phase extraction steps. Extracted chondroitin sulfate glycosaminoglycans were partially depolymerized using chondroitinases, labeled with 2-anthranilic acid-d(4) (2-AA) and subjected to size exclusion chromatography with online electrospray ionization mass spectrometric detection in the negative ion mode. The method presented herein enabled simultaneous determination of sulfate position and uronic acid epimerization in juvenile bovine and adult human cartilage samples. The method was applied to a series of 13 adult human cartilage explants. Standard deviation of the mean for the measurements was 1.6 on average. Coefficients of variation were approximately 4% for all compositions of 40% or greater. These results show that the new method has sufficient accuracy to allow determination of topographical distribution of glycoforms in connective tissue.  相似文献   

11.
Immunolocation analysis of glycosaminoglycans in the human growth plate.   总被引:4,自引:0,他引:4  
Monoclonal antibodies were used in this study to immunolocate glycosaminoglycans throughout the human growth plate. Chondroitin-4-sulfate, chondroitin-6-sulfate, and keratan sulfate were observed in the extracellular matrix of all zones of the growth plate and persisted into the cartilage trabeculae of newly formed metaphyseal bone. Also present in the extracellular matrix was an oversulfated chondroitin/dermatan sulfate glycosaminoglycan which appeared to be specific to the proliferative and hypertrophic zones of the growth plate. As with the other extracellular matrix molecules, this epitope persisted into the cartilage trabeculae of the metaphyseal bone. Zonal differences between the extracellular and pericellular or lacunae matrix were also observed. The hypertrophic chondrocytes appeared to synthesize chondroitin sulfate chains containing a non-reducing terminal 6-sulfated disaccharide, which were located in areas immediately adjacent to the cells. This epitope was not found to any significant extent in the other zones. The pericellular region around hypertrophic chondrocytes also contained a keratan sulfate epitope which was also observed in the resting zone but not in the proliferative zone. These cell-associated glycosaminoglycans were not found in the cartilage trabeculae of metaphyseal bone, indicating their removal as the terminal hypertrophic chondrocytes and their lacunae are removed by invading blood vessels. These changes in matrix glycosaminoglycan content, both in the different zones and within zones, indicate constant subtle alterations in chondrocyte metabolic products as they proceed through their life cycle of proliferation, maturation, and hypertrophy.  相似文献   

12.
Glycosaminoglycans (GAG) were isolated from bovine retinal microvessel basement membrane (RMV-BM) and quantitatively analyzed using a recently described competitive binding assay that is specific for and sensitive to nanogram amounts of heparan and chondroitin sulfates. Treatment of osmotically lysed retinal microvessels with the ionic detergent deoxycholate (DOC), required for liberation of the extracellular matrix for plasma membrane lipoproteins and purification of the insoluble matrix, solubilized less than 5% of the GAG in the water-insoluble material. Total GAG content in the DOC-insoluble basement membranes was approx. 0.52 micrograms/mg dry weight; about 70% of the measurable GAG was resistant to both chondroitinase ABC and chondroitinase AC digestion and was sensitive to nitrous acid treatment, indicating its heparan sulfate nature. Cellulose acetate electrophoresis revealed two bands, one of which had an electrophoretic mobility similar to heparan sulfate standard and was sensitive to nitrous acid; the other migrated in the same position as chondroitin sulfate standard and was sensitive to chondroitinase ABC and chondroitinase AC digestion. These results provide evidence that RMV-BM contains chondroitin sulfate(s) as well as heparan sulfate, and offer the first quantitative analysis of GAG in this extracellular matrix.  相似文献   

