首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Mature pollen protoplasts (n) isolated from kanamycin resistant plants of Nicotiana tabacum (2n = 4x = 48) were fused with somatic mesophyll protoplasts (2n) of Nicotiana plumbaginifolia (2n = 20) to produce plants. A total of 3.6·106 mature pollen protoplasts were fused with 7·106 mesophyll protoplasts using a PEG/Ca2+ method. Mature pollen protoplasts did not divide in our culture conditions, and N. plumbaginifolia protoplasts stopped dividing when the protoplast-derived colonies were transferred to a selection medium containing paromomycine (20 mg·l-1). A total of 133 actively growing colonies were recovered on the selection medium containing kanamycin (100 mg·l-1). Plants from twenty resulting cell lines were confirmed as hybrids (17) or cybrids (3) based on leaf and floral morphology and fertility analysis. Isozyme pattern analysis confirmed the nuclear hybrid and cybrid nature, respectively, for 2 and 3 typical gametosomatic selected plants. Root tip squashes of 6 of the gametosomatic hybrid plants revealed chromosome numbers ranging from 44 to 68; the 3 selected cybrid plants had 48 chromosomes. Evidence for organelle transmission from the mesophyll partner in the gametosomatic plants is shown. From the analysis it can be concluded that the gametosomatic fusion involving mature pollen protoplasts (n) carrying a dominant selection marker can be convenient for synthesis of either hybrids or cybrids. Such gametosomatic fusion is therefore considered as a new approach towards the production of androgenetic plants with a choosen cytoplasm.Abbreviations AAT aspartate aminotransferase - BCP bromocresol purple - EST esterase - MES 2-(N-morpholino) ethanesulfonic acid - AP acid phosphatase - PEG polyethyleneglycol - PER peroxydase  相似文献   

2.
Following PEG and high pH induced fusion of haploid tetrad protoplasts of a normal purple flowered variety of P. hybrida with cell suspension protoplasts of a nuclear albino mutant of the variety Blue Lace, triploid gametosomatic hybrid plants were recovered. These hybrids possessed an intermediate floral morphology and the expected chromosome number of 2n=3x=21. Selection was based on the fact that pollen tetrad protoplasts failed to divide in culture and that, following complementation to chlorophyll proficiency in the gametosomatic hybrid, the hybrid cells were visualised against a background of albino cells of the variety Blue Lace. The production of such gametosomatic hybrid plants in Petunia has shown that the concept of gametosomatic hybridisation can be extended to genera other than Nicotiana and that alternative selection strategies are available.Abbreviations BAP 6-benzylaminopurine - IAA 3-indole acetic acid - NAA naphthalene acetic acid - Z zeatin - ABN bromonaphthalene - MS Murashige and Skoog (1962) - MW molecular weight - PEG polyethylene glycol  相似文献   

3.
Summary Somatic hybrid plants were regenerated following calcium-high pH fusion of the unidirectional, sexually incompatible cross of Petunia parodii wild-type leaf mesophyll protoplasts with protoplasts from a cytoplasmic determined chlorophyll-deficient mutant of P. inflata. Genic complementation to chlorophyll synthesis and sustained growth in the selective medium was used to visually identify hybrid calluses. Hybrid calluses were subsequently regenerated to shoots, rooted, and confirmed as somatic hybrids by their intermediate floral and leaf morphology based on comparison to the 2 n = 4 x = 28 sexual counterpart, dominant anthocyanin expression in the corolla, chromosome number, and peroxidase and maleic dehydrogenase isozyme patterns. Certain cytologically stable somatic hybrids displayed aberrant reproductive and floral morphologies including subtle to moderate corolla and leaf pigment variegation, floral dimension changes and reduced pollen viability. In contrast, cytologically unstable somatic hybrids showed various degrees of aneuploidy coupled with corolla splitting, and irregularities in reproductive organs such as double stigmas and styles in addition to reduced pollen viability. Postulated mechanisms to account for these phenotypic changes in stable and unstable somatic hybrids include nuclear-cytoplasmic genomic incompatibility, chromosome loss in a biparental cytoplasm, or a phenomenon similar to hybrid dysgenesis occurring as a result of somatic fusion.Michigan Agricultural Experiment Station Journal Article No. 11376. Supported by Grant No. I-134-79 from BARD — The United States — Israel Binational Agricultural Research and Development Fund, and by grant 11-77-4 from American Florists Endowment  相似文献   

