首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The goal of this study was to investigate the contribution of increased activity of individual non-regulated enzymes in the Calvin cycle to improve photosynthetic yield. Two non-regulated enzymes, rice fructose-1,6-bisphosphate aldolase (FBA) and spinach triosephosphate isomerase (TPI), were individually cloned and overexpressed in the cyanobacterium Anabaena sp. strain PCC 7120 cells. The enzyme activity and the photosynthetic yield, as reflected by the cell growth rate, photosynthetic oxygen evolution and dry cellular weight, were measured and compared between the wild-type and transgenic cells harboring either FBA or TPI. Though the activity of these two individual non-regulated enzymes was similarly increased in the corresponding transgenic cells, the contributions of each enzyme on the amount of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), reflected by the levels of Rubisco large subunit, and the photosynthetic yield were different. Transgenic cells, carrying FBA, showed an evident increase in Rubisco amount and photosynthetic yield, while there was no increase in cells harboring TPI. This indicates that the contributions of non-regulated enzymes in the Calvin cycle on photosynthetic yield differed and firstly reveals that increased activity of only a single non-regulated enzyme in transgenic cells markedly improves the photosynthetic yield via stimulating the amount of Rubisco and consequently accelerating the ribulose-1,5-bisphosphate (RuBP) regeneration rate.  相似文献   

2.
The regulation of photosynthetic yield at the genetic level has largely focused on manipulation of the catalytic enzymes in the Calvin cycle by genetic engineering. In order to investigate the contribution of increased enzymatic activity in the Calvin cycle on photosynthetic yield, the rice fructose-1,6-bisphosphate aldolase (FBA), spinach triosephosphate isomerase (TPI) and wheat fructose-1,6-bisphosphatase (FBPase) genes were cloned in tandem and co-overexpressed in cyanobacterium Anabaena sp. strain PCC 7120 cells. The enzymatic activities of FBA, TPI and FBPase, as well as sedoheptulose-1,7-bisphosphatase (SBPase), were remarkably increased in transgenic cells relative to the wild-type. The photosynthetic yield, as reflected by photosynthetic O2 evolution and dry cellular weight, was also markedly increased in transgenic cells versus wide-type cells. The activity of SBPase is considered the most important factor for ribulose-1,5-bisphosphate (RuBP) regeneration in the Calvin cycle, and increased activity of TPI alone in transgenic cells does not stimulate photosynthetic yield. Thus, the increased activity of FBA and FBPase, but not TPI, significantly improved photosynthetic yield in transgenic cells by stimulating SBPase activity and consequently accelerating the RuBP regeneration rate.  相似文献   

3.
Cloning and high foreign expression of the human granulocyte-macrophage colony stimulating factor (hGM-CSF) gene were achieved in Anabaena sp. strain PCC 7120 cells. To promote high expression of hGM-CSF in cyanobacterial cells, PCR primers were designed to modify the N-terminal cDNA sequence of mature hGM-CSF, including a GC rich region and some discriminating against codons according to the degeneracy codon rules, selecting for prokaryotic usage codons. The PCR product encoding the modified hGM-CSF was inserted downstream of the promoter, PpsbA of the shuttle vector pRL439, then ligated with pDC-08 to generate the shuttle expression plasmid, pDC-GM1. The resulting shuttle expression plasmid was transferred into the filamentous, heterocyst-forming cyanobacterium, Anabaena sp. strain PCC 7120 using the tri-parental conjugation transfer method. The results of PCR amplification of wild type and transgenic cells indicated that the hGM-CSF gene was successfully cloned into Anabaena sp. strain PCC 7120 cells. Western blot analysis showed that the protein expression of modified hGM-CSF in transgenic cells harboring pDC-GM1 was 136% higher than that of non-modified hGM-CSF in transgenic cells harboring pDC-GM0. Additionally, there were similar rate of growth and content of Chl a as compared to controls, suggesting that foreign hGM-CSF did not impair the photosynthetic activity of host cells. Taken together, the results indicate that modification of the N-terminal nucleotide sequence of mature hGM-CSF results in high expression in the transgenic cells.  相似文献   

4.
以转高等植物ALD和TPI基因的鱼腥藻 7120为对象 ,研究了ALD和TPI两个酶表达量对细胞光合固碳效率的影响。考察了初始pH、NaHCO3浓度和CO2浓度对转基因藻和野生藻生长、光合活性及无机碳亲和力的影响。结果表明 ,转基因藻在较高碳源浓度下 ,其生长速率和光合放氧活性比野生藻有显著的提高 ,并且可以比野生藻耐受更高的pH。在含有2%CO2的空气中 ,转基因藻对外源无机碳的亲和力比野生藻提高了4.06倍.  相似文献   