13.
Studies have been initiated to identify various cell surface and matrix components of normal human skin through the production and characterization of murine monoclonal antibodies. One such antibody, termed PG-4, identifies both cell surface and matrix antigens in extracts of human foetal and adult skin as the dermatan sulfate proteoglycans, decorin and biglycan, and the chondroitin sulfate proteoglycan versican. Treatment of proteoglycans with chondroitinases completely abolishes immunoreactivity for all of these antigens which suggests that the epitope resides within their glycosaminoglycan chains. Further evidence for the carbohydrate nature of the epitope derives from competition studies where protein-free chondroitin sulfate chains from shark cartilage react strongly; however, chondroitin sulfate chains from bovine tracheal cartilage fail to exhibit a significant reactivity, an indication that the epitope, although present in some chondroitin sulfate chains, does not consist of random chondroitin 4- or 6-sulfate disaccharides. The presence of the epitope on dermatan sulfate chains and on decorin was also demonstrated using competition assays. Thus, PG-4 belongs to a class of antibodies that recognize native epitopes located within glycosaminoglycan chains. It differs from previously described antibodies in this class in that it identifies both chondroitin sulfate and dermatan sulfate proteoglycans. These characteristics make PG-4 a useful monoclonal antibody probe to identify the total population of proteoglycans in human skin.  相似文献   

14.
The proximal growth plate cartilage of rat tibia was fixed in the presence of ruthenium hexamine trichloride (RHT) in order to preserve proteoglycans in the tissue. Quantitative changes of chondroitin sulfates during endochondral calcification were investigated by immunoelectron microscopy using mouse monoclonal antibodies 1-B-5, 2-B-6, and 3-B-3, which recognize unsulfated, 4-sulfated, and 6-sulfated chondroitin sulfates, respectively. The content of chondroitin-4-sulfate in the cartilage matrix increased from the proliferative zone to the calcifying zone, while that of unsulfated chondroitin sulfate decreased. Chondroitin-6-sulfate remained constant from the proliferative zone to the upper hypertrophic zone, then decreased in the calcifying zone. The immunoreaction to each antibody increased conspicuously in the cartilagenous core of metaphysial bone trabeculae. The changes of sulfation in chondroitin sulfate chains of proteoglycans may play an important role in inducing and/or promoting calcification in growth plate cartilage.  相似文献   

15.
High concentrations of cryoprotective agents (CPA) are required during articular cartilage cryopreservation but these CPAs can be toxic to chondrocytes. Reactive oxygen species have been linked to cell death due to oxidative stress. Addition of antioxidants has shown beneficial effects on chondrocyte survival and functions after cryopreservation. The objectives of this study were to investigate (1) oxidative stress experienced by chondrocytes and (2) the effect of antioxidants on cellular reactive oxygen species production during articular cartilage exposure to high concentrations of CPAs. Porcine cartilage dowels were exposed to a multi-CPA solution supplemented with either 0.1 mg/mL chondroitin sulfate or 2000 μM ascorbic acid, at 4 °C for 180 min (N = 7). Reactive oxygen species production was measured with 5 μM dihydroethidium, a fluorescent probe that targets reactive oxygen species. The cell viability was quantified with a dual cell membrane integrity stain containing 6.25 μM Syto 13 + 9 μM propidium iodide using confocal microscopy. Supplementation of CPA solutions with chondroitin sulfate or ascorbic acid resulted in significantly lower dihydroethidium counts (p < 0.01), and a lower decrease in the percentage of viable cells (p < 0.01) compared to the CPA-treated group without additives. These results indicated that reactive oxygen species production is induced when articular cartilage is exposed to high CPA concentrations, and correlated with the amount of dead cells. Both chondroitin sulfate and ascorbic acid treatments significantly reduced reactive oxygen species production and improved chondrocyte viability when articular cartilage was exposed to high concentrations of CPAs.  相似文献   

