首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of acute hypoxia (2 days at 4350 m) on whole saliva flow and composition were studied on 12 sea-level natives, at rest and following a maximal exercise. Exercise, performed in normoxia and hypoxia, did not induce variations in saliva flow rate, saliva potassium or alpha-amylase concentrations. In contrast, acute hypoxia did lead to an increase in mean saliva flow rate both at rest (0.63 ml.min-1 to 0.93 ml.min-1, P less than 0.01) and after exercise (0.56 ml.min-1 to 1.06 ml.min-1, P less than 0.05) and a decrease in mean saliva potassium concentration at rest (20.8 mmol.l-1 to 14.7 mmol.l-1, P less than 0.01) as well as after exercise (21.7 mmol.l-1 to 16.5 mmol.l-1, P less than 0.05). This effect might be the consequence of a hypoxia-induced stimulation of the parasympathetic nervous system.  相似文献   

2.
The effects of a competitive marathon race on serum biochemical and haematological parameters have been evaluated. Blood samples were obtained shortly before and immediately after the race; urine samples were also obtained before and after the race. Body weight was recorded pre- and post-race. During the race subjects consumed a total of 1.41 of either water or a dilute glucose-electrolyte solution. The average weight loss of the runners was 2.09 +/- 0.77 kg (mean +/- SD), corresponding to 2.9 +/- 0.8% of body weight. Small but significant increases in both haematocrit and haemoglobin concentration occurred; plasma volume was calculated to decrease by 4.7%. Serum potassium concentration showed no change, but the response was highly variable; serum sodium concentration increased in line with the decrease in plasma volume. In the group of subjects drinking water during the race, the pre-race plasma glucose concentration was 5.3 +/- 1.2 mmol . l-1, this was unchanged after the race (5.0 +/- 1.2 mmol . l-1). A significant increase (P less than 0.01) in the plasma glucose concentration, from 5.2 +/- 0.6 to 6.0 +/- 1.5 mmol . l-1 occurred in the group of subjects drinking the glucose-electrolyte solution. Apart from this, there were no significant differences between the two groups.  相似文献   

3.
The purpose of this study was to examine the effects of pre-exercise glucose and fructose feedings on muscle glycogen utilization during exercise in six well-trained runners (VO2max = 68.2 +/- 3.4 ml X kg-1 X min-1). On three separate occasions, the runners performed a 30 min treadmill run at 70% VO2max. Thirty minutes prior to exercise each runner ingested 75 g of glucose (trial G), 75 g of fructose (trial F) or 150 ml of a sweetened placebo (trial C). During exercise, no differences were observed between any of the trials for oxygen uptake, heart rate or perceived exertion. Serum glucose levels were elevated as a result of the glucose feeding (P less than 0.05) reaching peak levels at 30 min post-feeding (7.90 +/- 0.24 mmol X l-1). With the onset of exercise, glucose levels dropped to a low of 5.89 +/- 0.85 mmol X l-1 at 15 min of exercise in trial G. Serum glucose levels in trials F and C averaged 6.21 +/- 0.31 mmol X l-1 and 5.95 +/- 0.23 mmol X l-1 respectively, and were not significantly different (P less than 0.05). There were also no differences in serum glucose levels between any of the trials at 15 and 30 min of exercise.  相似文献   

