首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Boege K 《Oecologia》2005,143(1):117-125
Traits influencing plant quality as food and/or shelter for herbivores may change during plant ontogeny, and as a consequence, influence the amount of herbivory that plants receive as they develop. In this study, differences in herbivore density and herbivory were evaluated for two ontogenetic stages of the tropical tree Casearia nitida. To assess plant ontogenetic differences in foliage quality as food for herbivores, nutritional and defensive traits were evaluated in saplings and reproductive trees. Predatory arthropods were quantified and the foraging preferences of a parasitoid wasp of the genus Zacremnops were assessed. In addition, survival rates of lepidopteran herbivores (Geometridae) were evaluated experimentally. Herbivore density was three times higher and herbivory was 66% greater in saplings than in reproductive trees. Accordingly, concentrations of total foliar phenolics were higher in reproductive trees than in saplings, whereas leaf toughness, water and nitrogen concentration did not vary between ontogenetic stages. Survival rates of lepidopteran larvae exposed to natural enemies were equivalent in reproductive trees and saplings. Given the greater herbivore density on saplings, equal survival rates implied a greater foraging effort of predators on reproductive trees. Furthermore, observed foraging of parasitoid wasps was restricted to reproductive trees. I propose that herbivore density, and as a consequence, leaf damage were lower in reproductive trees than in saplings due to both traits influencing food quality, and architectural or unmeasured indirect defensive traits influencing foraging preference of natural enemies of herbivores.  相似文献   

2.
Small scale distribution of insect root herbivores may promote plant species diversity by creating patches of different herbivore pressure. However, determinants of small scale distribution of insect root herbivores, and impact of land use intensity on their small scale distribution are largely unknown. We sampled insect root herbivores and measured vegetation parameters and soil water content along transects in grasslands of different management intensity in three regions in Germany. We calculated community-weighted mean plant traits to test whether the functional plant community composition determines the small scale distribution of insect root herbivores. To analyze spatial patterns in plant species and trait composition and insect root herbivore abundance we computed Mantel correlograms. Insect root herbivores mainly comprised click beetle (Coleoptera, Elateridae) larvae (43%) in the investigated grasslands. Total insect root herbivore numbers were positively related to community-weighted mean traits indicating high plant growth rates and biomass (specific leaf area, reproductive- and vegetative plant height), and negatively related to plant traits indicating poor tissue quality (leaf C/N ratio). Generalist Elaterid larvae, when analyzed independently, were also positively related to high plant growth rates and furthermore to root dry mass, but were not related to tissue quality. Insect root herbivore numbers were not related to plant cover, plant species richness and soil water content. Plant species composition and to a lesser extent plant trait composition displayed spatial autocorrelation, which was not influenced by land use intensity. Insect root herbivore abundance was not spatially autocorrelated. We conclude that in semi-natural grasslands with a high share of generalist insect root herbivores, insect root herbivores affiliate with large, fast growing plants, presumably because of availability of high quantities of food. Affiliation of insect root herbivores with large, fast growing plants may counteract dominance of those species, thus promoting plant diversity.  相似文献   

3.
Spatial variation in ecological systems can arise both as a consequence of variation in the quality and availability of resources and as an emergent property of spatially structured interactions. We used a spatially explicit model to simulate populations of herbivore hosts and their parasitoids in landscapes with different levels of variance in plant patch quality and different spatial arrangements of high‐ and low‐quality plant patches. We found that even small variation in patch quality at a fine spatial scale decreased overall herbivore populations, as parasitoid populations on low‐quality plant patches were subsidized by those from high‐quality neighbors. On landscapes with large, homogeneous regions of high‐ and low‐quality plant patches, herbivore populations increased with variation in patch quality. Overall, our results demonstrate that local variation in resource quality profoundly influences global population dynamics. In particular, fine‐scale variation in plant patch quality enhanced biological control of herbivores by parasitoids, suggesting that adding back plant genetic variation into perennial production systems may enhance the biological control of herbivores by their natural enemies.  相似文献   

