首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 874 毫秒
1.
Novel urea derivatives of alkynes have been designed, synthesized, and evaluated as potential cancer therapeutics leads. The most active 1-((3-chloromethyl)phenyl)-3-prop-2-ynylurea (1) exhibited cytotoxic effect against HELA and MCF-7 cell lines with IC(50) values of 1.55 μM and 1.48 μM, respectively. Further investigation on tube formation assay in human vein umbilical cells (HUVEC) demonstrated that 1 and methyl 4-(3-(3-ethynylureido)benzyloxy) benzoate (6) possess antiangiogenic activity, with minimum effective dose of 25 nM (for 1) and 6.25 μM (for 6). The ED(50) of 1 and 6 were found to be 0.26 μM and 17.52 μM, respectively. The results from in vitro tyrosine kinase assay indicated the EGFR inhibition of 1 over other kinases (VEGFR2, FGFR1 and PDGFRβ). The cytotoxicity of 1 against EGFR overexpressing cell line A431 (IC(50) 36 nM) was comparable to that of erlotinib. The binding mode of 1 from docking simulation in the EGFR active site revealed that the urea motif formed hydrogen bonding with Lys745, Thr854 and Asp855 in hydrophobic pocket of EGFR. Compound 1 is considered as a potential lead for further optimization.  相似文献   

2.
Zhou NN  Tang J  Chen WD  Feng GK  Xie BF  Liu ZC  Yang D  Zhu XF 《Life sciences》2012,90(19-20):770-775
AimsThe overexpression of HER2/neu receptor plays a key role in tumorigenesis and tumor progression. Small molecules targeting HER2/neu have therapeutic value in cancers that overexpress HER2. In this present study, the effect of houttuyninum, a component in the Chinese herbal medicine Houttuynia cordata Thunb, on HER2/neu tyrosine phosphorylation and its in vivo antitumour activity was investigated.Main methodsThe phosphorylation and expression of proteins were determined by Western blot analysis. The MTT assay was employed to examine the inhibition of cell proliferation in vitro. Xenografts were established in nude mice for evaluating the antitumour activity of houttuyninum in vivo.Key findingsHouttuyninum inhibited phosphorylation of HER2 in a dose-dependent manner with an IC50 of 5.52 μg/ml without reducing HER2/neu protein expression in MDA-MB-453 cells. Houttuyninum also inhibited the activation of ERK1/2 and AKT, downstream molecules in the HER2/neu-mediated signal transduction pathway. In contrast, tyrosine phosphorylation of EGFR was unaffected when the concentration of houttuyninum was increased to 40 μg/ml in both A431 cells and MDA-MB-468 cells. Additionally, houttuyninum preferentially inhibited the growth of MDA-MB-453 cells that overexpressed HER2/neu; the MDA-MB-468 cells that overexpress EGFR remained unaffected. Administration of houttuyninum in vivo resulted in a significant reduction of phosphorylated HER2 levels and in tumor volumes of the BT474 and N87 xenografts, which both overexpress HER2/neu.SignificanceOur findings showed that houttuyninum can inhibit the HER2/neu signalling pathway and the tumor growth of cancer cells that overexpress HER2/neu. This drug may provide therapeutic value in the treatment of cancers that involve overexpression of HER2/neu.  相似文献   

3.
Two series of novel tricyclic oxazine and oxazepine fused quinazolines have been designed and synthesized. The in vitro antitumor effect of the title compounds was screened on N87, A431, H1975, BT474 and Calu-3 cell lines. Compared to erlotinib and gefitinib, compounds 1a1h were found to demonstrate more potent antitumor activities. Several derivatives could counteract EGF-induced phosphorylation of EGFR in cells, and their potency was comparable to the reference compounds. Compounds 1a1h were chosen for further evaluation of EGFR and HER2 in vitro kinase inhibitory activity. Compounds 1b1f, 1h effectively inhibited the in vitro kinase activity of EGFR and HER2 with similar efficacy as erlotinib and gefitinib.  相似文献   