4.
The role of circulating, non-esterified, long-chain fatty acids (NEFA) as a source of energy for the whole animal and skeletal muscle was investigated in fed non-pregnant sheep at rest and during exercise. Infusion of tracer quantities of [1-14C]oleic or [1-14C]stearic acid was combined with the use of arteriovenous difference studies on fed sheep at rest or during a 2 h period of exercise on a belt treadmill moving at 4.5 km h-1. At rest all parameters of NEFA metabolism indicated a minimal role for oxidation. Thus the concentration in plasma (0.07 +/- 0.01 mmol l-1), entry rate (0.08 +/- 0.02 mmol h-1 kg-1 body wt), contribution to whole animal oxidation (1.2 +/- 0.3%) and utilization of NEFA by skeletal muscle (0.046 +/- 0.008 mmol h-1 kg-1 muscle) were all low. Exercise prompted a shift to lipolysis and accordingly the above parameters increased markedly some 13-24-fold. The circulating concentration of ketone bodies showed only a small increase during exercise and consequently the role of ketone bodies as an energy source during exercise was minimal. Glucose utilization by skeletal muscle was considerable in animals at rest and it represented the most significant potential fuel of skeletal muscle. Exercise resulted in a sustained increase of 3-4-fold in the utilization of glucose by skeletal muscle. Thus the traditional view that NEFA and not glucose is a predominant fuel of skeletal muscle of fed sheep should be appraised.  相似文献   

5.
Six men exercised on a cycle ergometer for 60 min on two occasions one week apart, at 68 +/- 3% of VO2max. On one occasion, a dilute glucose/electrolyte solution (E: osmolality 310 mosmol X kg-1, glucose content 200 mmol X l-1) was given orally at a rate of 100 ml every 10 min, beginning immediately prior to exercise. On the other occasion, a glucose polymer solution (P: osmolality 630 mosmol X kg-1, glucose content equivalent to 916 mmol X l-1) was given at the same rate. Blood samples were obtained from a superficial forearm vein immediately prior to exercise and at 15-min intervals during exercise; further samples were obtained at 15-min intervals for 60 min at rest following exercise. Heart rate and rectal temperature were measured at 5-min intervals during exercise. Blood glucose concentration was not different between the two tests during exercise, but rose to a peak of 8.7 +/- 1.2 mmol X l-1 (mean +/- SD) at 30-min post-exercise when P was drunk. Blood glucose remained unchanged during and after exercise when E was drunk. Plasma insulin levels were unchanged during exercise and were the same on both trials, but again a sharp rise in plasma insulin concentration was seen after exercise when P was drunk. The rate of carbohydrate oxidation during exercise, as calculated from VO2 and the respiratory exchange ratio, was not different between the two tests.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Serum potassium, aldosterone and insulin, and plasma adrenaline, noradrenaline and cyclic adenosine 3':5'-monophosphate (cAMP) concentrations were measured during graded exhausting exercise and during the following 30 min recovery period in six untrained young men. During exercise there was an increase in concentration of serum potassium (4.74 mmol.l-1, SEM 0.12 at the end of exercise vs 3.80 mmol.l-1, SEM 0.05 basal, P less than 0.001), plasma adrenaline (2.14 nmol.l-1, SEM 0.05 at the end of exercise vs 0.30 nmol.l-1, SEM 0.02 basal, P less than 0.001), plasma noradrenaline (1.10 nmol.l-1, SEM 0.64 at the end of exercise vs 1.50 nmol.l-1, SEM 0.05 basal, P less than 0.001), serum aldosterone (0.92 nmol.l-1, SEM 0.14 at the end of exercise vs 0.36 nmol.l-1, SEM 0.05 basal, P less than 0.01), and plasma cAMP (35.4 nmol.l-1, SEM 2.3 at the end of exercise vs 21.4 nmol.l-1, SEM 4.5 basal, P less than 0.05). While concentrations of serum potassium, plasma adrenaline and cAMP returned to their basal levels immediately after exercise, those of plasma noradrenaline and serum aldosterone remained elevated 30 min later (1.90 nmol.l-1, SEM 0.01, P less than 0.01; and 0.85 nmol.l-1, SEM 0.12, P less than 0.01, respectively). Serum insulin concentration did not change during exercise (6.47 mlU.l-1, SEM 0.58 at the end of exercise vs 5.47 mlU.l-1, SEM 0.41 basal, NS) but increased significantly (P less than 0.02) at the end of the recovery period (7.12 mlU.l-1, SEM 0.65).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Nine subjects (VO2max 65 +/- 2 ml.kg-1.min-1, mean +/- SEM) were studied on two occasions following ingestion of 500 ml solution containing either sodium citrate (C, 0.300 g.kg-1 body mass) or a sodium chloride placebo (P, 0.045 g.kg-1 body mass). Exercise began 60 min later and consisted of cycle ergometer exercise performed continuously for 20 min each at power outputs corresponding to 33% and 66% VO2max, followed by exercise to exhaustion at 95% VO2max. Pre-exercise arterialized-venous [H+] was lower in C (36.2 +/- 0.5 nmol.l-1; pH 7.44) than P (39.4 +/- 0.4 nmol.l-1; pH 7.40); the plasma [H+] remained lower and [HCO3-] remained higher in C than P throughout exercise and recovery. Exercise time to exhaustion at 95% VO2max was similar in C (310 +/- 69 s) and P (313 +/- 74 s). Cardiorespiratory variables (ventilation, VO2, VCO2, heart rate) measured during exercise were similar in the two conditions. The plasma [citrate] was higher in C at rest (C, 195 +/- 19 mumol.l-1; P, 81 +/- 7 mumol.l-1) and throughout exercise and recovery. The plasma [lactate] and [free fatty acid] were not affected by citrate loading but the plasma [glycerol] was lower during exercise in C than P. In conclusion, sodium citrate ingestion had an alkalinizing effect in the plasma but did not improve endurance time during exercise at 95% VO2max. Furthermore, citrate loading may have prevented the stimulation of lipolysis normally observed with exercise and prevented the stimulation of glycolysis in muscle normally observed in bicarbonate-induced alkalosis.  相似文献   