4.
Although bacterial endosymbioses are common among phloeophagous herbivores, little is known regarding the effects of symbionts on herbivore host selection and population dynamics. We tested the hypothesis that plant selection and reproductive performance by a phloem-feeding herbivore (potato psyllid, Bactericera cockerelli) is mediated by infection of plants with a bacterial endosymbiont. We controlled for the effects of herbivory and endosymbiont infection by exposing potato plants (Solanum tuberosum) to psyllids infected with “Candidatus Liberibacter solanacearum” or to uninfected psyllids. We used these treatments as a basis to experimentally test plant volatile emissions, herbivore settling and oviposition preferences, and herbivore population growth. Three important findings emerged: (1) plant volatile profiles differed with respect to both herbivory and herbivory plus endosymbiont infection when compared to undamaged control plants; (2) herbivores initially settled on plants exposed to endosymbiont-infected psyllids but later defected and oviposited primarily on plants exposed only to uninfected psyllids; and (3) plant infection status had little effect on herbivore reproduction, though plant flowering was associated with a 39% reduction in herbivore density on average. Our experiments support the hypothesis that plant infection with endosymbionts alters plant volatile profiles, and infected plants initially recruited herbivores but later repelled them. Also, our findings suggest that the endosymbiont may not place negative selection pressure on its host herbivore in this system, but plant flowering phenology appears correlated with psyllid population performance.  相似文献   

5.
Nora Underwood 《Oikos》2010,119(12):1993-1999
Net intraspecific density dependence experienced by insect herbivores at the scale of single plants can be a function both of induced resistance in the plant and other interactions among individual herbivores. Theory suggests that non‐linearity in the form of this density dependence can influence the effects of plants on herbivore population dynamics. This study examined both net density dependence at the scale of single plants, and changes in plant quality with herbivore density for Spodoptera exigua caterpillars on tomato plants. One experiment measured the growth of caterpillars moving freely about the plant at different densities, the distribution of damage by these caterpillars, and the quality of the plant as food for caterpillars (growth of caterpillars on undamaged leaf tissue excised from the plant). A second experiment measured plant quality for plants with different amounts of damage by caterpillars confined to particular leaves in mesh bags. Growth of S. exigua caterpillars was found to be negatively density dependent, and this was in part due to decreases in plant quality both as herbivore density increased and as the amount of damage increased. The response of plant quality to herbivores was found to have non‐linear features; there was both a threshold below which no significant decreases in quality (as measured by herbivore growth) occurred, and the decrease in herbivore performance saturated at the highest damage levels. In addition, it was found that caterpillar damage was significantly more aggregated than expected when multiple caterpillars occupy a single plant. This study confirms that host plants have the potential to be a source of density dependence that affects herbivore performance.  相似文献   

6.
Most forests are exposed to anthropogenic management activities that affect tree species composition and natural ecosystem processes. Changes in ecosystem processes such as herbivory depend on management intensity, and on regional environmental conditions and species pools. Whereas influences of specific forest management measures have already been addressed for different herbivore taxa on a local scale, studies considering effects of different aspects of forest management across different regions are rare. We assessed the influence of tree species composition and intensity of harvesting activities on arthropod herbivores and herbivore-related damage to beech trees, Fagus sylvatica, in 48 forest plots in three regions of Germany. We found that herbivore abundance and damage to beech trees differed between regions and that – despite the regional differences - density of tree-associated arthropod taxa and herbivore damage were consistently affected by tree species composition and harvest intensity. Specifically, overall herbivore damage to beech trees increased with increasing dominance of beech trees – suggesting the action of associational resistance processes – and decreased with harvest intensity. The density of leaf chewers and mines was positively related to leaf damage, and several arthropod groups responded to beech dominance and harvest intensity. The distribution of damage patterns was consistent with a vertical shift of herbivores to higher crown layers during the season and with higher beech dominance. By linking quantitative data on arthropod herbivore abundance and herbivory with tree species composition and harvesting activity in a wide variety of beech forests, our study helps to better understand the influence of forest management on interactions between a naturally dominant deciduous forest tree and arthropod herbivores.  相似文献   