4.
Norcantharidin (3) is a potent PP1 (IC(50)=9.0+/-1.4 microM) and PP2A (IC(50)=3.0+/-0.4 microM) inhibitor with 3-fold PP2A selectivity and induces growth inhibition (GI(50) approximately 45 microM) across a range of human cancer cell lines including those of colorectal (HT29, SW480), breast (MCF-7), ovarian (A2780), lung (H460), skin (A431), prostate (DU145), neuroblastoma (BE2-C), and glioblastoma (SJ-G2) origin. Until now limited modifications to the parent compound have been tolerated. Surprisingly, simple heterocyclic half-acid norcantharidin analogues are more active than the original lead compound, with the morphilino-substituted (9) being a more potent (IC(50)=2.8+/-0.10 microM) and selective (4.6-fold) PP2A inhibitor with greater in vitro cytotoxicity (GI(50) approximately 9.6 microM) relative to norcantharidin. The analogous thiomorpholine-substituted (10) displays increased PP1 inhibition (IC(50)=3.2+/-0 microM) and reduced PP2A inhibition (IC(50)=5.1+/-0.41 microM), to norcantharidin. Synthesis of the analogous cantharidin analogue (19) with incorporation of the amine nitrogen into the heterocycle further increases PP1 (IC(50)=5.9+/-2.2 microM) and PP2A (IC(50)=0.79+/-0.1 microM) inhibition and cell cytotoxicity (GI(50) approximately 3.3 microM). These analogues represent the most potent cantharidin analogues thus reported.  相似文献   

5.
4-Anilinoquinazolines as an important class of protein kinase inhibitor are widely investigated for epidermal growth factor receptor (EGFR) tyrosine kinase or epidermal growth factor receptor 2 (HER2) inhibition. A series of novel 6-salicyl-4-anilinoquinazoline derivatives 9–27 were prepared and evaluated for their EGFR/HER2 tyrosine kinase inhibitory activity as well as their antiproliferative properties on three variant cancer cell lines (A431, MCF-7, and A549). The bioassay results showed most of the designed compounds exhibited moderate to potent in vitro inhibitory activity in the enzymatic and cellular assays, of which compound 21 revealed the most potent dual EGFR/HER2 inhibitory activity, with IC50 values of 0.12 µM and 0.096 µM, respectively, comparable to the control compounds Erlotinib and Lapatinib. Furthermore, the kinase selectivity profile of 21 was accessed and demonstrated its good selectivity over the majority of the close kinase targets. Docking simulation was performed to position compound 21 into the EGFR/HER2 active site to determine the probable binding pose. These new findings along with molecular docking observations could provide an important basis for further development of compound 21 as a potent EGFR/HER2 dual kinase inhibitor.  相似文献   

6.
Twenty-two new HLA-A2.1-binding peptides derived from the protooncogene HER2/neu were identified and analyzed for their capacity to elicit peptide and tumor-specific CTL responses. We used peptide-pulsed autologous DC from the ascites of patients with ovarian carcinomas to induce CTL. Of the 22 tested new HER2/neu-derived epitopes that could bind HLA-A2 with high (IC50 < 50 nM) or intermediate (50 nM < IC50 < 500 nM) affinity, we report the recognition by CTL of at least four novel epitopes, including HER2(9435), HER2(9665), HER2(9689), and HER2(10952), and confirm that of the known HER2 (9369) epitope. These epitopes were able to elicit CTL that specifically killed peptide-sensitized target cells and, most importantly, a HER2/neu-transfected cell line and the autologous tumor cells. We also confirm that HER2/neu is overexpressed in several melanoma lines, and as a new finding, report that some of these lines are sensitive to CTL induced by the HER2 (9369), HER2(9435), and HER2(9689) epitopes. Finally, CTL clones specific for HER2 (9369), HER2(9435), and HER2(9689) epitopes were isolated from tumor-specific CTL lines, further demonstrating the immunodominance of these epitopes. These findings broaden the potential application of HER2/neu-based immunotherapy.  相似文献   