16.
The structures of chondroitin sulfate A from whale cartilage and chondroitin sulfate C from shark cartilage have been examined with the aid of the chondroitinases AC and C from Flavobacterium heparinum. The analyses of the products formed from the chondroitin sulfates by the action of the chondroitinases have shown that three types of oligosaccharides compose the structure of chondroitin sulfate A, namely, a dodeca-, hexa- and a tetra-saccharide, containing five, two and one 4-sulfated disaccharides per 6-sulfated disaccharide residue, respectively. The polymer contains an average of 3 mol of each oligosaccharide per mol of chondroitin sulfate A. Each mol of chondroitin sulfate C contains an average of 5 mol of 4-sulfated disaccharide units. A tetra-saccharide containing one 4-sulfated disaccharide and one 6-sulfated disaccharide was isolated from this mucopolysaccharide by the action of the chondroitinase C, indicating that the 4-sulfated disaccharides are not linked together in one specific region but spaced in the molecule.  相似文献   

17.
Two novel chondroitinases, chondroitin ABC lyase (EC 4.2.2.4) and chondroitin AC lyase (EC 4.2.2.5), have been purified from Bacteroides stercoris HJ-15, which was isolated from human intestinal bacteria with glycosaminoglycan degrading enzymes. Chondroitin ABC lyase was purified to apparent homogeneity by a combination of QAE-cellulose, CM-Sephadex C-50, hydroxyapatite and Sephacryl S-300 column chromatography with a final specific activity of 45.7 micromol.min-1.mg-1. Chondroitin AC lyase was purified to apparent homogeneity by a combination of QAE-cellulose, CM-Sephadex C-50, hydroxyapatite and phosphocellulose column chromatography with a final specific activity of 57.03 micromol.min-1.mg-1. Chondroitin ABC lyase is a single subunit of 116 kDa by SDS/PAGE and gel filtration. Chondroitin AC lyase is composed of two identical subunits of 84 kDa by SDS/PAGE and gel filtration. Chondroitin ABC and AC lyases showed optimal activity at pH 7.0 and 40 degrees C, and 5.7-6.0 and 45-50 degrees C, respectively. Both chondroitin lyases were potently inhibited by Cu2+, Zn2+, and p-chloromercuriphenyl sulfonic acid. The purified Bacteroidal chondroitin ABC lyase acted to the greatest extent on chondroitin sulfate A (chondroitin 4-sulfate), to a lesser extent on chondroitin sulfate B (dermatan sulfate) and C (chondroitin 6-sulfate). The purified chondroitin AC lyase acted to the greatest extent on chondroitin sulfate A, and to a lesser extent on chondroitin C and hyaluronic acid. They did not act on heparin and heparan sulfate. These findings suggest that the biochemical properties of these purified chondroitin lyases are different from those of the previously purified chondroitin lyases.  相似文献   

18.
Glycosaminoglycans (GAGs) such as heparan sulfate and chondroitin sulfate are polysaccharide chains that are attached to core proteins to form proteoglycans. The biosynthesis of GAGs is a multistep process that includes the attachment of sulfate groups to specific positions of the polysaccharide chains by sulfotransferases. Heparan-sulfate and heparan sulfate-sulfotransferases play important roles in growth factor signaling and animal development. However, the biological importance of chondroitin sulfation during mammalian development and growth factor signaling is poorly understood. We show that a gene trap mutation in the BMP-induced chondroitin-4-sulfotransferase 1 (C4st1) gene (also called carbohydrate sulfotransferase 11 - Chst11), which encodes an enzyme specific for the transfer of sulfate groups to the 4-O-position in chondroitin, causes severe chondrodysplasia characterized by a disorganized cartilage growth plate as well as specific alterations in the orientation of chondrocyte columns. This phenotype is associated with a chondroitin sulfation imbalance, mislocalization of chondroitin sulfate in the growth plate and an imbalance of apoptotic signals. Analysis of several growth factor signaling pathways that are important in cartilage growth plate development showed that the C4st1(gt/gt) mutation led to strong upregulation of TGFbeta signaling with concomitant downregulation of BMP signaling, while Indian hedgehog (Ihh) signaling was unaffected. These results show that chondroitin 4-O-sulfation by C4st1 is required for proper chondroitin sulfate localization, modulation of distinct signaling pathways and cartilage growth plate morphogenesis. Our study demonstrates an important biological role of differential chondroitin sulfation in mammalian development.  相似文献   