8.
Imaging of human brain creatine kinase activity in vivo   总被引:4,自引:0,他引:4  
Creatine kinase activity and high-energy phosphate concentration have been investigated using localized 31P spectroscopy in the human brain in vivo. The phase-modulated rotating frame imaging technique, incorporating magnetization transfer and inversion recovery, has been used to produce a 1-dimensional rate profile map of steady-state enzyme activity. Large differences in the flux from phosphocreatine (PCr) to ATP have been discovered between volumes of human brain consisting of predominantly gray (2.0 cm) and white (4.5 cm) matter. The concentration of PCr changes slightly (2.0 cm = 5.20 +/- 0.45 mmol.l-1, 4.5 cm = 4.63 +/- 0.31 mmol.l-1), while the ATP concentration remains within limits (3.30 +/- 0.4 mmol.l-1). No change in pHi was detected between the two regions in normal volunteers (n = 6). The forward rate constant of the PCr----ATP reaction in regions of predominantly gray matter (0.30 +/- 0.04 s-1) was twice that of white matter (0.16 +/- 0.02 s-1) in vivo.  相似文献   

9.
The purpose of this study was to determine the effect of ingesting fluids of varying carbohydrate content upon sensory response, physiologic function, and exercise performance during 1.25 h of intermittent cycling in a warm environment (Tdb = 33.4 degrees C). Twelve subjects (7 male, 5 female) completed four separate exercise sessions; each session consisted of three 20 min bouts of cycling at 65% VO2max, with each bout followed by 5 min rest. A timed cycling task (1200 pedal revolutions) completed each exercise session. Immediately prior to the first 20 min cycling bout and during each rest period, subjects consumed 2.5 ml.kg BW-1 of water placebo (WP), or solutions of 6%, 8%, or 10% sucrose with electrolytes (20 mmol.l-1 Na+, 3.2 mmol.l-1 K+). Beverages were administered in double blind, counterbalanced order. Mean (+/- SE) times for the 1200 cycling task differed significantly: WP = 13.62 +/- 0.33 min, *6% = 13.03 +/- 0.24 min, 8% = 13.30 +/- 0.25 min, 10% = 13.57 +/- 0.22 min (* = different from WP and 10%, P less than 0.05). Compared to WP, ingestion of the CHO beverages resulted in higher plasma glucose and insulin concentrations, and higher RER values during the final 20 min of exercise (P less than 0.05). Markers of physiologic function and sensory perception changed similarly throughout exercise; no differences were observed among subjects in response to beverage treatments for changes in plasma concentrations of lactate, sodium, potassium, for changes in plasma volume, plasma osmolality, rectal temperature, heart rate, oxygen uptake, rating of perceived exertion, or for indices of gastrointestinal distress, perceived thirst, and overall beverage acceptance.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Ion concentration changes in whole blood, plasma, and erythrocytes across inactive muscle were examined in eight healthy males performing four 30-s bouts of maximal isokinetic cycling with 4 min rest between each bout. Blood was sampled from the arm brachial artery and deep antecubital vein during the intermittent exercise period and for 90 min of recovery. Arterial and venous erythrocyte lactate concentration ([Lac-]) increased from 0.3 +/- 0.1 to 12.5 +/- 1.3 (p < 0.01) and 1.1 +/- 0.4 to 8.5 +/- 1.5 mmol/L (p < 0.01), respectively, returning to control values during recovery. Arterial and venous plasma [Lac-] increased from 1.5 +/- 0.2 to 27.7 +/- 1.8 and from 1.3 +/- 0.4 to 25.7 +/- 3.5 mmol/L, respectively, and