7.
Herbivory is a fundamental process that controls primary producer abundance and regulates energy and nutrient flows to higher trophic levels. Despite the recent proliferation of small‐scale studies on herbivore effects on aquatic plants, there remains limited understanding of the factors that control consumer regulation of vascular plants in aquatic ecosystems. Our current knowledge of the regulation of primary producers has hindered efforts to understand the structure and functioning of aquatic ecosystems, and to manage such ecosystems effectively. We conducted a global meta‐analysis of the outcomes of plant–herbivore interactions using a data set comprised of 326 values from 163 studies, in order to test two mechanistic hypotheses: first, that greater negative changes in plant abundance would be associated with higher herbivore biomass densities; second, that the magnitude of changes in plant abundance would vary with herbivore taxonomic identity. We found evidence that plant abundance declined with increased herbivore density, with plants eliminated at high densities. Significant between‐taxa differences in impact were detected, with insects associated with smaller reductions in plant abundance than all other taxa. Similarly, birds caused smaller reductions in plant abundance than echinoderms, fish, or molluscs. Furthermore, larger reductions in plant abundance were detected for fish relative to crustaceans. We found a positive relationship between herbivore species richness and change in plant abundance, with the strongest reductions in plant abundance reported for low herbivore species richness, suggesting that greater herbivore diversity may protect against large reductions in plant abundance. Finally, we found that herbivore–plant nativeness was a key factor affecting the magnitude of herbivore impacts on plant abundance across a wide range of species assemblages. Assemblages comprised of invasive herbivores and native plant assemblages were associated with greater reductions in plant abundance compared with invasive herbivores and invasive plants, native herbivores and invasive plants, native herbivores and mixed‐nativeness plants, and native herbivores and native plants. By contrast, assemblages comprised of native herbivores and invasive plants were associated with lower reductions in plant abundance compared with both mixed‐nativeness herbivores and native plants, and native herbivores and native plants. However, the effects of herbivore–plant nativeness on changes in plant abundance were reduced at high herbivore densities. Our mean reductions in aquatic plant abundance are greater than those reported in the literature for terrestrial plants, but lower than aquatic algae. Our findings highlight the need for a substantial shift in how biologists incorporate plant–herbivore interactions into theories of aquatic ecosystem structure and functioning. Currently, the failure to incorporate top‐down effects continues to hinder our capacity to understand and manage the ecological dynamics of habitats that contain aquatic plants.  相似文献   

8.
Abstract.  1. Herbivory can induce resistance in a plant and the induced phenotype may be disfavoured by subsequent herbivores. Yet, as the distance between plants in a population increases, limited mobility may make a herbivore more likely to feed and oviposit on host plants in its immediate surroundings.
2. The present study tested whether a herbivore's preference and distribution across plants with different induced phenotypes was influenced by the spatial distribution of plants. A fragmented population of Solanum dulcamara plants was created. This consisted of discrete, spatially separated patches with different histories of damage, either herbivory from adult flea beetles ( Psylliodes affinis ), tortoise beetles ( Plagiometriona clavata ), or mechanical damage. Each patch was separated by 7 m and consisted of 12 plants that were spaced 30 cm apart. Then a fixed number of adult tortoise beetles were introduced to each patch, and movement and oviposition within and between spatially separate homogeneous patches (receiving one type of damage) were compared with movement and oviposition within heterogeneous patches (containing all three types of damage) over the growing season.
3. Flea beetle and tortoise beetle herbivory consistently induced different phytochemical responses in S. dulcamara (polyphenol oxidase and peroxidase), and adult tortoise beetles avoided oviposition on the flea beetle induced plants within heterogeneous patches. However, between homogeneous patches, plant phenotype did not influence oviposition. Colonisation by naturally occurring flea beetle adults followed a similar pattern.
4. These results suggest that the heterogeneity of plant phenotypes can influence herbivore choice and distribution at small but not large spatial scales.  相似文献   