7.
Overexpression of EGFR and HER2 are observed in many breast, ovarian, colon and prostate cancers. The second and third generation irreversible EGFR/HER2 dual kinase inhibitors became popular after the approval of Afatinib by FDA to overcome the mutation related problem. To find efficacious drug candidates, a series of novel quinazoline derivatives were designed, synthesized and evaluated as dual EGFR/HER2 tyrosine kinase (TK) inhibitors. Selected twenty four compounds were reported here with significant inhibitory activities against EGFR/HER2 tyrosine kinases. Several compounds showed nanomolar IC50 values. In vitro studies of quinazoline derivatives were done on NCI-H1975, HCC827, A431, MDA MB-453 cell lines. The compounds 1a, 1d and 1v were found more potent compared to standard drug afatinib. In vivo efficacy study of 1d on nude mice NCI-H1975 tumour xenograft model was discussed.  相似文献   

8.
Targeting EGFR has proven to be beneficial in the treatment of several types of solid tumours. So, a series of novel 2-(4-oxo-3-(4-sulfamoylphenyl)-3,4-dihydrobenzo[g]quinazolin-2-ylthio)-N-substituted acetamide 519 were synthesised from the starting material 4-(2-mercapto-4-oxobenzo[g]quinazolin-3(4H)-yl) benzenesulfonamide 4, to be evaluated as dual EGFR/HER2 inhibitors. The target compounds 519, were screened for their cytotoxic activity against A549 lung cancer cell line. The percentage inhibition of EGFR enzyme was measured and compared with erlotinib as the reference drug. Compounds 6, 8, 10, and 16 showed excellent EGFR inhibitory activity and were further selected for screening as dual EGFR/HER2 inhibitors. The four selected compounds showed IC50 ranging from 0.009 to 0.026?µM for EGFR and 0.021 to 0.069?µM for the HER2 enzyme. Compound 8 was found to be the most potent in this study with IC50 0.009 and 0.021?µM for EGFR and HER2, respectively.  相似文献   

9.
OBJECTIVE: Lapatinib (Tykerb, GW572016), a potent inhibitor of the catalytic activities of epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2) (ErbB2), inhibits population growth of selected EGFR and HER2 overexpressing cell lines. Previous studies with a small number of cell lines suggest a correlation between overexpression of EGFR and/or HER2 and sensitivity to growth inhibition by lapatinib; however, the precise determinants of lapatinib selectivity for tumour and/or other cells remain unclear. MATERIALS AND METHODS: To clarify the determinants of its selectivity in cultured cells, lapatinib-induced cell population growth inhibition and relative EGFR and HER2 protein expression were quantified in 61 different human tumour cell lines from 12 tumour types, two oncogene transformed human cell lines and two normal human cell cultures. Using statistical tools to analyse the data, a model describing the relationship between lapatinib IC(50) (the response variable) and EGFR and HER2 expression and tissue type (explanatory variables) was derived. CONCLUSION: The results suggest that simultaneous consideration of EGFR and HER2 expression, as well as tissue type yields the best determinant of lapatinib selectivity in cultured cells.  相似文献   

10.
Primary resistance of HER2 gene-amplified breast carcinomas (BC) to HER-targeted therapies can be explained in terms of overactive HER2-independent downstream pro-survival pathways. We here confirm that constitutive overexpression of Inhibitor of Apoptosis (IAP) survivin is indispensable for survival of HER2-positive BC cells with intrinsic cross-resistance to multiple HER1/2 inhibitors. The IC50 values for the HER1/2 Tyrosine Kinase Inhibitors (TKIs) gefitinib, erlotinib and lapatinib were up to 40-fold higher in trastuzumab-unresponsive JIMT-1 cells than in trastuzumab-naïve SKBR3 cells. ELISA-based and immunoblotting assays demonstrated that trastuzumab-refractory JIMT-1 cells constitutively expressed ∼4 times more survivin protein than trastuzumab-responsive SKBR3 cells. In response to trastuzumab, JIMT-1 cells accumulated ∼10 times more survivin than SKBR3 cells. HER1/2 TKIs failed to down-regulate survivin expression in JIMT-1 cells whereas equimolar doses of HER1/HER2 TKIs drastically depleted survivin protein in SKBR3 cells. ELISA-based detection of histone-associated DNA fragments confirmed that trastuzumab-refractory JIMT-1 cells were intrinsically protected against the apoptotic effects of HER1/2 TKIs. Of note, when we knocked-down survivin expression using siRNA and then added trastuzumab, cell proliferation and colony formation were completely suppressed in JIMT-1 cells. Our current findings may be extremely helpful to design successful combinatorial strategies aimed to circumvent the occurrence of de novo resistance to HER2-directed drugs using survivin antagonists.  相似文献   