was greater than erythrocyte [Lac-] throughout exercise and recovery. Arterial and venous [K+] increased in erythrocytes from 119.5 +/- 5.1 to 125.4 +/- 4.6 (p < 0.01) and from 113.6 +/- 1.7 to 120.6 +/- 7.1 mmol/L, respectively, decreasing to control during recovery. In arterial and venous plasma, [K+] increased from 4.3 +/- 0.1 to 6.1 +/- 0.2 (p < 0.01) and from 4.5 +/- 0.2 to 5.3 +/- 0.2 mmol/L (p < 0.01), respectively, decreasing to control during recovery. The efflux of Lac- out of erythrocytes against an electrochemical concentration gradient suggests the presence of an active transport system. Efflux of K+ from erythrocytes as blood passes across inactive muscle affords an important adaptation to the K+ release from muscle activated in heavy exercise.  相似文献   

11.
Heparinized blood was centrifuged repeatedly in Eppendorf's test tubes at 7,500 g in the Unipan microcentrifuge type 320. Packed red cells were hemolysed, then sodium and potassium were determined by means of the flame photometer. The percentage of trapped plasma determined with indocyanine green amounted to on average 1 per cent. There was a good precision of the method controlled on 20 aliquots of the same blood sample. Results of red cell sodium and potassium in 80 healthy volunteers were 10.42 +/- 1.56 mmol/l and 87.8 +/- 4.03 mmol/l respectively. No significant changes in the red cell sodium and potassium concentration were observed in heparinized blood during 5 hours storage at room temperature. The method cannot be used interchangeably with the method of Helbock and Brown, since the correlation coefficients were too low in parallel examinations.  相似文献   

12.
Hormone-sensitive lipase (HSL) catalyzes the hydrolysis of intramuscular triacylglycerol (IMTG); however, its regulation in skeletal muscle is poorly understood. To examine the effects of reduced free fatty acid (FFA) availability on HSL activity in skeletal muscle during aerobic exercise, 11 trained men exercised at 55% maximal O2 uptake for 40 min after the ingestion of nicotinic acid (NA) or nothing (control). Muscle biopsies were taken at rest and 5, 20, and 40 min of exercise. Plasma FFA were suppressed (P < 0.05) in NA during exercise ( approximately 0.40 +/- 0.04 vs. approximately 0.07 +/- 0.01 mM). The respiratory exchange ratio (RER) was increased throughout exercise (0.020 + 0.008) after NA ingestion. However, the provision of energy from fat oxidation only decreased from 33% of the total in the control trial to 26% in the NA trial, suggesting increased IMTG oxidation in the NA trial. Mean HSL activity was 2.25 + 0.15 mmol x kg dry mass(-1) x min(-1) at rest and increased (P < 0.05) to 2.94 +/- 0.20 mmol x kg dry mass(-1) x min(-1) at 5 min in control. Contrary to the hypothesis, mean HSL was not activated to a greater extent in the NA trial during exercise (2.20 + 0.28 at rest to 2.88 + 0.21 mmol x kg dry mass(-1) x min(-1) at 5 min). No further HSL increases were observed at 20 or 40 min in both trials. There was variability in the response to NA ingestion, as some subjects experienced a large increase in RER and decrease in fat oxidation, whereas other subjects experienced no shift in RER and maintained fat oxidation despite the reduced FFA availability in the NA trial. However, even in these subjects, HSL activity was not further increased during the NA trial. In conclusion, reduced plasma FFA availability accompanied by increased epinephrine concentration did not further activate HSL beyond exercise alone.  相似文献   