4.
Summary Callus protoplasts of a Nicotiana tabacum chlorophyll-deficient mutant were fused with mesophyll protoplasts from one of following five sources: 4 cmsanalogs of tobacco bearing the cytoplasms of N. plumbaginifolia, N. suaveolens, N. repanda, and N. undulata, respectively, as well as wild species N. glauca. In another series of experiments, callus protoplasts from the chlorophyll-deficient genome Su/Su mutant of tobacco were fused with mesophyll protoplasts of the wild species N. glauca and those of a plastome chlorophyll-deficient tobacco mutant. The screening of hybrids consisted of visual identification followed by mechanical isolation and cloning of heteroplasmic fusion products in microdroplets of nutrient medium. Studies of regenerated plants included the analyses of gross morphology of plants, leaf and flower morphology, analysis of chromosome size and morphology and chromosome numbers, studies of multiple molecular forms of esterase and amylase, analysis of chloroplast DNA restriction patterns and analyses of chlorophyll-deficiency controlled by Su and P genes. The study of progeny of 41 clones representing all species' combinations demonstrated that regenarants of most (63%) clones from intraspecific (for nuclear genes) combinations were cybrid forms, whereas in the case of the fusion N. tabacum + N. glauca, the true nuclear hybrids prevailed and the proportion of cybrids did not exceed 26%. Clones regenerating both hybrid and cybrid plants from the same fusion product were also found.  相似文献   

5.
Intertribal Brassica napus (+) Lesquerella fendleri hybrids have been produced by polyethylene glycol-induced fusions of B. napus hypocotyl and L. fendleri mesophyll protoplasts. Two series of experiments were performed. In the first, symmetric fusion experiments, protoplasts from the two materials were fused without any pretreatments. In the second, asymmetric fusion experiments, X-ray irradiation at doses of 180 and 200 Gy were used to limit the transfer of the L. fendleri genome to the hybrids. X-ray irradiation of L. fendleri mesophyll protoplasts did not suppress the proliferation rate and callus formation of the fusion products but did significantly decrease growth and differentiation of non-fused L. fendleri protoplasts. In total, 128 regenerated plants were identified as intertribal somatic hybrids on the basis of morphological criteria. Nuclear DNA analysis performed on 80 plants, using species specific sequences, demonstrated that 33 plants from the symmetric fusions and 43 plants from the asymmetric fusions were hybrids. Chloroplast and mitochondrial DNA analysis revealed a biased segregation that favoured B. napus organelles in the hybrids from the symmetric fusion experiments. The bias was even stronger in the hybrids from the asymmetric fusion experiments where no hybrids with L. fendleri organelles were found. X-ray irradiation of L. fendleri protoplasts increased the possibility of obtaining mature somatic hybrid plants with improved fertility. Five plants from the symmetric and 24 plants from the asymmetric fusion experiments were established in the greenhouse. From the symmetric fusions 2 plants could be fertilised and set seeds after cross-pollination with B. napus. From the asymmetric fusions 9 plants could be selfed as well as fertilised when backcrossed with B. napus. Chromosome analysis was performed on all of the plants but 1 that were transferred to the greenhouse. Three plants from the symmetric fusions contained 50 chromosomes, which corresponded to the sum of the parental genomes. From the asymmetric fusions, 11 hybrids contained 38 chromosomes. Among the other asymmetric hybrids, plants with 50 chromosomes and with chromosome numbers higher than the sum of the parental chromosomes were found. When different root squashes of the same plant were analysed, a total of 6 plants were found that had different chromosome numbers.  相似文献   