11.
We have used quinazoline inhibitors of the epidermal growth factor receptor (EGFR) tyrosine kinase to study the link between EGFR signaling and G(1) to S traverse. Treatment of A431 and MDA-468 human tumor cells with 0.1-10 microM AG-1478 inhibited basal and ligand-stimulated EGFR phosphorylation without a decrease in receptor content, EGF-binding sites, or binding affinity. Incubation of A431 cells with 0.1-1 microM AG-1517 abrogated (125)I-EGF internalization. Both AG-1478 and AG-1517 markedly inhibited A431 and MDA-468 colony formation in soft agarose at concentrations between 0.01 and 1 microM. Daily injections of AG-1478 at 50 mg/kg delayed A431 tumor formation in athymic nude mice. A transient exposure of A431 cells to AG-1478 resulted in a dose-dependent up-regulation of the cyclin-dependent kinase inhibitor p27, down-regulation of cyclin D1 and of active MAPK, and hypophosphorylation of the retinoblastoma protein (Rb). These changes were temporally associated with recruitment of tumor cells in G(1) phase and a marked reduction of the proportion of cells in S phase. Upon removal of the kinase inhibitor, EGFR and Rb phosphorylation and the levels of cyclin D1 protein were quickly restored, but the cells did not reenter S phase until p27 protein levels were decreased. Phosphorothioate p27 oligonucleotides decreased p27 protein in A431 cells and abrogated the quinazoline-mediated G(1) arrest. Treatment of A431 cells with PD 098509, a synthetic inhibitor of MEK1, inhibited MAPK activity without inducing G(1) arrest or increasing the levels of p27. However, treatment with LY 294002, an inhibitor of phosphatidylinositol 3-kinase (PI3K), inhibited basal Akt activity, up-regulated p27, and recruited cells in G(1). These data suggest that p27 is required for the growth arrest that follows interruption of the EGFR kinase in receptor-overexpressing cells. In addition, the G(1) arrest and up-regulation of p27 resulting from EGFR blockade are not due to the interruption of MAPK, but to the interruption of constitutively active PI3K function.  相似文献   

12.
Dimerization among the EGFR family of tyrosine kinase receptors leads to allosteric activation of the kinase domains of the partners. Unlike other members in the family, the kinase domain of HER3 lacks key amino acid residues for catalytic activity. As a result, HER3 is suggested to serve as an allosteric activator of other EGFR family members which include EGFR, HER2 and HER4. To study the role of intracellular domains in HER3 dimerization and activation of downstream signaling pathways, we constructed HER3/HER2 chimeric receptors by replacing the HER3 kinase domain (HER3-2-3) or both the kinase domain and the C-terminal tail (HER3-2-2) with the HER2 counterparts and expressed the chimeric receptors in Chinese hamster ovary (CHO) cells. While over expression of the intact human HER3 transformed CHO cells with oncogenic properties such as AKT/ERK activation and increased proliferation and migration, CHO cells expressing the HER3-2-3 chimeric receptor showed significantly reduced HER3/HER2 dimerization and decreased phosphorylation of both AKT and ERK1/2 in the presence of neuregulin-1 (NRG-1). In contrast, CHO cells expressing the HER3-2-2 chimeric receptor resulted in a total loss of downstream AKT activation in response to NRG-1, but maintained partial activation of ERK1/2. The results demonstrate that the intracellular domains play a crucial role in HER3’s function as an allosteric activator and its role in downstream signaling.  相似文献   