9.
Models of the dynamics of large herbivore populations represent density feedbacks on the population growth rate either directly or indirectly through interactions with vegetation resources. Neither approach incorporates the spatial heterogeneity that is an essential feature of most natural environments, and modifies the population dynamics generated. This is especially true for large herbivores exploiting food resources that are rooted in space but temporally variable in quantity and quality both seasonally and annually. In this review I explore how environmental variation at different spatiotemporal scales influences the abundance of herbivore populations controlled via resources, predators or social mechanisms. Changes in abundance can be spatially disparate and dependent on different resource components at different stages of the seasonal cycle, including buffer resources restricting population crashes in extremely adverse years. GPS telemetry enables movement responses generating spatial patterns to be documented in fine spatiotemporal detail, including migration and dispersal. Models incorporating spatial heterogeneity either implicitly or explicitly are outlined, exemplifying how herbivores cope with temporal variability by exploiting spatial variability in resources and conditions. Global human dominance is generating widened climatic variation while opportunities for herbivore movements are becoming constricted. Theoretical population ecologists need to shift their focus from the workings of demographic structure towards effects of changing environmental contexts, in order to project the likely trajectories of large herbivore populations through the Anthropocene.  相似文献   

10.
Helms SE  Hunter MD 《Oecologia》2005,145(2):196-203
In the attempt to use results from small-scale studies to make large-scale predictions, it is critical that we take into account the greater spatial heterogeneity encountered at larger spatial scales. An important component of this heterogeneity is variation in plant quality, which can have a profound influence on herbivore population dynamics. This influence is particularly relevant when we consider that the strength of density dependence can vary among host plants and that the strength of density dependence determines the difference between exponential and density- dependent growth. Here, we present some simple models and analyses designed to examine the impact of variable plant quality on the dynamics of insect herbivore populations, and specifically the consequences of variation in the strength of density dependence among host plants. We show that average values of herbivore population growth parameters, calculated from plants that vary in quality, do not predict overall population growth. Furthermore, we illustrate that the quality of a few individual plants within a larger plant population can dominate herbivore population growth. Our results demonstrate that ignoring spatial heterogeneity that exists in herbivore population growth on plants that differ in quality can lead to a misunderstanding of the mechanisms that underlie population dynamics.  相似文献   

11.
Although chemical predator cues often lead to changes in the anti-predator behavior of animal prey, it is not clear whether non-volatile herbivore kairomones (i.e. incidental chemical cues produced by herbivore movement or metabolism but not produced by an attack) trigger the induction of defense in plants prior to attack. I found that unwounded plants (Brassica nigra) that were regularly exposed to kairomones from snails (mucus and feces produced during movement of Helix aspersa) subsequently experienced reduced rates of attack by snails, unlike unwounded plants that received only one initial early exposure to snail kairomones. A follow-up experiment found that mucus alone did not affect snail feeding on previously harvested B. oleracea leaves, suggesting that changes in herbivory on B. nigra were due to changes in plant quality. The finding that chemicals associated with herbivores leads to changes in palatability of unwounded plants suggests that plants eavesdrop on components of non-volatile kairomones of their snail herbivores. Moreover, this work shows that the nature of plant exposure matters, supporting the conclusion that plants that have not been attacked or wounded nonetheless tailor their use of defenses based on incidental chemical information associated with herbivores and the timing with which cues of potential attack are encountered.  相似文献   

