首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Glycoprotein (GP) IIb-IIIa is the major fibrinogen receptor on platelets and participates in platelet aggregation at the site of a wound. Integrin alpha v beta 3, which contains an identical beta-subunit, is expressed on endothelial cells and also serves as a fibrinogen receptor. Here, we demonstrate by several criteria that purified GPIIb-IIIa and integrin alpha v beta 3 bind to distinct sites on fibrinogen. First, a plasmin-generated fragment of fibrinogen lacking the RGD sequence at residues 572-574 retained the ability to bind GPIIb-IIIa, but failed to bind integrin alpha v beta 3. Second, a monoclonal antibody which exclusively recognizes the RGD sequence at fibrinogen A alpha chain residues 572-574 abolished interaction between integrin alpha v beta 3 and fibrinogen, but had only a minimal effect on fibrinogen binding to GPIIb-IIIa. Finally, we show that the difference in recognition of sites on fibrinogen by these two integrins is probably a consequence of their remarkably different ligand binding properties. Peptides corresponding to fibrinogen gamma chain residues 400-411 effectively blocked RGD sequence and fibrinogen binding by GPIIb-IIIa, but had no effect on the ability of integrin alpha v beta 3 to bind these ligands. We also show that integrin alpha v beta 3 has a higher affinity than GPIIb-IIIa for a synthetic hexapeptide containing the RGD sequence. In fact, this RGD-containing peptide was 150-fold more effective at blocking fibrinogen binding to integrin alpha v beta 3 than to GPIIb-IIIa. Collectively, our results demonstrate that integrins alpha v beta 3 and GPIIb-IIIa display qualitative and quantitative differences in their ligand binding properties, as is evident by their ability to interact with synthetic peptides. The ultimate result of these differences is the recognition of distinct sites on fibrinogen by the two integrins. These observations may have relevance in the processes of hemostasis and wound healing.  相似文献   

2.
Platelet membrane GPIIbIIIa is a member of the family receptors named integrins that recognize RGD sequences in their ligands. GPIIbIIIa interacts with at least three different adhesive ligands: fibrinogen, fibronectin, and von Willebrand factor. These interactions are inhibited by RGD-containing peptides and by peptides corresponding to a sequence unique to fibrinogen in the COOH-terminal domain of its gamma chain (HLGGAKQAGDV). Two RGD sequences are present in fibrinogen A alpha chain: an RGDS sequence at A alpha 572-575, and an RGDF sequence at A alpha 95-98. Polyclonal antibodies raised against the RGDF sequence and the gamma COOH-terminal domain both reacted specifically with fibrinogen in solid phase enzyme-linked immunosorbent assays and immunoprecipitated the protein in solution. The Fab fragments prepared from these antibodies inhibited fibrinogen-platelet interaction and aggregation. These results demonstrate that these two sequences are both accessible within the fibrinogen molecule and are both implicated in ligand binding and cell-cell interaction. In addition, by further examining the interaction of the gamma chain peptide with platelets, it was found that RGDF and the gamma peptide produced a similar dose-dependent inhibition of the binding of the labeled gamma peptide to ADP-stimulated platelets. These results provide evidence that the RGDF sequence present at the A alpha 95-98 constitutes with the gamma 401-411 sequence two recognition sites interacting with the same site or with mutually exclusive sites on GPIIbIIIa.  相似文献   