13.
Cross-talk between the estrogen and the EGFR/HER signalling pathways has been suggested as a potential cause of resistance to endocrine therapy in breast cancer. Here, we determined HER1-4 receptor and neuregulin-1 (NRG1) ligand mRNA expression levels in breast cancers and corresponding normal breast tissue from patients previously characterized for plasma and tissue estrogen levels. In tumours from postmenopausal women harbouring normal HER2 gene copy numbers, we found HER2 and HER4, but HER3 levels in particular, to be elevated (2.48, 1.30 and 22.27 –fold respectively; P<0.01 for each) compared to normal tissue. Interestingly, HER3 as well as HER4 were higher among ER+ as compared to ER- tumours (P=0.004 and P=0.024, respectively). HER2 and HER3 expression levels correlated positively with ER mRNA (ESR1) expression levels (r=0.525, P=0.044; r=0.707, P=0.003, respectively). In contrast, EGFR/HER1 was downregulated in tumour compared to normal tissue (0.13-fold, P<0.001). In addition, EGFR/HER1 correlated negatively to intra-tumour (r=-0.633, P=0.001) as well as normal tissue (r=-0.556, P=0.006) and plasma estradiol levels (r=-0.625, P=0.002), suggesting an inverse regulation between estradiol and EGFR/HER1 levels. In ER+ tumours from postmenopausal women, NRG1 levels correlated positively with EGFR/HER1 (r=0.606, P=0.002) and negatively to ESR1 (r=-0.769, P=0.003) and E2 levels (r=-0.542, P=0.020). Our results indicate influence of estradiol on the expression of multiple components of the HER system in tumours not amplified for HER2, adding further support to the hypothesis that cross-talk between these systems may be of importance to breast cancer growth in vivo.  相似文献   

14.
The present study characterizes a serotonin (5-HT) binding site on human platelet membranes, using [3H]8-OH-DPAT as the radioligand. [3H]8-OH-DPAT binds specifically and saturably to a site on human platelet membranes with an average KD of 43 nM and Bmax of 1078 fmol/mg protein. Determinations of IC50 values for various serotonergic characterizing agents in platelets for displacement of [3H]8-OH-DPAT were performed. For example, 8-OH-DPAT 5HT1A had an IC50 of 117 nM; TFMPP 5HT1B (2.3 microM0 and PAPP 1A + 5HT2 (9 microM); ipsapirone 5HT1A (21.1 microM) and buspirone 5HT1A (greater than 100 microM); ketanserin 5HT2 (greater than 100 microM); 5-HT uptake inhibitors: paroxetine (13 nM); chlorimipramine (73 nM) and fluoxetine (653 nM). The pharmacological inhibitory profile of the platelet 8-OH-DPAT site is not consistent with profiles reported for brain. 8-OH-DPAT does not inhibit [3H]imipramine binding, however, it does inhibit [3H]5-HT uptake in human platelets near 5-HT's Km value (IC50 = 2-4 microM). These results suggest that the human platelet site labeled by [3H]8-OH-DPAT is pharmacologically different from the neuronal site and probably is a component of the 5-HT transporter.  相似文献   