6.
Summary An efficient procedure for obtaining somatic hybrids between B. oleracea and B. campestris has been developed. Hypocotyl protoplasts of B. oleracea were fused with mesophyll protoplasts from three different varieties of B. campestris by the polyethylene glycoldimethylsulfoxide method. The selection of somatic hybrids utilized the inactivation of B. oleracea protoplasts by iodoacetamide (IOA) and the low regeneration ability of B. campestris. The efficiency of recovery of somatic hybrids depended upon the IOA concentration, and when 15 mM IOA was used, 90% of the regenerated plants were found to be hybrid. The somatic hybrids were examined for i) leaf morphology, ii) leucine aminopeptidase (LAP) isozyme and iii) chromosome number. All the hybrids had intermediate leaf morphology and possessed LAP isozymes of both parental species. The chromosome analysis revealed a considerable variation in chromosome number of somatic hybrids, showing the occurrence of multiple fusion and chromosome loss during the culture. Some of the hybrids flowered and set seeds.  相似文献   

7.
Somatic hybrid plants were regenerated following electrofusion between leaf mesophyll protoplasts of P. hybrida (2n = 14) and a wild sexually incompatible species, P. variabilis (2n = 18). The selection of hybrids was based on the hybrid vigour, expressed both in the growth of the callus and at the shoot formation stage, resulting from the combination of parental genomes. Calli exhibiting vigorous growth were selected, and upon transfer to regeneration medium gave rise to shoots. Four regenerated plants from three calli had morphological characteristics intermediate between those of the parents. The hybrid nature of these plants was confirmed by chromosome counts as well as isozyme and DNA analyses. They had amphidiploid chromosome numbers (2n = 32) and were fertile. Following self-pollination and backcrossing with P. variabilis, large numbers of F2 and BC1 seedlings were obtained.  相似文献   

8.
Summary Somatic hybrid plants were regenerated following the fusion of leaf mesophyll protoplasts of P. parodii with those isolated from a nuclear-albino mutant of P. parviflora. Attempts at sexual hybridization of these two species repeatedly failed thus confirming their previously established cross-incompatibility. Selection of somatic hybrid plants was possible since protoplasts of P. parodii would not develop beyond the cell colony stage, whilst those of the somatic hybrid and albino P. parviflora produced calluses. Green somatic hybrid calluses were visible against a background of albino cells/calluses, and upon transfer to regeneration media gave rise to shoots. Shoots and the resultant flowering plants were confirmed as somatic hybrids based on their growth habit, floral pigmentation and morphology, leaf hair structure, chromosome number and Fraction 1 protein profiles. The relevance of such hybrid material for the development of new, and extensively modified cultivars, is discussed.  相似文献   

9.
Summary Somatic hybrid plants between eggplant (Solanum melongena) and Solanum torvum have been produced by the electrofusion of mesophyll protoplasts in a movable multi-electrode fusion chamber. Using hair structure as a selection criteria, we identified a total of 19 somatic hybrids, which represented an overall average of 15.3% of the 124 regenerated plants obtained in the two fusion experiments. Several morphological traits were intermediate to those of the parents, including trichome density and structure, height, leaf form and inflorescence. Cytological analyses revealed that the chromosome numbers of the somatic hybrids approximated the expected tetraploid level (2n=4x=48). Fifteen hybrid plants were homogeneous and had relatively stable chromosome numbers (46–48), while four other hybrids had variable chromosome numbers (35–48) and exhibited greater morphological variation. The hybridity of these 19 somatic hybrid plants was confirmed by analyses of phosphoglucomutase (Pgm) and esterase zymograms.  相似文献   

10.
Summary Tall fescue (Festuca arundinacea Schreb.) protoplasts, inactivated by iodoacetamide, and non-morphogenic Italian ryegrass (Lolium multiflorum Lam.) protoplasts, both derived from suspension cultures, were electrofused and putative somatic hybrid plants were recovered. Two different genotypic fusion combinations were carried out and several green plants were regenerated in one of them. With respect to plant habitus, leaf and inflorescence morphology, the regenerants had phenotypes intermediate between those of the parents. Southern hybridization analysis using a rice ribosomal DNA probe revealed that the regenerants contained both tall fescue- and Italian ryegrass-specific-DNA fragments. A cloned Italian ryegrass-specific interspersed DNA probe hybridized to total genomic DNA from Italian ryegrass and from the green regenerated somatic hybrid plants but not to tall fescue. Chromosome counts and zymograms of leaf esterases suggested nuclear genome instability of the somatic hybrid plants analyzed. Four mitochondrial probes and one chloroplast DNA probe were used in Southern hybridization experiments to analyze the organellar composition of the somatic hybrids obtained. The somatic hybrid plants analyzed showed tall fescue, additive or novel mtDNA patterns when hybridized with different mitochondrial gene-specific probes, while corresponding analysis using a chloroplast gene-specific probe revealed in all cases the tall fescue hybridization profile. Independently regenerated F. arundinacea (+) L. multiflorum somatic hybrid plants were successfully transferred to soil and grown to maturity, representing the first flowering intergeneric somatic hybrids recovered in Gramineae.  相似文献   