12.
In this paper, we address the question whether and through which mechanisms herbivores can induce spatial patterning in savanna vegetation, and how the role of herbivory as a determinant of vegetation patterning changes with herbivore density and the pre-existing pattern of vegetation. We thereto developed a spatially explicit simulation model, including growth of grasses and trees, vertical zonation of browseable biomass, and spatially explicit foraging by grazers and browsers. We show that herbivores can induce vegetation patterning when two key assumptions are fulfilled. First, herbivores have to increase the attractiveness of a site while foraging so that they will revisit this site, e.g. through an increased availability or quality of forage. Second, foraging should be spatially explicit, e.g. when foraging at a site influences vegetation at larger spatial scales or when vegetation at larger spatial scales influences the selection and utilisation of a site. The interaction between these two assumptions proved to be crucial for herbivores to produce spatial vegetation patterns, but then only at low to intermediate herbivore densities. High herbivore densities result in homogenisation of vegetation. Furthermore, our model shows that the pre-existing spatial pattern in vegetation influences the process of vegetation patterning through herbivory. However, this influence decreases when the heterogeneity and dominant scale of the initial vegetation decreases. Hence, the level of adherence of the herbivores to forage in pre-existing patches increases when these pre-existing patches increase in size and when the level of vegetation heterogeneity increases. The findings presented in this paper, and critical experimentation of their ecological validity, will increase our understanding of vegetation patterning in savanna ecosystems, and the role of plant–herbivore interactions therein.  相似文献   

13.
Understanding the ways that resource heterogeneity shapes the performance of individuals and the dynamics of populations offers a central challenge in contemporary ecology. Emerging evidence shows that herbivores track heterogeneity in nutritional quality of vegetation by responding to phenological differences in plants, differences that result from spatial and temporal variation in conditions favoring plant growth. Theory predicts that when spatial variation in temperature, nutrients, or moisture results in spatially asynchronous pulses of plant growth, herbivores are able to prolong the period during which they have access to forage of peak nutritional value. Although this idea has substantial support from observational and modeling studies, it has not been examined experimentally. We hypothesized that access to asynchronous resources enhances nutritional status and growth of herbivores and that the magnitude of this effect depends on the scale of access relative to the grain of resources. We tested these hypotheses in mesocosm experiment using the migratory grasshopper, Melanoplus sanguinipes, feeding on young wheat and protein-rich bran as a model system. We demonstrated access to asynchronous pulses in resources enhanced the efficiency of use of high quality resource use and increased growth of individuals by 13%. Disruption of this mechanism when landscapes were fragmented lowered efficiency of resource use and caused growth of individuals to decline by 15%. However, the strength of the effects of fragmentation on herbivore performance depended on the spatial extent of fragmentation relative to the spatial and temporal grain of resource emergence. Our findings add experimental support to modeling and observational studies that have linked herbivore performance to spatial and temporal variation in plant phenology. We also offer evidence that fragmentation can impair herbivore performance, even when the total amount and quality of resources on landscapes remains unchanged.  相似文献   

14.
Abstract Little attention has been paid to the impact that constitutive and inducible plant resistance traits will have on herbivore spatial dynamics. We investigate mathematical models in which herbivore demographic rates and movement rates respond to host plant quality, which in turn is determined by constitutive and inducible resistance. Models with and without induced resistance yield the same analytic expression for the asymptotic speed at which a herbivore population will spread through an initially uninduced plant population, suggesting that induced resistance will have no effect on the rate of invasion of herbivores that respond to plant resistance on small spatial scales. In contrast, constitutive resistance will influence the speed of an invasion. If herbivore movement is quite sensitive to plant quality, an increase in constitutive resistance can actually accelerate the rate of herbivore spread even while it reduces the herbivore's intrinsic rate of increase. In other scenarios, the rate of invasion attains a maximum at intermediate levels of constitutive resistance. These results argue that our view of plant resistance should be broadened to include herbivore movement if we are to understand fully the implications of differences in resistance for the dynamics of herbivore populations in natural and managed settings.  相似文献   