3.
We have previously shown that the alpha chain of human fibrinogen interacts directly with ADP-activated human platelets [Hawiger, J., Timmons, S., Kloczewiak, M., Strong, D. D., & Doolittle, R. F. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 2068]. Now, we report that platelet receptor recognition domains are localized on two CNBr fragments of the human fibrinogen alpha chain. They encompass residues 92-147 and 518-584, which inhibit 125I-fibrinogen binding to ADP-stimulated platelets. The inhibitory CNBr fragment alpha 92-147 contains the RGD sequence at residues 95-97. Synthetic peptides encompassing this sequence were inhibitory while peptide 99-113 lacking the RGD sequence was inactive. The synthetic peptide RGDF, corresponding to residues alpha 95-98, inhibited the binding of 125I-fibrinogen to ADP-treated platelets (IC50 = 2 microM). However, the peptides containing sequence RGDF, with residues preceding Arg95 or following Phe98, were less inhibitory. It appears that the sequence alpha 95-98 constitutes a platelet receptor recognition domain which is constrained by flanking residues. The second inhibitory CNBr fragment, alpha 518-584, also contains the sequence RGD at positions 572-574. Synthetic peptides overlapping this sequence were inhibitory, while peptides lacking the sequence RGDS were not reactive. Thus, another platelet reactive site on the alpha chain encompasses residues 572-575 containing sequence RGDS. In conclusion, the platelet receptor recognition domains on the human fibrinogen alpha chain in the amino-terminal and in the carboxy-terminal zones contain the ubiquitous cell recognition sequence RGD shared with other known adhesive proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Yokoyama K  Zhang XP  Medved L  Takada Y 《Biochemistry》1999,38(18):5872-5877
Integrin alpha v beta 3, a widely distributed fibrinogen receptor, recognizes the RGD572-574 motif in the alpha chain of human fibrinogen. However, this motif is not conserved in other species, nor is it required for alpha v beta 3-mediated fibrin clot retraction, suggesting that fibrinogen may have other alpha v beta 3 binding sites. Fibrinogen has conserved C-terminal domains in its alpha (E variant), beta, and gamma chains (designated alpha EC, beta C, and gamma C, respectively), but their function in cell adhesion is not known, except that alpha IIb beta 3, a platelet fibrinogen receptor, binds to the gamma C HHLGGAKQAGDV400-411 sequence. Here we used mammalian cells expressing recombinant alpha v beta 3 to show that recombinant alpha EC and gamma C domains expressed in bacteria specifically bind to alpha v beta 3. Interaction between alpha v beta 3 and gamma C or alpha EC is blocked by LM609, a function-blocking anti-alpha v beta 3 mAb, and by RGD peptides. alpha v beta 3 does not require the HHLGGAKQAGDV400-411 sequence of gamma C for binding, and alpha EC does not have such a sequence, indicating that the alpha v beta 3 binding sites are distinct from those of alpha IIb beta 3. A small fragment of gamma C (residues 148-226) supports alpha v beta 3 adhesion, suggesting that an alpha v beta 3 binding site is located within the gamma chain 148-226 region. We have reported that the CYDMKTTC sequence of beta 3 is responsible for the ligand specificity of alpha v beta 3. gamma C and alpha EC do not bind to wild-type alpha v beta 1, but do bind to the alpha v beta 1 mutant (alpha v beta 1-3-1), in which the CYDMKTTC sequence of beta 3 is substituted for the corresponding beta 1 sequence CTSEQNC. This suggests that gamma C and alpha EC contain determinants for fibrinogen's specificity to alpha v beta 3. These results suggest that fibrinogen has potentially significant novel alpha v beta 3 binding sites in gamma C and alpha EC.  相似文献   