11.
Summary Somatic hybrid plants were produced by fusion of birdsfoot trefoil (Lotus corniculatus) cv Leo and L. conimbricensis Willd. protoplasts. Birdsfoot trefoil etiolated hypocotyl protoplasts were inactivated with iodoacetate to inhibit cell division prior to fusion with L. conimbricensis suspension culture protoplasts. L. conimbricensis protoplasts divided to form callus which did not regenerate plants. Thus, plant regeneration from protoplast-derived callus was used to tentatively identify somatic hybrid cell lines. Plants regenerated from three cell lines exhibited additive combinations of parental isozymes of phosphoglucomutase, and L. conimbricensis-specific esterases indicating that they were somatic hybrids. The somatic chromosome number of one somatic hybrid was 36. The other somatic hybrid exhibited variable chromosome numbers ranging from 33 to 40. These observations approximate the expected combination of the birdsfoot trefoil (2n=4x=24) and L. conimbricensis (2n=2x=12) genomes. Somatic hybrid flowers were less yellow than birdsfoot trefoil flowers and had purple keel tips, a trait inherited from the white flowered L. conimbricensis. Somatic hybrids also had inflorescence structure that was intermediate to the parents. Fifteen somatic hybrid plants regenerated from the three callus lines were male sterile. Successul fertilization in backcrosses with birdsfoot trefoil pollen has not yet been obtained suggesting that the hybrids are also female sterile. This is the first example of somatic hybridization between these two sexually incompatible Lotus species.Formerly USDA-ARS, St. Paul, Minn, USA  相似文献   

12.
Following PEG and high pH induced fusion, intraspecific gametosomatic hybrid plants (pollen tetrad protoplasts of a normal purple flowered variety of P. hybrida fused with cell suspension protoplasts of a nuclear albino mutant of the variety Blue Lace) and interspecific gametosomatic hybrid plants (tetrad protoplasts (as above) fused with cell suspension protoplasts of a nuclear albino mutant of P. parviflora) were recovered. Hybrid plants of both combinations possessed an intermediate vegetative and floral morphology with chromosome numbers of 2n=3x=21 and 2n=3x=25 respectively. Hybrid cells were in both systems identified as green colonies against an albino background as a result of complementation to chlorophyll proficiency. Pollen tetrad protoplasts did not divide. The production of such plants at the intra- and interspecific level in Petunia has shown that the concept of gametosomatic hybridisation can be extended to genera other than Nicotiana. An alternative selection strategy is available to that as used earlier for Nicotiana.  相似文献   

13.
Somatic hybrid plants were produced by fusion of protoplasts from cell cultures of the Nicotiana tabacum L. sulfur mutant Su/Su and from leaf mesophyll of Nicotiana glauca Graham. After fusion the N. glauca protoplasts failed to survive under the selected culture condition. From the hybrid cells light green shoots were produced. The hybrid plants exhibited intermediate characters between parental species with respect to leaf morphology, trichome density, floral structure and flower color. The chromosome number of 25 hybrid plants was 2n = 72 and both N. glauca and N. tabacum chromosomes were identified in the hybrids. Results of isoenzyme analysis showed bands of both parents and a specific (hybrid) band for aspartate amino-transferase. Small subunit fraction-1-protein of somatic hybrids also consisted of the sum of N. glauca and N. tabacum bands. Leaf spot formation associated with the Su locus of N. tabacum was observed in somatic hybrids.  相似文献   