13.
Cigarette smoking is a leading cause of many adverse health consequences. Chronic nicotine exposure leads to insulin resistance and may increase the risk of developing non-insulin-dependent diabetes mellitus in young otherwise healthy smokers. To evaluate smoking-induced effects on carbohydrate metabolism, we studied muscle glycogen recovery from exercise in a young healthy population of smokers. The study used 31P-13C NMR spectroscopy to compare muscle glycogen and glucose 6-phosphate levels during recovery in exercised gastrocnemius muscles of randomized cohorts of healthy male smokers (S) and controls (C). Data for the two groups were as follows: S, > or =20 cigarettes/day (n = 8), 24 +/- 2 yr, 173 +/- 3 cm, 70 +/- 4 kg and age- and weight-matched nonsmoking C (n = 10), 23 +/- 1 yr, 175 +/- 3 cm, 67 +/- 3 kg. Subjects performed single-leg toe raises to deplete glycogen to approximately 20 mmol/l, and glycogen resynthesis was measured during the first 4 h of recovery. Plasma samples were assayed for glucose and insulin at rest and during recovery. Test subjects were recruited from the general community surrounding Yale University. Glycogen was depleted to similar levels in the two groups [23.5 +/- 1.2 (S) and 19.1 +/- 1.3 (C) mmol/l]. During the 1st h of recovery, glycogen synthesis rates were similar [13.8 +/- 1.1 (S) and 15.3 +/- 1.3 (C) mmol x l-1 x h-1]. Between hours 1 and 4, glycogen synthesis was impaired in smokers [0.8 +/- 0.2 (S) and 4.5 +/- 0.5 (C) mmol x l-1 x h-1, P = 0.0002] compared with controls. Glucose 6-phosphate was reduced in smokers during hours 1-4 [0.105 +/- 0.006 (S) and 0.217 +/- 0.019 (C) mmol/l, P = 0.0212]. We conclude that cigarette smoking impairs the insulin-dependent portion of muscle recovery from glycogen-depleting exercise. This impairment likely results from a reduction in glucose uptake.  相似文献   