5.
Platelet receptor recognition domains are located on the gamma and alpha chains of human fibrinogen. The former encompasses residues 400-411 [Kloczewiak, M., Timmons, S., Lukas, T. J., & Hawiger, J. (1984) Biochemistry 23, 1767], and the latter is present in two loci on the alpha chain (alpha 95-97 and alpha 572-574) [Hawiger, J., Kloczewiak, M., Bednarek, M. A., & Timmons, S. (1989) Biochemistry (first of three papers in this issue)]. Peptide gamma 400-411 (HHLGGAKQAGDV) inhibited aggregation of ADP-treated platelets mediated not only by gamma-chain but also by alpha-chain multimers. Peptide alpha 572-575 (RGDS) inhibited aggregation of platelets mediated by alpha-chain as well as gamma-chain multimers. These results indicate that the platelet receptor for fibrinogen is isospecific with regard to the domain present on alpha and gamma chains. Subsequent "checkerboard" analysis of combinations of gamma 400-411 and alpha 572-575 showed that the inhibitory effect toward binding of 125I-fibrinogen was additive rather than synergistic. Next, a series of "hybrid" peptides was constructed in which the alpha-chain sequence RGDF (alpha 95-98) replaced the carboxy-terminal segment of gamma 408-411. The dodecapeptide HHLGGAKQRGDF was inhibitory with concentration, causing 50% inhibition of binding (IC50) at 6 microM, 5 times more potent than gamma 400-411. The shorter peptides AKQRGDF and KQRGDF were also more inhibitory than gamma 400-411. The second series of hybrid peptides was constructed with the alpha-chain sequence RGDS preceding the sequence of gamma 400-411 or sequence RGDV following it.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Fibrinogen interactions with vascular endothelial cells are implicated in various physiological and pathophysiological events, including angiogenesis and wound healing. We have shown previously that integrin alpha(5)beta(1) is a fibrinogen receptor on endothelial cells [Suehiro, K., Gailit, J., and Plow, E.F. (1997) J. Biol. Chem. 272, 5360-5366]. In the present study, we have characterized fibrinogen interactions with purified alpha(5)beta(1) and have identified the recognition sequence in fibrinogen for alpha(5)beta(1). The binding of fibrinogen to immobilized alpha(5)beta(1) was selectively supported by Mn(2+). Fibrinogen bound to purified alpha(5)beta(1) in a time-dependent, specific, and saturable manner in the presence of Mn(2+), and the binding was blocked completely by Arg-Gly-Asp (RGD)-containing peptides and by anti-alpha(5) and anti-alpha(5)beta(1) monoclonal antibodies. A monoclonal antibody directed to the C-terminal RGD sequence at Aalpha572-574 significantly inhibited the binding of fibrinogen to alpha(5)beta(1), whereas monoclonal antibodies directed to either the N-terminal RGD sequence at Aalpha95-97 or the C-terminus of the gamma-chain did not. Furthermore, substituting RGE for RGD at position Aalpha95-97 in recombinant fibrinogen had a minimal effect on binding, whereas substituting RGE for RGD at position Aalpha572-574 decreased binding by 90%. These results demonstrate that the C-terminal RGD sequence at Aalpha572-574 is required for the interaction of fibrinogen with alpha(5)beta(1).  相似文献   

7.
The platelet membrane glycoprotein IIb-IIIa complex (GPIIb-IIIa) recognizes peptides containing the amino acid sequence Arg-Gly-Asp, a sequence present at two locations in the alpha chain of fibrinogen. GPIIb-IIIa also interacts with peptides containing the carboxyl-terminal 10-15 residues of the fibrinogen gamma chain. We found that the alpha chain tetrapeptide, Arg-Gly-Asp-Ser (RGDS), and the gamma chain peptide, Leu-Gly-Gly-Ala-Lys-Gln-Ala-Gly-Asp-Val (LGGAKQAG-DV), each inhibited fibrinogen binding to ADP-stimulated platelets with Ki values of 15.6 +/- 2.7 and 46.2 +/- 8.2 microM, respectively. Furthermore, the inhibitory effect of the peptides was additive, indicating that they interact with GPIIb-IIIa in a mutually exclusive manner. Mutually exclusive binding suggests that either the alpha and gamma chain peptides bind to identical or overlapping sites on the GPIIb-IIIa complex or that one peptide induces a change in the complex that excludes the other. To differentiate between these possibilities, we compared the ability of RGDS and LGGAKQAGDV to inhibit the binding of fibrinogen and two GPIIb-IIIa complex-specific monoclonal antibodies, A2A9 and PAC-1, to ADP-stimulated platelets. A2A9 and PAC-1 appear to bind to different sites on GPIIb-IIIa because A2A9 binds to both stimulated and unstimulated platelets while PAC-1 only binds to stimulated platelets. RGDS specifically inhibited fibrinogen and PAC-1 binding with nearly identical Ki values of 15.6 +/- 2.7 and 20.2 +/- 3.5 microM, respectively. In contrast, LGGAKQAGDV had a differential effect on fibrinogen and PAC-1 binding, inhibiting PAC-1 binding with a Ki of 116.1 +/- 12.9 microM and fibrinogen binding with a Ki of 46.2 +/- 8.2 microM (p less than 0.005). Furthermore, while RGDS had no effect on the binding of the monoclonal antibody A2A9, LGGAKQAGDV was a partial inhibitor of A2A9 binding to activated platelets. These results suggest that the bindings sites for RGDS and LGGAKQAGDV are spatially distinct. They also suggest that ligand-induced changes in GPIIb-IIIa conformation are likely to be responsible for the mutually exclusive nature of alpha and gamma chain peptide binding.  相似文献   