14.
Summary Mesophyll protoplasts of eggplant (cv Black Beauty) and of Solanum torvum (both 2n=2x=24) were fused using a modification of the Menczel and Wolfe PEG/DMSO procedure. Protoplasts post-fusion were plated at 1 × 105/ml in modified KM medium, which inhibited division of S. torvum protoplasts. One week prior to shoot regeneration, ten individual calluses had a unique light-green background and were verified as cell hybrids by the presence of the dimer isozyme patterns for phosphoglucoisomerase (PGI) and glutamate oxaloacetate transaminase (GOT). Hybridity was also confirmed at the plant stage by DNA-DNA hybridization to a pea 45S ribosomal RNA gene probe. The ten somatic hybrid plants were established in the greenhouse and exhibited intermediate morphological characteristics such as leaf size and shape, flower size, shape, color and plant stature. Their chromosome number ranged from 46–48 (expected 2n=4x=48) and pollen viability was 5%–70%. In vitro shoots taken from the ten hybrid plants exhibited resistance to a verticillium wilt extract. Total DNA from the ten hybrids was restricted and hybridized with a 5.9 kb Oenothera chloroplast cytochrome f gene probe, a 2.4 kb EcoRI clone encoding mitochondrial cytochrome oxidase subunit II from maize and a 22.1 kb Sal I mitochondrial clone from Nicotiana sylvestris. Southern blot hybridization patterns showed that eight of ten somatic hybrids contained the eggplant cpDNA, while two plants contained the cpDNA hybridization patterns of both parents. The mtDNA analysis revealed the presence of novel bands, loss of some specific parental bands and mixture of specific bands from both parents in the restriction hybridization profiles of the hybrids.Michigan Agricultural Experiment Station Journal Article No. 12545  相似文献   

15.
Protoplast fusion using polyethylene glycol (PEG) was conducted to combine Citrus sinensis (L.) Osbeck cv. Hamlin sweet orange protoplasts, isolated from nucellus-derived embryogenic callus with Atalantia ceylanica (Arn.) Oliv, leaf protoplasts. Five plants regenerated from independent fusion events following protoplast culture were identified as intergeneric allotetraploid somatic hybrids of Hamlin sweet orange and A. ceylanica, and confirmed by isozyme analysis and chromosome number determination in root tip cells (2n=4x=36). Two different types of leaf morphology were observed among the hybrids (normal and narrow), although no differences in chromosome number nor isozyme banding patterns were observed. This is the first report of the production of hybrid plants between these sexually incompatible genera.Florida Agricultural Experiment Station Journal Series No. R-03069.  相似文献   

16.
Summary Somatic hybrid plants regenerated following the fusion of leaf mesophyll protoplasts of Petunia parodii with those isolated from a cell suspension of albino P. inflata. These two species exhibit a unilateral cross-incompatability with a pre-zygotic mode of reproductive isolation preventing hybridizations with P. inflata as the maternal parent. Selection of somatic hybrids relied on the fact that unfused or homokaryon protoplasts of P. parodii did not develop beyond the cell colony stage while those of the putative somatic hybrids and albino P. inflata parent produced callus. Green somatic hybrid calluses were readily identified against the white background of P. inflata following complementation to chlorophyll synthesis proficiency and continued growth in hybrid cells. Shoots, and ultimately flowering plants, were identified as somatic hybrids based on their floral morphology and colour, chromosome number and the fact that they segregated for parental characters. The frequency of somatic hybrid production was comparable to that previously established for two sexually compatible Petunia species.  相似文献   

17.
Summary Asymmetric somatic hybrids of Lycopersicon esculentum and Lycopersicon peruvianum were obtained by fusion of leaf protoplasts from both species after irradiation of protoplasts or leaf tissue of L. peruvianum with 50, 300, or 1,000 Gy of gamma-rays. These radiation doses were sufficient to abolish the growth of the L. peruvianum protoplasts. The hybrids were selected for their ability to regenerate plants; this regeneration capacity derived from L. peruvianum. All asymmetric hybrid plants were aneuploid. The ploidy level, the morphology, and the regeneration rate were analyzed in relation to the radiation dose applied to L. peruvianum. After a low dose (50 Gy), most hybrids had near-triploid chromosome numbers, whereas after a high dose (300 or 1,000 Gy), most hybrids had near-pentaploid numbers. The morphology of the asymmetric hybrids was intermediate between that of L. esculentum and symmetric somatic hybrids of both species (obtained without irradiation treatment), and approached the morphology of L. esculentum to a greater extent after a high dose of irradiation. The asymmetric hybrids regenerated more slowly than the symmetric hybrids and regeneration proceeded more slowly after a high dose than after a low dose of irradiation. The high-dose hybrids also grew more slowly, flowered less, and set fruits less than the low-dose hybrids. No seeds could be obtained from any asymmetric hybrid.  相似文献   