15.
The high incidence of obesity-related pathologies, led to the study of the mechanisms involved in preadipose cell proliferation and differentiation. Here, we demonstrate that modulation of erbB2, plays a fundamental role during proliferation and adipogenic induction of preadipocytes. Using 3T3-L1 cells as model, we demonstrate that EGF (10 nM, 5 min) in addition to stimulate receptor tyrosine phosphorylation of both erbB2 and EGFR, is able to induce the heterodimer erbB2-EGFR. We treated proliferating 3T3-L1 cells with two inhibitors, AG 825 (IC(50) 0.35 microM, 54 times more selective for erbB2 than for EGFR, IC(50) 19 microM), and AG 879 (IC(50) of 1 microM for erbB2 versus 500 microM for EGFR). We found that both inhibited the proliferation on a dose-dependent basis, reaching a 30% maximal inhibition at 100 microM (P < 0.001) for AG825, and a 20% maximal inhibition at 10 microM (P < 0.001) for AG 879. These results involve erbB2 in 3T3-L1 proliferation. When studying the differentiation process, we found that the action of MIX-Dexa immediately activates MEK, JNK and p38 kinases. We observed that PD98059 and SP600125 (MEK-ERK and JNK inhibitors, respectively) added 1 h prior to the MIX-Dexa induction produced a decrease in erbB2 expression after 6 h, which is even greater than the one produced by the inducers, MIX-Dexa. This work supports erbB2 as a key factor in 3T3-L1 adipogenesis, acting mostly and not only during the proliferative phase but also during the differentiation through modulation of both its expression and activity.  相似文献   

16.
Fourteen modified norcantharidin analogues have been synthesised and screened for their ability to inhibit the serine/threonine protein phosphatases 1 and 2A. The most potent compounds found were 10 (PP1 IC(50)=13+/-5 microM; PP2A IC(50)=7+/-3 microM) and 16 (PP1 IC(50)=18+/-8 microM; PP2A IC(50)=3.2+/-0.4 microM). Overall, only analogues possessing at least one acidic residue at the former anhydride warhead displayed any PP1 or PP2A inhibitory action. The ability of these analogues to inhibit PP1 and PP2A correlates well with their observed anti-cancer activity against a panel of five cancer cell lines: A2780 (human ovarian carcinoma), G401 (human kidney carcinoma), HT29 (human colorectal carcinoma), H460 (human lung carcinoma) and L1210 (murine leukemia).  相似文献   

17.
Vasko MR  Guo C  Kelley MR 《DNA Repair》2005,4(3):367-379
Although correlative studies demonstrate a reduction in the expression of apurinic/apyrimidinic endonuclease/redox effector factor (Ape1/Ref-1 or Ape1) in neural tissues after neuronal insult, the role of Ape1 in regulating neurotoxicity remains to be elucidated. To address this issue, we examined the effects of reducing Ape1 expression in primary cultures of hippocampal and sensory neurons on several endpoints of neurotoxicity induced by H2O2. Ape1 is highly expressed in hippocampal and sensory neurons grown in culture as indicated by immunohistochemistry, immunoblotting and activity. Exposing hippocampal or sensory neuronal cultures to 25 or 50 nM small interfering RNA to Ape1 (Ape1siRNA), respectively, for 48 h, causes a reduction in immunoreactive Ape1 by approximately 65 and 54%, and an equivalent loss in endonuclease activity. The reduced expression of Ape1 is maintained for up to 5 days after the siRNA in the medium is removed, whereas exposing cultures to scrambled sequence siRNA (SCsiRNA) has no effect of Ape1 protein levels. The reduction in Ape1 significantly reduces cell viability in cultures 24 h after a 1-h exposure to 25-300 microM H2O2, compared to SCsiRNA treated controls. In cells treated with SCsiRNA, exposure to 300 microM H2O2 reduced cell viability by 40 and 30% in hippocampal and sensory neuronal cultures, respectively, whereas cultures treated with Ape1siRNA lost 93 and 80% of cells after the peroxide. Reduced Ape1 levels also increase caspase-3 activity in the cells, 2-3-fold, 60min after a 1-h exposure to 100 microM H2O2 in the cultures. Exposing neuronal cultures with reduced expression of Ape1 to 65 microM H2O2 (hippocampal) or 300 microM H2O2 (sensory) for 1h results in a 3-fold and 1.5-fold increase in the phosphorylation of histone H2A.X compared to cells exposed to SCsiRNA. Overexpressing wild-type Ape1 in hippocampal and sensory cells using adenoviral expression constructs results in significant increase in cell viability after exposure to various concentrations of H2O2. The C65A repair competent/redox incompetent Ape1 when expressed in the hippocampal and sensory cells conferred only partial protection on the cells. These data support the notion that both of functions of Ape1, redox and repair are necessary for optimal levels of neuronal cell survival.  相似文献   