15.
Interactions between plants and herbivores often vary on a geographic scale. Although theory about plant defenses and tolerance is predicated on temporal or spatial variation in herbivore damage, no single study has compared the pattern of herbivory, plant defenses and tolerance to herbivory of a single species across a latitudinal gradient. In 2002–2005 we surveyed replicate salt marshes along the Atlantic coast of the United States from Florida to Maine. At each field site we scored leaves of Iva frutescens for herbivore damage. In laboratory experiments we measured constitutive resistance and induced resistance in I. frutescens from high and low latitude sites along the Atlantic Coast. In another common garden experiment we studied tolerance to herbivory of I. frutescens from various sites. Theory predicts that constitutive resistance should matter more when damage is high, and induced resistance when herbivory is high but variable. In the field, average levels of herbivore damage, and spatial and temporal variation in herbivore damage were all greater at low versus high latitudes, indicating that constitutive as well as induced resistance should be stronger at low latitudes. Consistent with this prediction, constitutive resistance to herbivory was stronger at low latitudes. Induced resistance to herbivores was also stronger at low latitudes: it was deployed faster and lasted longer. Theory also predicts that tolerance to herbivory should be greater where average herbivory damage is greater; however, tolerance to herbivory in Iva did not depend on geographic origin. Our results emphasize the value of considering multiple ways in which plants respond to herbivores when examining geographic variation in plant–herbivore interactions.  相似文献   

16.
Kim TN  Holt RD 《Oecologia》2012,168(4):997-1012
Disturbance is a major source of spatial and temporal heterogeneity. In fire-maintained systems, disturbance by fire is often used as a management tool to increase biological diversity, restore degraded habitats, and reduce pest outbreaks. Much attention has been given to how plant communities recover from fire, but relatively few studies have examined post-fire responses of higher order species, such as insect herbivores. Because dynamic feedbacks occur between plants and their consumers, which can in turn influence the response of the entire ecosystem, incorporating higher trophic level responses into our understanding of the effects of fire is essential. In this study, we used structural equation modeling (SEM) to tease apart the direct and indirect effects of fire on insect herbivore assemblages found on three common oak species in the Florida scrub (Quercus inopina, Q. chapmanii, and Q. geminata). We investigated how fire affected herbivore abundance, richness, and community composition both directly and indirectly through environmental heterogeneity at different spatial scales (e.g., leaf quality, plant architecture, and habitat structure). We also investigated how seasonality and landscape heterogeneity influenced post-fire responses of insect herbivores and whether fire effects on herbivore assemblages varied among different host plants. Our general findings were that fire effects were (1) largely indirect, mediated through habitat structure (although direct fire effects were observed on Q. inopina herbivores), (2) non-linear through time due to self-thinning processes occurring in the scrub habitat, and (3) varied according to herbivore assemblage as a result of differences in the composition of species in each herbivore community. To the best of our knowledge, this is the first comprehensive study to examine how fire influences the assembly of insect herbivore communities through both direct and indirect pathways and at multiple spatial scales.  相似文献   

17.
In nature, plants regularly interact with herbivores and with wind. Herbivores can wound and alter the structure of plants, whereas wind can exert aerodynamic forces that cause the plants to flutter or sway. While herbivory has many negative consequences for plants, fluttering in wind can be beneficial for plants by facilitating gas exchange and loss of excess heat. Little is known about how herbivores affect plant motion in wind. We tested how the mass of an herbivore resting on a broad leaf of the tulip tree Liriodendron tulipifera, and the damage caused by herbivores, affected the motion of the leaf in wind. For this, we placed mimics of herbivores on the leaves, varying each herbivore's mass or position, and used high‐speed video to measure how the herbivore mimics affected leaf movement and reconfiguration at two wind speeds inside a laboratory wind tunnel. In a similar setup, we tested how naturally occurring herbivore damage on the leaves affected leaf movement and reconfiguration. We found that the mass of an herbivore resting on a leaf can change that leaf's orientation relative to the wind and interfere with the ability of the leaf to reconfigure into a smaller, more streamlined shape. A large herbivore load slowed the leaf's fluttering frequency, while naturally occurring damage from herbivores increased the leaf's fluttering frequency. We conclude that herbivores can alter the physical interactions between wind and plants by two methods: (1) acting as a point mass on the plant while it is feeding and (2) removing tissue from the plant. Altering a plant's interaction with wind can have physical and physiological consequences for the plant. Thus, future studies of plants in nature should consider the effect of herbivory on plant–wind interactions, and vice versa.  相似文献   