5.
Structural genes encoding an uptake hydrogenase of Nostoc sp. strain PCC 73102 were isolated. From partial libraries of genomic DNA, two clones (pNfo01 and pNfo02) were selected and sequenced, revealing the complete sequence of both a hupS (960 bases) and a hupL (1,593 bases) homologue in Nostoc sp. strain PCC 73102. A comparison between the deduced amino acid sequences of HupS and HupL of Nostoc sp. strain PCC 73102 and Anabaena sp. strain PCC 7120 showed that the HupS proteins are 89% identical and the HupL proteins are 91% identical. However, the noncoding region between the genes in Nostoc sp. strain PCC 73102 (192 bases) is longer than that of Anabaena sp. strain PCC 7120 and of many other microorganisms. Southern hybridizations using DNA from both N2-fixing and non-N2-fixing cells of Nostoc sp. strain PCC 73102 and different probes from within hupL clearly demonstrated that, in contrast to Anabaena sp. strain PCC 7120, there is no rearrangement within hupL of Nostoc sp. strain PCC 73102. Indeed, 6 nucleotides out of 16 within the potential recombination site are different from those of Anabaena sp. strain PCC 7120. Furthermore, we have recently published evidence demonstrating the absence of the bidirectional/reversible hydrogenase in Nostoc sp. strain PCC 73102. The present knowledge, in combination with the unique characteristics, makes Nostoc sp. strain PCC 73102 an interesting candidate for the study of deletion mutants lacking the uptake-type enzyme. Received: 20 August 1997 / Accepted: 24 November 1997  相似文献   

6.
冯燕  陈晓  施定基  王全喜 《植物研究》2006,26(6):691-698
光合作用包括了一系列复杂的反应,其中碳固定反应是光合作用调控的核心环节。果糖-1,6-二磷酸醛缩酶(FBA)是Calvin循环中固定CO2后第一个催化三碳化合物转变为六碳化合物的酶,在光合作用中有着重要的作用。近年来,反义技术进一步地证明了FBA在加速碳固定反应方面有着非常大的潜力。本论文通过过表达技术来研究提高FBA活性是否能加速碳固定反应。将水稻胞质FBA嵌合基因转入鱼腥藻7120,通过相应的抗生素筛选及PCR鉴定后,确定得到了稳定遗传的转基因藻。对转基因藻和野生藻进行FBA活性及生理活性的测定后发现:转基因藻中FBA的活性比野生藻提高了31.2%;细胞生长速率比野生藻提高了24.4%;净光合与真实光合分别比野生藻提高了19.2% 和20.6%。以上结果证明,在鱼腥藻体内特异的提高非调控酶FBA的水平,能在一定程度上提高转基因藻的光合活性,并且能够提高转基因藻的细胞增长效率。为进一步研究FBA在光合碳流量中的调控机理提供实验依据。  相似文献   

7.
The terrestrial cyanobacterium Nostoc sp. HK-01 was more tolerant to NaCl stress than the aquatic cyanobacterium Anabaena sp. PCC 7120 (also called Nostoc sp. PCC 7120) which is similar to Nostoc sp. HK-01 in phylogeny. We determined the amount of extracellular polysaccharides (capsular and released polysaccharides) from the cells of both strains cultured with or without 200 mM NaCl. The amount of capsular polysaccharides from Nostoc HK-01 reached approximately 65% of the dry weight whereas that from Anabaena PCC 7120 only occupied approximately 18% of the dry weight under NaCl stress. Anabaena PCC 7120 grew well under NaCl stress when both polysaccharides from Nostoc HK-01 were added to the culture. However, Anabaena PCC 7120 barely grew under NaCl stress when both of its polysaccharides were added. Extracellular polysaccharides from Nostoc HK-01 contained abundant fucose and glucuronic acid in comparison with those from Anabaena PCC 7120. Under NaCl stress, the composition ratios of sugars in the extracellular polysaccharides from Anabaena PCC 7120 hardly changed in comparison with those in ordinary culture conditions. By contrast, the composition ratios of sugars in the extracellular polysaccharides from Nostoc HK-01 changed under NaCl stress. These results suggest that the effect of extracellular polysaccharides from Nostoc HK-01 on NaCl tolerance comes from the increased amount of capsular polysaccharides, the sugar composition, and the change of the sugar composition ratio under NaCl stress.  相似文献   