8.
C S Chen  S H Chou  P Thiagarajan 《Biochemistry》1988,27(16):6121-6126
The binding of fibrinogen to activated platelets leads to platelet aggregation. Fibrinogen has multiple binding sites to platelet membrane glycoprotein IIb-IIIa complex. At least two well-defined sequences in fibrinogen, Arg-Gly-Asp sequence of A alpha 95-97 and A alpha 572-574 and gamma 400-411, have been shown to interact with glycoprotein IIb-IIIa. A possible binding site on the amino-terminal end of fibrinogen to platelet glycoprotein IIb-IIIa has also been reported. In this paper the effect of synthetic peptides derived from the amino-terminal end of the B beta chain on platelet aggregation and fibrinogen binding has been examined. B beta 15-42 peptide inhibits platelet aggregation and 125I-fibrinogen binding to activated platelets in a dose-dependent manner. Since B beta 15-42 contains a previously identified fibrinogen binding site, B beta 15-18, exposed by thrombin cleavage of native fibrinogen, we also examined the effect of B beta 15-18, B beta 19-42, and B beta 1-14 (fibrinopeptide B) on platelet aggregation and fibrinogen binding. Synthetic fibrinopeptide B and B beta 15-18 had no effect on platelet aggregation and fibrinogen binding while B beta 19-42 retained the inhibitory effect. When fibrinogen is chromatographed on a column of agarose-bound B beta 15-42, a cation-dependent retention of fibrinogen on the peptide column was observed, and fibrinogen was eluted from the column by B beta 15-42 but not by B beta 1-14. Under the same conditions, platelet glycoprotein IIb-IIIa was not retained in the column. Thus, the observed inhibitory effect is due to its interaction with fibrinogen rather than to platelet glycoprotein IIb-IIIa.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Fibrinogen/fibrin and its proteolytic fragments serve as potential adhesive substrates during thrombosis, wound healing, and cancer. In this report we examined the biological response of human melanoma cells exposed to fibrinogen and its naturally occurring plasmic breakdown products that are known constituents of the tumor stroma. Plasmin treatment of fibrinogen first results in fragment X, which is characterized by removal of the COOH-terminal portion of the alpha chain including an RGD sequence (A alpha 572-575). Further digestion leads to fragment D comprising primarily an intact COOH-terminal stretch of the gamma chain containing the platelet adhesion sequence HHLGGAKQAGDV. In a sensitive adhesion assay M21 human melanoma cells utilized integrin alpha v beta 3 to attach to all three of these ligands. However, only intact fibrinogen promoted significant cell spreading, while fragment X produced minimal spreading and fragment D promoted only adhesion. These results indicate that fibrinogen contains at least two alpha v beta 3-dependent adhesive sites and these promote distinct biological responses of human melanoma cells. The differential functional properties of these ligands directly correlate to their relative binding affinity for purified alpha v beta 3 as measured in a solid-phase receptor binding assay. These results provide evidence that a single integrin can promote distinct biological signals depending on the molecular nature of the ligand binding event.  相似文献   