14.
The aim of the present study was to examine whether ATP production increases and mechanical efficiency decreases during intense exercise and to evaluate how previous exercise affects ATP turnover during intense exercise. Six subjects performed two (EX1 and EX2) 3-min one-legged knee-extensor exercise bouts [66.2 +/- 3.9 and 66.1 +/- 3.9 (+/-SE) W] separated by a 6-min rest period. Anaerobic ATP production, estimated from net changes in and release of metabolites from the active muscle, was 3.5 +/- 1.2, 2.4 +/- 0.6, and 1.4 +/- 0.2 mmol ATP x kg dry wt(-1) x s(-1) during the first 5, next 10, and remaining 165 s of EX1, respectively. The corresponding aerobic ATP production, determined from muscle oxygen uptake, was 0.7 +/- 0.1, 1.4 +/- 0.2, and 4.7 +/- 0.4 mmol ATP x kg dry wt(-1) x s(-1), respectively. The mean rate of ATP production during the first 5 s and next 10 s was lower (P < 0.05) than during the rest of the exercise (4.2 +/- 1.2 and 3.8 +/- 0.7 vs. 6.1 +/- 0.3 mmol ATP x kg dry wt(-1) x s(-1)). Thus mechanical efficiency, expressed as work per ATP produced, was lowered (P < 0.05) in the last phase of exercise (39.6 +/- 6.1 and 40.7 +/- 5.8 vs. 25.0 +/- 1.3 J/mmol ATP). The anaerobic ATP production was lower (P < 0.05) in EX2 than in EX1, but the aerobic ATP turnover was higher (P < 0.05) in EX2 than in EX1, resulting in the same muscle ATP production in EX1 and EX2. The present data suggest that the rate of ATP turnover increases during intense exercise at a constant work rate. Thus mechanical efficiency declines as intense exercise is continued. Furthermore, when intense exercise is repeated, there is a shift toward greater aerobic energy contribution, but the total ATP turnover is not significantly altered.  相似文献   

15.
The hormonal responses to repetitive brief maximal exercise in humans   总被引:4,自引:0,他引:4  
The responses of nine men and nine women to brief repetitive maximal exercise have been studied. The exercise involved a 6-s sprint on a non-motorised treadmill repeated 10 times with 30 s recovery between each sprint. The total work done during the ten sprints was 37,693 +/- 3,956 J by the men and 26,555 +/- 4,589 J by the women (M greater than F, P less than 0.01). This difference in performance was not associated with higher blood lactate concentrations in the men (13.96 +/- 1.70 mmol.l-1) than the women (13.09 +/- 3.04 mmol.l-1). An 18-fold increase in plasma adrenaline (AD) occurred with the peak concentration observed after five sprints. The peak AD concentration in the men was larger than that seen in the women (9.2 +/- 7.3 and 3.7 +/- 2.4 nmol.l-1 respectively, P less than 0.05). The maximum noradrenaline (NA) concentration occurred after ten sprints in the men (31.6 +/- 10.9 nmol.l-1) and after five sprints in the women (27.4 +/- 20.8 nmol.l-1). Plasma cardiodilatin (CDN) and atrial natriuretic peptide (ANP) concentrations were elevated in response to the exercise. The peak ANP concentration occurred immediately post-exercise and the response of the women (10.8 +/- 4.5 pmol.l-1) was greater than that of the men (5.1 +/- 2.6 pmol.l-1, P less than 0.05). The peak CDN concentrations were 163 +/- 61 pmol.l-1 for the women and 135 +/- 61 pmol.l-1 for the men. No increases in calcitonin gene related peptide (CGRP) were detected in response to the exercise. These results indicate differences between men and women in performance and hormonal responses. There was no evidence for a role of CGRP in the control of the cardiovascular system after brief intermittent maximal exercise.  相似文献   

16.
Skeletal muscle hormone-sensitive lipase (HSL) activity is increased by contractions and increases in blood epinephrine (EPI) concentrations and cyclic AMP activation of the adrenergic pathway during prolonged exercise. To determine the importance of hormonal stimulation of HSL activity during the onset of moderate- and high-intensity exercise, nine men [age 24.3 +/- 1.2 yr, 80.8 +/- 5.0 kg, peak oxygen consumption (VO2 peak) 43.9 +/- 3.6 ml x kg(-1) x min(-1)] cycled for 1 min at approximately 65% VO2 peak, rested for 60 min, and cycled at approximately 90% VO2 peak for 1 min. Skeletal muscle biopsies were taken pre- and postexercise, and arterial blood was sampled throughout exercise. Arterial EPI increased (P < 0.05) postexercise at 65% (0.45 +/- 0.10 to 0.78 +/- 0.27 nM) and 90% VO2 peak (0.57 +/- 0.34 to 1.09 +/- 0.50 nM). HSL activity increased (P < 0.05) following 1 min of exercise at 65% VO2 peak [1.05 +/- 0.39 to 1.78 +/- 0.54 mmol x min(-1) x kg dry muscle (dm)(-1)] and 90% VO2 peak (1.07 +/- 0.24 to 1.91 +/- 0.62 mmol x min(-1) x kg dm(-1)). Cyclic AMP content also increased (P < 0.05) at both exercise intensities (65%: 1.52 +/- 0.67 to 2.75 +/- 1.12, 90%: 1.85 +/- 0.65 to 2.64 +/- 0.93 micromol/kg dm). HSL Ser660 phosphorylation (approximately 55% increase) and ERK1/2 phosphorylation ( approximately 33% increase) were augmented following exercise at both intensities, whereas HSL Ser563 and Ser565 phosphorylation were not different from rest. The results indicate that increases in arterial EPI concentration during the onset of moderate- and high-intensity exercise increase cyclic AMP content, which results in the phosphorylation of HSL Ser660. This adrenergic stimulation contributes to the increase in HSL activity that occurs in human skeletal muscle in the first minute of exercise at 65% and 90% VO2 peak.  相似文献   