8.
Role of the non‐haem, manganese catalase (Mn‐catalase) in oxidative stress tolerance is unknown in cyanobacteria. The ORF alr0998 from the Anabaena PCC7120, which encodes a putative Mn‐catalase, was constitutively overexpressed in Anabaena PCC7120 to generate a recombinant strain, AnKat+. The Alr0998 protein could be immunodetected in AnKat+ cells and zymographic analysis showed a distinct thermostable catalase activity in the cytosol of AnKat+ cells but not in the wild‐type Anabaena PCC7120. The observed catalase activity was insensitive to inhibition by azide indicating that Alr0998 protein is indeed a Mn‐catalase. In response to oxidative stress, the AnKat+ showed reduced levels of intracellular ROS which was also corroborated by decreased production of an oxidative stress‐inducible 2‐Cys‐Prx protein. Treatment of wild‐type Anabaena PCC7120 with H2O2 caused (i) RNA degradation in vivo, (ii) severe reduction of photosynthetic pigments and CO2 fixation, (iii) fragmentation and lysis of filaments and (iv) loss of viability. In contrast, the AnKat+ strain was protected from all the aforesaid deleterious effect under oxidative stress. This is the first report on protection of an organism from oxidative stress by overexpression of a Mn‐catalase.  相似文献   

9.
In natural habitats, organisms especially phytoplankton are not always continuously subjected to ultraviolet-B radiation (UVBR). By simulation of the natural situation, the N2-fixing cyanobacterium Anabaena sp. PCC 7120 was subjected to UV-B exposure and recovery cycles. A series of morphological and physiological changes were observed in Anabaena sp. PCC 7120 under repeated UVBR when compared with controls. Such as the breakage of filaments, intervals between heterocysts, heterocyst frequency, total carbohydrate, and carotenoids were increased, while the nitrogenase activity and photosynthetic activity were inhibited by repeated UVBR; however, these activities could recover when UV-B stress was removed. Unexpectedly, the over-compensatory growth was observed at the end of the second round of exposure and recovery cycle. Our results showed that discontinuous UVBR could increase the growth rate and the tolerance as well as repair capacity of Anabaena sp. PCC 7120. These results indicate that moderate UVBR may increase the growth of cyanobacteria in natural habitats.  相似文献   

10.
The construction of the shuttle, expression vector of human tumor necrosis factor alpha (hTNF-α) gene and its expression in a cyanobacteriumAnabaena sp. PCC 7120 was reported. The 700-bp hTNF cDNA fragments have been recovered from plasmid pRL-rhTNF, then inserted downstream of the promoter PpsbA in the plasmid pRL439. The resultant intermediary plasmid pRL-TC has further been combined with the shuttle vector pDC-8 to get the shuttle, expression vector pDGTNF. The expression of the rhTNF gene inEscherichia coli has been analyzed by SDS-PAGE and thin-layer scanning, and the results show that the expressed TNF protein with these two vectors is 16.9 percent (pRL-TC) and 15.0 percent (pDC-TNF) of the total proteins in the cells, respectively, while the expression level of TNF gene in plasmid pRL-rhTNF is only 11.8 percent. Combined with the participation of the conjugal and helper plasmids, pDC-TNF has been introduced intoAnabaena sp PCC 7120 by triparental conjugative transfer, and the stable transgenic strains have been obtained. The existence of the introduced plasmid pDC-TNF in recombinant cyanobacterial cells has been demonstrated by the results of the agarose electrophoresis with the extracted plasmid samples and Southern blotting with α-32P labeled hTNF cDNA probes, while the expression of the hTNF gene inAnabaena sp. PCC 7120 has been confirmed by the results of Western blotting with extracted protein samples and human TNF-alpha monoclonal antibodies. The cytotoxicity assays using the mouse cancer cell line L929 proved the cytotoxicity of the TNF in the crude extracts from the transgenic c~anobacteriumAnabaena sp. PCC 7120. Project supported by the National Natural Science Foundation of China (Grant No. 39280016).  相似文献   

11.
在蓝藻中表达迟缓爱德华氏菌Eta1-L-Gapdh融合蛋白。提取迟缓爱德华氏菌基因组DNA为模板,用PCR技术分别扩增两个已知具有较强免疫原性的基因eta1和gapdh,再采用重叠延伸PCR将这两个基因融合,获得目的融合基因eta1-L-gapdh。将目的基因连接到表达载体pRL489的两个Bam H I酶切位点之间构建表达载体,用质粒提取、PCR、酶切、测序等手段对表达载体进行验证。验证正确的表达载体通过三亲接合转化野生鱼腥藻PCC7120,用新霉素抗性筛选出转基因藻落,通过质粒提取和PCR验证转基因藻。用RT-PCR和Western-blot分别从转录水平和翻译水平对转基因藻中融合基因的表达进行了检测。结果表明,含目的基因的表达载体构建成功,目的基因在蓝藻中转录并表达蛋白,该蛋白在蓝藻中的表达量为2.46%。  相似文献   