10.
Synthetic peptides corresponding to the extreme COOH terminus of the gamma chain of fibrinogen gamma 400-411, (400)HHLGGAKQAGDV(411), have been used to analyze recognition specificities of the platelet-binding sites for fibrinogen, fibronectin, and von Willebrand factor. gamma 403-411 did not inhibit 125I-fibrinogen binding to platelets. In contrast, gamma 402-411 produced dose-dependent inhibition of fibrinogen binding to ADP and thrombin-stimulated living or fixed cells and was a competitive antagonist. Inhibitory activity was not modified by addition of one (gamma 401-411) or two (gamma 400-411) histidinyl residues to the NH2 terminus, but peptides with a trifluoroacetyl group on the epsilon-amino group of lysine 406 were inactive. 125I-Fibronectin and 125I-von Willebrand factor binding to thrombin-stimulated living or fixed cells was inhibited in the same dose range by the same set of peptides which inhibited fibrinogen binding and not by gamma 403-411 or trifluoroacetate-blocked peptides. The capacity of the peptides to inhibit binding to cells with an expressed receptor, i.e. fixed cells, excludes an effect on receptor induction. Thus, these results suggest that the three adhesive glycoproteins share a common site on thrombin-activated platelets, and a 10-amino acid peptide, corresponding to gamma 402-411, defines the recognition specificity of this site.  相似文献   

11.
The interactions of platelets with fibrinogen mediate a variety of responses including adhesion, platelet aggregation, and fibrin clot retraction. Whereas it was assumed that interactions of the platelet integrin alpha IIb beta 3 with the AGDV sequence in the gamma C-domain of fibrinogen and/or RGD sites in the A alpha chains are involved in clot retraction and adhesion, recent data demonstrated that fibrinogen lacking these sites still supported clot retraction. These findings suggested that an unknown site in fibrinogen and/or other integrins participate in clot retraction. Here we have identified a sequence within gamma C that mediates binding of fibrinogen to platelets. Synthetic peptide duplicating the 365-383 sequence in gamma C, designated P3, efficiently inhibited clot retraction in a dose-dependent manner. Furthermore, P3 supported platelet adhesion and was an effective inhibitor of platelet adhesion to fibrinogen fragments. Analysis of overlapping peptides spanning P3 and mutant recombinant gamma C-domains demonstrated that the P3 activity is contained primarily within gamma 370-383. Integrins alpha IIb beta 3 and alpha 5 beta 1 were implicated in recognition of P3, since platelet adhesion to the peptide was blocked by function-blocking monoclonal antibodies against these receptors. Direct evidence that alpha IIb beta 3 and alpha 5 beta 1 bind P3 was obtained by selective capture of these integrins from platelet lysates using a P3 affinity matrix. Thus, these data suggest that the P3 sequence in the gamma C-domain of fibrinogen defines a previously unknown recognition specificity of alpha IIb beta 3 and alpha 5 beta 1 and may function as a binding site for these integrins.  相似文献   

12.
We demonstrate that unstimulated platelets attach to immobilized fibrinogen in a selective process mediated by the membrane glycoprotein (GP) complex IIb-IIIa (alpha IIb beta 3). The initial attachment, independent of platelet activation, is followed by spreading and irreversible adhesion even in the presence of activation inhibitors. Using fibrinogen fragments derived from plasmin digestion, we found that unstimulated platelets do not attach to immobilized fragment E, which contains an Arg-Gly-Asp sequence at A alpha 95-97, and adhere to fragments X and D, both containing the gamma 400-411 dodecapeptide adhesion sequence, less efficiently than to intact fibrinogen. Thus, the carboxyl terminus of the A alpha chain, missing in the "early" fragment X used in these studies, appears to be involved in the interaction of fibrinogen with unstimulated platelets. In contrast, activated platelets adhere to immobilized fibrinogen and fragments X, D, and E in a time-dependent and equivalent manner. Although activated platelets adhere to immobilized vitronectin, fibronectin, and von Willebrand factor through GP IIb-IIIa, unstimulated platelets fail to adhere to vitronectin and have only a limited capacity to adhere to fibronectin and von Willebrand factor. These results demonstrate that GP IIb-IIIa on unstimulated platelets displays a recognition specificity for attachment to immobilized adhesive proteins that is distinct from that seen following platelet activation. Thus, unstimulated platelets selectively interact with fibrinogen, and the initial attachment is followed by spreading and irreversible adhesion in the absence of exogenous agonists. This process may be regulated by plasmin cleavage of the fibrinogen A alpha chain and may play an important role during normal hemostasis and during the pathological development of thrombotic vascular occlusions.  相似文献   