18.
A series of 4-[3-chloro-4-(3-fluorobenzyloxy)anilino]-6-(3-substituted-phenoxy)pyrimidine derivatives were elaborately designed based on the skeleton of Lapatinib, and evaluated for their potential to inhibit epidermal growth factor receptor (EGFR) and ErbB-2 tyrosine kinase activities and antiproliferative activities against A431 and SKOV-3 cell lines. Among these synthesized pyrimidine derivatives, 4-[3-chloro-4-(3-fluorobenzyloxy)anilino]-6-(3-acrylamidophenoxy)pyrimidine (6), 4-[3-chloro-4-(3-fluorobenzyloxy)anilino]-6-(3-cyanoacetamidophenoxy)pyrimidine (9), 4-[3-chloro-4-(3-fluorobenzyloxy)anilino]-6-{3-[6-(4-amino)pyrimidinyl]amino) phenoxy}pyrimidine (11) and 4-[3-chloro-4-(3-fluorobenzyloxy)anilino]-6-(3-phenoxyacetamidophenoxy)pyrimidine (14) could significantly inhibit dual EGFR/ErbB-2 kinase activities (IC(50)=37/29 nM, 48/38 nM, 61/42 nM, 65/79 nM, respectively). And compounds 6 and 11 also showed the most potent antiproliferative activities in vitro, with the IC(50) value of 6 being 3.25 μM for A431 and 0.89 μM for SKOV-3, as for 11, 4.24 μM for A431 and 0.71 μM for SKOV-3, respectively. Docking study was also performed to determine the possible binding model.  相似文献   

19.
The epidermal growth factor (EGF) family of receptor tyrosine kinases consists of four members: EGFR (HER1/ErbB1), HER2/neu (ErbB2), HER3 (ErbB3) and HER4 (ErbB4). Receptor activation via ligand binding leads to downstream signaling that influence cell proliferation, angiogenesis, invasion and metastasis. Aberrant expression or activity of EGFR and HER2 have been strongly linked to the etiology of several human epithelial cancers including but not limited to head and neck squamous cell carcinoma (HNSCC), non-small cell lung cancer (NSCLC), colorectal cancer (CRC), and breast cancer. With this, intense efforts have been made to inhibit the activity of the EGFR and HER2 by designing antibodies against the ligand binding domains (cetuximab, panitumumab and trastuzumab) or small molecules against the tyrosine kinase domains (erlotinib, gefitinib, and lapatinib). Both approaches have shown considerable clinical promise. However, increasing evidence suggests that the majority of patients do not respond to these therapies, and those who show initial response ultimately become refractory to treatment. While mechanisms of resistance to tyrosine kinase inhibitors have been extensively studied, resistance to monoclonal antibodies is less well understood, both in the laboratory and in the clinical setting. In this review, we discuss resistance to antibody-based therapies against the EGFR and HER2, similarities between these resistance profiles, and strategies to overcome resistance to HER family targeting monoclonal antibody therapy.  相似文献   

20.
Cocaine inhibits tritium-labeled dopamine ([3H]DA) uptake in rat (IC50 approximately 400 nM) and sheep (IC50 approximately 1 microM) striatum. GBR 12909, a selective DA uptake inhibitor, potently inhibits [3H]DA uptake in rat (IC50 less than 10 nM), but is less effective (only 60% of the uptake is inhibited at a concentration of 10 microM) and less potent (IC50 approximately 300 nM) in sheep. [3H]DA release from slices of rat or sheep striatum is stimulated by potassium (15-50 mM). In the presence of nomifensine (10 microM), cocaine (10 microM) had no effect on potassium-stimulated [3H]DA release in either species. [3H]DA release is increased by N-methyl-D-aspartate (NMDA) (10-1000 microM) in rat striatum but NMDA did not stimulate [3H]DA release in sheep striatum. These findings suggest that NMDA receptors either are absent from or do not regulate release of preloaded [3H]DA in sheep striatum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号