18.
Massey FP  Ennos AR  Hartley SE 《Oecologia》2007,152(4):677-683
Induced plant responses to herbivory have major impacts on herbivore feeding behaviour, performance and population dynamics. These effects are well established for chemical defences, but induction of physical defences remains far less studied. However, for many plants, it is physical defences that play the major role in regulating the levels of herbivore damage sustained. We provide evidence that, in grasses, induction of physical defences is both specific to herbivore feeding, as opposed to mechanical damage, and may be dependant on the amount of damage imposed. Furthermore, we show that the magnitude of the induction response is sufficient to deter further damage and affect herbivore performance. We compared silica induction in two grass species in response to vertebrate and invertebrate damage, and to mechanical defoliation. Induction was assessed at two levels of damage over 16 months. Foliar silica content did not increase in response to mechanical defoliation, but damage by either voles or locusts resulted in increases in silica content of over 400%. This increase deterred feeding by both voles and locusts. Silica induction in grasses due to repeated damage events over a prolonged period suggests a possible role for silica defence in the cyclical population fluctuations observed in many grass-feeding herbivores.  相似文献   

19.
  1. Plant‐herbivore coevolutionary interactions have led to a range of plant defenses that minimize insect damage and a suite of counter adaptations that allow herbivores to feed on defended plants. Consuming plant secondary compounds results in herbivore growth and developmental costs but can have beneficial effects such as deterrence or harm of parasitoid enemies. Therefore, the role of secondary compounds on herbivore fitness must be considered in the context of the abundance and level of harm from natural enemies and the costs herbivores incur feeding on plant secondary compounds.
  2. In this study, I combined field measurements of Cotesia congregata wasp parasitism pressure with detailed measurements of the costs of plant secondary compounds across developmental stages in the herbivore host, Manduca sexta.
  3. I show that C. congregata parasitoids exert large negative selective pressures, killing 31%–57% of M. sexta larvae in the field. Manduca sexta developed fastest during instars most at risk for parasitoid oviposition but growth was slowed by consumption of plant secondary compounds. The negative effects of consuming plant secondary compounds as larvae influenced adult size traits but there were no immune, survival, or fecundity costs.
  4. These results suggest that developmental costs experienced by M. sexta herbivores consuming defensive compounds are minor in comparison to the strong negative survival pressures from abundant parasitoid enemies.
  相似文献   

20.
Plant protease inhibitors (PIs) are among the most well-studied and widely distributed resistance traits that plants use against their herbivore attackers. There are different types of plant PIs which putatively function against the different types of proteases expressed in insect guts. Serine protease inhibitors (SPIs) and cysteine protease inhibitors (CPIs) are hypothesized to differentially function against the predominant gut proteases in lepidopteran and coleopteran herbivores, respectively. Here, we test the hypothesis that tall goldenrod, Solidago altissima, can specifically respond to damage by different herbivores and differentially induce SPIs and CPIs in response to damage by lepidopteran and coleopteran herbivores. Moreover, we ask if the concerted induction of different types of PIs accounts for variation in induced resistance to herbivory. We altered and optimized a rapid and effective existing methodology to quantitatively analyze both SPI and CPI activity simultaneously from a single tissue sample and to use the same plant extracts directly for characterization of inhibitory effects on insect gut protease activity. We found that both SPIs and CPIs are induced in S. altissima in response to damage, regardless of the damaging herbivore species. However, only SPIs were effective against Spodoptera exigua gut proteases. Our data suggest that plant PI responses are not necessarily specific to the identity of the attacking organism but that different components of generally induced defense traits can specifically affect different herbivore species. While providing an efficient and broadly applicable methodology to analyze multiple PIs extracted from the same tissue, this study furthers our understanding of specificity in induced plant resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号