13.
Binding of the adhesive ligand fibrinogen and the monoclonal antibody PAC1 to platelet glycoprotein (GP) IIb-IIIa is dependent on cell activation and inhibited by Arg-Gly-Asp (RGD)-containing peptides. Previously, we identified a sequence in a hypervariable region of PAC1 (mu-CDR3) that mimics the activity of the antibody. Here we examine whether monoclonal antibodies to this idiotypic determinant in PAC1 can mimic GP IIb-IIIa by binding to fibrinogen. Mice were immunized with a peptide derived from the mu-CDR3 of PAC1. Four antibodies were obtained that recognized fibrinogen as well as a recombinant form of the variable region of PAC1. However, they did not bind to other RGD-containing proteins, including von Willebrand factor, fibronectin, and vitronectin. Several studies suggested that these anti-PAC1 peptide antibodies were specific for GP IIb-IIIa recognition sites in fibrinogen. Three such sites have been proposed: two RGD-containing regions in the A alpha chain, and the COOH terminus of the gamma chain (gamma 400-411). Two of the antibodies inhibited fibrinogen binding to activated platelets, and all four antibodies bound to the fibrinogen A alpha chain on immunoblots. Antibody binding to immobilized fibrinogen was partially inhibited by monoclonal antibodies specific for the two A alpha chain RGD regions. However, the anti-PAC1 peptide antibodies also bound to plasmin-derived fibrinogen fragments X and D100, which contain gamma 400-411 but lack one or both A alpha RGD regions. This binding was inhibited by an antibody specific for gamma 400-411. When fragment D100 was converted to D80, which lacks gamma 400-411, antibody binding was reduced significantly (p less than 0.01). Electron microscopy of fibrinogen-antibody complexes confirmed that each antibody could bind to sites on the A alpha and gamma chains. These studies demonstrate that certain anti-PAC1 peptide antibodies mimic GP IIb-IIIa by binding to platelet recognition sites in fibrinogen. Furthermore, they suggest that the gamma 400-411 region of fibrinogen may exist in a conformation similar to that of an A alpha RGD region of the molecule.  相似文献   

14.
The extreme carboxyl-terminal amino acid sequence of the gamma chain of fibrinogen is involved in the binding of this adhesive protein to the platelet integrin glycoprotein (GP) IIb-IIIa, and synthetic peptides corresponding to this region inhibit fibrinogen as well as fibronectin and von Willebrand factor binding to platelets. A chemical cross-linking approach was used to characterize the interaction of a 16-amino acid fibrinogen gamma chain peptide with platelets and to localize the site of its binding to GPIIb-IIIa. This peptide became specifically cross-linked to GPIIb, and platelet stimulation selectively enhanced its cross-linking to this alpha subunit. The cross-linking reaction was specifically inhibited by fibrinogen and an Arg-Gly-Asp peptide but not by an unrelated protein or a substituted peptide. Utilizing a combination of immunochemical mapping, enzymatic and chemical digestions, and amino acid sequencing, the cross-linking site of the gamma chain peptide in GPIIb was localized to a stretch of 21 amino acids. The identified region, GPIIb 294-314, contains the second putative calcium binding domain within GPIIb. The primary structure of this region is highly conserved among alpha subunits of other integrin adhesion receptors. These results identify a discrete region of GPIIb that resides in close proximity to a ligand binding site within GPIIb-IIIa. The homologous region may be involved in the functions of other integrin receptors.  相似文献   