17.
This study assessed whether replacing sweat losses with sodium-free fluid can lower the plasma sodium concentration and thereby precipitate the development of hyponatremia. Ten male endurance athletes participated in one 1-h exercise pretrial to estimate fluid needs and two 3-h experimental trials on a cycle ergometer at 55% of maximum O2 consumption at 34 degrees C and 65% relative humidity. In the experimental trials, fluid loss was replaced by distilled water (W) or a sodium-containing (18 mmol/l) sports drink, Gatorade (G). Six subjects did not complete 3 h in trial W, and four did not complete 3 h in trial G. The rate of change in plasma sodium concentration in all subjects, regardless of exercise time completed, was greater with W than with G (-2.48 +/- 2.25 vs. -0.86 +/- 1.61 mmol. l-1. h-1, P = 0.0198). One subject developed hyponatremia (plasma sodium 128 mmol/l) at exhaustion (2.5 h) in the W trial. A decrease in sodium concentration was correlated with decreased exercise time (R = 0.674; P = 0.022). A lower rate of urine production correlated with a greater rate of sodium decrease (R = -0. 478; P = 0.0447). Sweat production was not significantly correlated with plasma sodium reduction. The results show that decreased plasma sodium concentration can result from replacement of sweat losses with plain W, when sweat losses are large, and can precipitate the development of hyponatremia, particularly in individuals who have a decreased urine production during exercise. Exercise performance is also reduced with a decrease in plasma sodium concentration. We, therefore, recommend consumption of a sodium-containing beverage to compensate for large sweat losses incurred during exercise.  相似文献   

18.
To determine whether lactic acid production contributes significantly to the cardiac responses to muscular dynamic exercise, we administered intravenous sodium dichloroacetate (32 mumol.kg-1.min-1), a pyruvate dehydrogenase activator that facilitates lactate metabolism via the tricarboxylic cycle, in 12 dogs during two graded levels of treadmill exercise. Similar exercise was carried out in nine normal dogs receiving equimolar doses of NaCl. In the latter group, arterial lactate increased progressively from 0.80 +/- 0.11 (SE) mmol/l at rest to 2.13 +/- 0.28 mmol/l by the end of exercise. In contrast, arterial lactate did not change significantly (0.98 +/- 0.12 to 0.95 +/- 0.11 mmol/l) during exercise in dogs receiving dichloroacetate infusion. Dichloroacetate infusion also reduced the increases in plasma norepinephrine, heart rate, and left ventricular contractile indexes that occurred during exercise, suggesting that the sympathetic cardiac stimulation occurring during exercise may be related to the production of lactic acid. However, dichloroacetate affected neither the net increase in cardiac output nor the relationship between total body oxygen consumption and cardiac output that occurred during exercise. Thus we conclude that lactic acid production is not essential to the increase in cardiac output that occurs during mild-to-moderate exercise.  相似文献   