19.
We investigated the effect of mechanical stimulation by an intermittent compressive force (ICF) on proteoglycan (PG) synthesis and PG structure in calcified and noncalcified cartilage of fetal mouse long bone rudiments. Uncalcified cartilaginous long bone rudiments were cultured for 5 days in the presence of [35S]sulfate and [3H]glucosamine under control conditions (atmospheric pressure) or under the influence of ICF. ICF was generated by intermittently compressing the gas phase above the culture medium (130 mbar, 0.3 Hz). During culture, the center of the rudiments started to calcify. ICF stimulated calcification such that, after 5 days, the diaphysis of calcified cartilage was about two times as long as in the control cultures. At the end of the experiment, the rudiments were divided in a central calcified diaphysis and two noncalcified epiphyses. Diaphysis and epiphyses were pooled separately. PGs were extracted with 4 M guanidinium chloride and isolated by cesium chloride density gradient centrifugation. PGs (predigested with proteinase K or chondroitinase ABC) were characterized for hydrodynamic size of aggregates, monomers, and chondroitin sulfate chains by gel permeation chromatography and for degree of sulfation by ion exchange chromatography on high pressure liquid chromatography columns. ICF increased the amount of incorporated sulfate per tissue volume unit in the noncalcified epiphyses, but decreased this parameter in the calcified diaphysis. However, in both calcified and noncalcified cartilage, ICF increased the degree of sulfation of the chondroitin sulfate chains. No effects were found on the hydrodynamic size of the PG aggregates or monomers, but in the epiphyses ICF increased the size of the chondroitin sulfate chains. No other changes of structural characteristics of the macromolecules were observed. This study demonstrates that ICF generally stimulated the incorporation of [35S]sulfate into chondroitin sulfate chains. We conclude from the lowered [35S]sulfate content in calcified cartilage that ICF reduced the number of chondroitin sulfate chains and probably PGs while accelerating matrix calcification. It seems likely that the two effects are linked, indicating that a reduction of the number of chondroitin sulfate chains is part of the complicated process of cartilage calcification.  相似文献   

20.
In the first paper in this series (Nathanson, M. A., and Hay, E. D. (1980). Develop. Biol. 78, 301–331), we described the ultrastructural alterations that take place when embryonic skeletal muscle is induced to form hyaline cartilage by demineralized bone matrix in vitro. In this paper, we analyze the pattern of appearance of chondroitin sulfates and dermatan sulfate in injured muscle in situ and in explants of muscle cultured either on bone matrix or on collagen gel. We also investigate the effects of exogenous glycosaminoglycans on the cultures to determine whether chondroitin sulfate (Ch-S) and hyaluronic acid (HA) can enhance or inhibit the biochemical differentiation of cartilage under these conditions. Our results indicate that during the first morphological phase, 1–3 days in vitro, there is an increased sulfate uptake, a shift in the relative abundance of Ch-S, and an increase in the ratio of chondroitin-4-sulfate (Ch-4-S) to chondroitin-6-sulfate (Ch-6-S); this change is correlated with the transformation of myoblasts to fibroblast-like cells in both types of cultures. A similar increase in the Ch-4-SCh-6-S ratio occurs in injured muscle in situ, suggesting that phase I is a regenerative response. Explants on bone matrix sustain Ch-4-S levels between 4 and 5 days (phase II) and show a large increase in Ch-4-S and sulfate incorporation when they form cartilage at 6–10 days (phase III). Explants on collagen gels regenerate muscle at 4–10 days with decreasing Ch-4-SCh-6-S ratios and decreasing sulfate incorporation. The data demonstrate that an environmental influence, such as trauma, is sufficient to alter the biosynthetic expression of skeletal muscle and that under appropriate conditions (such as the presence of bone matrix) this response may be augmented, leading to the synthesis of extracellular matrix components at ratios characteristic of cartilage. Exogenous Ch-S and HA did not significantly effect this overall pattern. These results are discussed in relation to the morphological observations presented in the preceding paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号