15.
The cytoadhesins represent a group of RGD receptors that belongs to the integrin superfamily of adhesion molecules. Members of this cytoadhesin family include the platelet GPIIb-IIIa and the vitronectin receptors. These glycoproteins share the same beta-subunit, which is associated with different alpha subunits to form an alpha/beta heterodimer. In the present study, we have analyzed the fine recognition specificy of the cytoadhesins from platelets and endothelial cells for the adhesive protein, fibrinogen. Two sets of synthetic peptides, RGDX peptides and peptides corresponding to the COOH terminus of the fibrinogen gamma chain, were compared for their structure-function relationships in the two cellular systems. The results indicate that: (a) both RGDX and gamma-chain peptides inhibit the binding of fibrinogen to platelets and endothelial cells; (b) a marked influence of the residue at the COOH- and NH2-terminal positions of each peptide set can be demonstrated on the two types; and (c) RGDX and gamma peptides have differential effects on platelets and endothelial cells with respect to fine structural requirements. These results clearly indicate that while the platelet and endothelial cytoadhesins may interact with similar peptidic sequences, they express a different fine structural recognition.  相似文献   

16.
The rate of activation of plasminogen by tissue-type plasminogen activator is greatly increased by fibrin, but not by fibrinogen. A possible explanation for this phenomenon could be that conformational changes take place during the transformation of fibrinogen to fibrin which lead to exposure of sites involved in the accelerated plasmin formation. This is also supported by our recent observation that some enzymatically prepared fragments of fibrinogen and fibrin (D EGTA, D-dimer, Y) and also CNBr fragment 2 from fibrinogen have this property. CNBr fragment 2 consists of amino acid residues A alpha (148-207), B beta (191-224) + (225-242) + (243-305) and gamma 95-265, kept together by disulphide bonds. In order to study the localization of a stimulating site within this structure we purified the chain remnants of CNBr fragment 2 after reduction and carboxymethylation, and found that only A alpha 148-207 was stimulating. This was further confirmed by digesting pure A alpha-chains with CNBr and purifying the resulting A alpha-chain fragments. CNBr digests of B beta- and gamma-chains were not stimulatory. The A alpha-chain remnant (residues 111-197) in D EGTA and D-dimer also comprise the major part (residues A alpha 148-197) of the CNBr A alpha-chain fragment. We conclude that a site capable of accelerating the plasminogen activation by tissue-type plasminogen activator preexists in fibrinogen, that this site becomes exposed upon fibrin formation or disruption of fibrinogen by plasmin or CNBr and that this site is within the stretch A alpha 148-197, which is retained in the A alpha-chain remnants of fibrinogen degradation products.  相似文献   

17.
The carboxyl-terminal residues of mammalian fibrinogens of six different species and the chain peptides, alpha(A), beta(B) and gamma, isolated from these fibrinogens were determined by hydrazinolysis, digestion with carboxypeptidases and selective tritium labelling. The C-terminal ends of bovine fibrinogen and fibrin were identified as proline and valine, in the molar ratio of approximately 1:2. Proline was identified as the C-terminus of the alpha(A)-chain, and C-terminal valine was found on both the beta(B)- and gamma-chains. On hydrazinolysis after selective tritium labelling of fibrinogen, radioactive C-terminal valine was also identified. The same C-terminal ends as those of bovine fibrinogen were found on the corresponding chain peptides isolated from sheep fibrinogen. The C-terminal residues of all the chain peptides of human and horse fibrinogens, however, were valine. In hog and dog fibrinogens, proline was identified at the C-termini of the alpha(A)-chains, and C-terminal valine and isoleucine were found on the beta(B)- and gamma-chains, respectively. Thus, the C-terminal amino acid residues of the fibrinogens of all mammalian species tested were very similar. It should be noted that hydrophobic amino acids, like isoleucine, valine and proline, are mainly located in the C-terminal ends of all three chain peptides in the fibrinogen molecule.  相似文献   