19.
The effect of different muscle shortening velocity was studied during cycling at a pedalling rate of 60 and 120 rev.min(-1) on the [K+]v in humans. Twenty-one healthy young men aged 22.5+/-2.2 years, body mass 72.7+/-6.4 kg, VO2 max 3.720+/-0.426 l. min(-1), performed an incremental exercise test until exhaustion. The power output increased by 30 W every 3 min, using an electrically controlled ergometer Ergoline 800 S (see Zoladz et al. J. Physiol. 488: 211-217, 1995). The test was performed twice: once at a cycling frequency of 60 rev.min(-1) (test A) and a few days later at a frequency of 120 rev. min(-1) (test B). At rest and at the end of each step (i.e. the last 15 s) antecubital venous blood samples for [K+]p were taken. Gas exchange variables were measured continuously (breath-by-breath) using Oxycon Champion Jaeger. The pre-exercise [K+]v in both tests was not significantly different amounting to 4.24+/-0.36 mmol.l(-1) in test A, and 4.37+/-0.45 mmol.l(-1) in test B. However, the [K+]p during cycling at 120 rev. min(-1) was significantly higher (p<0.001, ANOVA for repeated measurements) at each power output when compared to cycling at 60 rev.min(-1). The maximal power output reached 293+/-31 W in test A which was significantly higher (p<0.001) than in test B, which amounted to 223+/-40 W. The VO2max values in both tests reached 3.720+/-0.426 l. min(-1) vs 3.777+/-0.514 l. min(-1). These values were not significantly different. When the [K+]v was measured during incremental cycling exercise, a linear increase in [K+]v was observed in both tests. However, a significant (p<0.05) upward shift in the [K+]v and a % VO2max relationship was detected during cycling at 120 rev.min(-1). The [K+]v measured at the VO2max level in tests A and B amounted to 6.00+/-0.47 mmol.l-1 vs 6.04+/-0.41 mmol.l-1, respectively. This difference was not significant. It may thus be concluded that: a) generation of the same external mechanical power output during cycling at a pedalling rate of 120 rev.min(-1) causes significantly higher [K+]v changes than when cycling at 60 rev.min(-1), b) the increase of venous plasma potassium concentration during dynamic incremental exercise is linearly related to the metabolic cost of work expressed by the percentage of VO2max (increase as reported previously by Vollestad et al. J. Physiol. 475: 359-368, 1994), c) there is a tendency towards upward up shift in the [K+]v and % VO2max relation during cycling at 120 rev.min(-1) when compared to cycling at 60 rev.min(-1).  相似文献   

20.
The effect of exercise on the intraerythrocyte cationic concentrations and transmembrane fluxes such as the Na+-K+-adenosinetriphosphatase (ATPase) pump, the Na+-K+ cotransport, and the Na+-Li+ countertransport system was studied in 11 normal male volunteers. All subjects performed an uninterrupted incremental exercise test on a bicycle ergometer, starting at an initial work load of 20% of the subjects' maximal exercise capacity, as determined in a pretest. The work rate was increased with an additional 20% each 6 min up to a final work load of 80%. Blood samples were taken at rest, at 60 and 80% of maximal exercise capacity, and 1, 2, 3, 4, 5, and 30 min after cessation of exercise. At moderate exercise (60% of maximal exercise capacity) the intraerythrocyte potassium concentration was not changed, but at severe exercise (80% of maximal exercise capacity) it was decreased. After exercise the intraerythrocyte potassium concentration returned to base line within 2 min. Exercise did not affect the intraerythrocyte concentrations of sodium and magnesium. The activity of the Na+-K+-ATPase pump and the Na+-K+ cotransport in the erythrocytes during and after exercise was no different from the resting level. The activity of the Na+-Li+ countertransport system on the contrary tended to decrease during exercise. It is concluded that exercise is accompanied by a leakage of potassium out of the erythrocytes without major alterations in the active red cell cationic fluxes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号