18.
Summary Somatic hybrid plants have been regenerated following polyethylene glycol mediated fusion of leaf mesophyll protoplasts from tomato and protoplasts from Lycopersicon pennellii callus. Three different cultivars of tomato were used as sources of protoplasts: Early Girl, Manapal, and UC82B. Fusions were performed between protoplasts of these tomato cultivars and protoplasts of L. pennellii, and between protoplasts of the cultivars and protoplasts of L. pennellii that had been exposed to 3 or 6 krads of gamma radiation. Somatic hybrid plants were identified on the basis of heterozygous isozyme banding patterns, and leaf and flower morphology. Somatic hybrid plants were regenerated following fusion of tomato protoplasts with either untreated or irradiated L. pennellii protoplasts. All were heterozygous for isozyme loci on five different chromosomes. Regenerated somatic hybrids showed inheritance of either or both parental chloroplast genomes, but predominantly the L. pennellii mitochondrial genome. The regenerated somatic hybrid plants exhibited reduced fertility, less than 20% viable pollen. A total of 34 somatic hybrid calli were identified. Of these, 21 regenerated shoots, and 7 produced seed following manual pollinations.  相似文献   

19.
Summary Protoplasts of 6-azauracil (AU) resistant cell lines of Solanum melongena L. were fused with protoplasts of S. sisymbriifolium Lam. to create somatic hybrids between these sexually-incompatible species. Following fusion, colonies were selected which were capable of growth in medium containing 1mM AU. These colonies were placed on medium containing zeatin which had been shown to stimulate anthocyanin production during shoot organogenesis in tissue explants of S. sisymbriifolium but not in S. melongena. A total of 37 anthocyanin-producing colonies were identified from which 26 hybrid plants were regenerated. The morphological traits intermediate to those of the parents included: flower colour, leaf shape, and trichome density. Cytogenetic analysis revealed that all hybrids were aneuploids but their chromosome numbers were close to the expected number of 48. Isozyme analysis revealed that nuclear genes of both parents were expressed in the hybrids. In addition, isoelectric focussing of the large subunit of ribulose 1,5-bisphosphate carboxylase (Rubisco) provided evidence that each hybrid expressed only the S. sisymbriifolium chloroplast genome. All hybrids regenerated thus far have been sterile.Contribution No. 787 Ottawa Research Station  相似文献   

20.
Summary Somatic hybrid plants of various ploidy levels obtained after chemical fusion between two dihaploid clones of potato Solanum tuberosum L. have been analysed by cytological, morphological and molecular methods. The hybrid nature of tetraploid and hexaploid plants and the genome dosage in hexaploid hybrids were confirmed by Giemsa C-banding. Tetraploid and hexaploid hybrids showed numerical as well as structural chromosome mutations. The latter occurred mainly in the nuclear organizing chromosome. The tetraploid hybrids were more vigorous than the dihaploid parents as demonstrated by an increase in height, enlargement of leaves, increase in the number of internodes, restored potential for flowering and increased tuber yield. The grouping of tetraploid somatic hybrids into various classes on the basis of leaf morphology revealed that plants with a full chromosome complement were more uniform than aneuploids. Many hexaploid somatic hybrids were also more vigorous than the dihaploid parents and could be grouped into two different classes on the basis of floral colour and tuber characteristics, the differences being due to their different dosage of parental genomes. Most of the tetraploid somatic hybrids showed pollen development halted at the tetrad stage as one of the parental clones contained a S. Stoloniferum cytoplasm. However, one tetraploid plant produced pollen grains with high viability. The chloroplast genome in the hybrid plants was determined by RFLP analysis. All of the hybrids had a cpDNA pattern identical to one parent, which contained either S. Tuberosum or S. Stoloniferum cpDNA. A slight preference for S. Tuberosum plastids were observed in hybrid plants. No correlation between pollen development and plastid type could be detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号