18.
Blood loss at sites of vascular rupture is controlled by the adhesion and aggregation of platelets and the formation of an insoluble fibrin matrix. Fibrinogen is considered to be critical in these processes by both providing an abundant dimeric ligand for alpha IIb beta 3-mediated platelet aggregation, and serving as the fundamental building block of the fibrin polymer. To establish an in vivo model system to examine in detail the importance of alpha IIb beta 3-fibrinogen interactions in platelet function, hemostasis, response to injury and vasoocclusive disease, and to test the prevailing hypothesis that the C-terminal segment of the fibrinogen gamma chain is essential for alpha IIb beta 3 binding, we have used gene-targeting technology in mice to eliminate the last five residues (QAGDV) from the gamma chain. Mice homozygous for the modified gamma chain gene (gamma delta 5/gamma delta 5) displayed a generally normal hematological profile, including normal platelet count, plasma fibrinogen level, clotting time and fibrin crosslinking. However, both gamma delta 5-fibrinogen binding to alpha IIb beta 3 and platelet aggregation were highly defective. Remarkably, another alpha IIb beta 3-dependent process, clot retraction, was unaffected by the gamma delta 5 mutation. Despite the preservation of clotting function, gamma delta 5/gamma delta 5 mice were unable to control blood loss following a surgical challenge and occasionally developed fatal neonatal bleeding events.  相似文献   

19.
Integrin alpha(IIb)beta(3), a platelet fibrinogen receptor, is critically involved in thrombosis and hemostasis. However, how ligands interact with alpha(IIb)beta(3) has been controversial. Ligand-mimetic anti-alpha(IIb)beta(3) antibodies (PAC-1, LJ-CP3, and OP-G2) contain the RGD-like RYD sequence in their CDR3 in the heavy chain and have structural and functional similarities to native ligands. We have located binding sites for ligand-mimetic antibodies in alpha(IIb) and beta(3) using human-to-mouse chimeras, which we expect to maintain functional integrity of alpha(IIb)beta(3). Here we report that these antibodies recognize several discontinuous binding sites in both the alpha(IIb) and beta(3) subunits; these binding sites are located in residues 156-162 and 229-230 of alpha(IIb) and residues 179-183 of beta(3). In contrast, several nonligand-mimetic antibodies (e.g. 7E3) recognize single epitopes in either subunit. Thus, binding to several discontinuous sites in both subunits is unique to ligand-mimetic antibodies. Interestingly, these binding sites overlap with several (but not all) of the sequences that have been reported to be critical for fibrinogen binding (e.g. N-terminal repeats 2-3 but not repeats 4-7, of alpha(IIb)). These results suggest that ligand-mimetic antibodies and probably native ligands may make direct contact with these discontinuous binding sites in both subunits, which may constitute a ligand-binding pocket.  相似文献   

20.
This work characterizes a mutant integrin alpha IIb beta 3 (glycoprotein (GP) IIb-IIIa) from a thrombasthenic patient, ET, whose platelets fail to aggregate in response to stimuli. The nature of defect was defined by the reduced ability of synthetic peptide ligands, corresponding to the carboxyl terminus of the fibrinogen gamma chain (gamma 402-411) and Arg-Gly-Asp (RGD), to increase the binding of the occupancy-dependent anti-LIBS1 antibody to mutant alpha IIb beta 3 and the reduced binding of mutant alpha IIb beta 3 to an immobilized RGD peptide. In addition, ET's platelets failed to bind the ligand-mimetic monoclonal anti-alpha IIb beta 3, PAC1. DNA sequence analysis of amplified ET genomic DNA revealed a single G----A base change which encoded substitution of R214 by Q in mature beta 3. Introduction of this point mutation into recombinant wild type alpha IIb beta 3 expressed in Chinese hamster ovary cells reproduced the ET platelet alpha IIb beta 3 deficits in binding of fibrinogen, mAb PAC1, and synthetic peptide ligands. Furthermore, substitution of R214 by Q in the synthetic peptide containing the sequence of beta 3(211-222) resulted in decreased ability of this peptide to block fibrinogen binding to purified alpha IIb beta 3. These findings suggest that substitution of beta 3 R214 by Q is responsible for the functional defect in alpha IIb beta 3 and that R214 is proximal to or part of a ligand binding domain in alpha IIb beta 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号