12.
13.
14.
15.
The paper reports a study on the genetic regulation of photosynthesis by introducing the gene encoding wheat chloroplastic fructose-1,6-bisphosphatase (FBPase) into the cyanobacterium Anabaena PCC7120. The gene was RT-PCR amplified from wheat and modified by replacement of the 5′-terminal encoding sequence with optimal and A/T-rich codons to promote prokaryotic expression. The resultant FBPase gene was ligated downstream of the strong promoter, PpsbA of expression vector pRL-439, then inserted into of shuttle vector pDC-08. The resulting shuttle expression vector (pDC-fbp) was transferred into the filamentous, heterocystour cyanobacterium, Anabaena PCC7120, by the tri-parental conjugation transfer method. Protein expression of FBPase in the transgenic Anabaena was 126.5% higher than in wild type cells, and the enzyme activity of transgenic cells was 1.41-fold higher than that of wild type cells. Under atmospheric conditions of 360 μmol mol−1 CO2, Anabaena cells overexpressing the FBPase gene further showed increases in net photosynthesis (117.2%) and true photosynthesis (122.5%) as compared to wild type cells. In addition, transgenic Anabaena grew faster and contained more Chl a than did wild type cells. Together, these results indicate that introduction of the wheat chloroplastic FBPase gene into Anabaena increase photosynthesis and cell growth; furthermore, these trends were more evident under stress condition (higher CO2 concentration). This is the first report of enhanced photosynthesis in cyanobacteria expressing genes from higher plants.  相似文献   

16.
17.
Ning D  Qian Y  Miao X  Wen C 《Current microbiology》2011,62(6):1767-1773
The role of a single relA/spoT homolog all1549 (designated hereafter as ana-rsh) of the cyanobacterium Anabaena sp. PCC7120 was investigated. The complementation test in Escherichia coli showed that the protein encoded by ana-rsh possesses guanosine tetraphosphate (p)ppGpp-synthase/hydrolase activity. Under laboratory growth conditions, a low level of ppGpp was detected in Anabaena sp. PCC7120 and the loss of ana-rsh was lethal. Amino acid starvation induced ppGpp accumulation to an appropriate level, and nitrogen deficiency did not alter the ppGpp concentration in Anabaena cells. These data suggest that ana-rsh is required for cell viability under normal growth conditions and involved in the (p)ppGpp-related stringent response to amino acid deprivation, but not related to heterocyst formation and nitrogen fixation of Anabaena sp. PCC7120.  相似文献   

18.
The construction of the shuttle, expression vector of human tumor necrosis factor alpha (hTNF-α) gene and its expression in a cyanobacteriumAnabaena sp. PCC 7120 was reported. The 700-bp hTNF cDNA fragments have been recovered from plasmid pRL-rhTNF, then inserted downstream of the promoter PpsbA in the plasmid pRL439. The resultant intermediary plasmid pRL-TC has further been combined with the shuttle vector pDC-8 to get the shuttle, expression vector pDGTNF. The expression of the rhTNF gene inEscherichia coli has been analyzed by SDS-PAGE and thin-layer scanning, and the results show that the expressed TNF protein with these two vectors is 16.9 percent (pRL-TC) and 15.0 percent (pDC-TNF) of the total proteins in the cells, respectively, while the expression level of TNF gene in plasmid pRL-rhTNF is only 11.8 percent. Combined with the participation of the conjugal and helper plasmids, pDC-TNF has been introduced intoAnabaena sp PCC 7120 by triparental conjugative transfer, and the stable transgenic strains have been obtained. The existence of the introduced plasmid pDC-TNF in recombinant cyanobacterial cells has been demonstrated by the results of the agarose electrophoresis with the extracted plasmid samples and Southern blotting with α-32P labeled hTNF cDNA probes, while the expression of the hTNF gene inAnabaena sp. PCC 7120 has been confirmed by the results of Western blotting with extracted protein samples and human TNF-alpha monoclonal antibodies. The cytotoxicity assays using the mouse cancer cell line L929 proved the cytotoxicity of the TNF in the crude extracts from the transgenic c~anobacteriumAnabaena sp. PCC 7120.  相似文献   

19.
When deprived of combined nitrogen, aerobically-grown filaments ofAnabaena sp. strain PCC7120 differentiate specialized cells called the heterocysts. The differentiation process is an elaborate and well orchestrated programme involving sensing of environmental and developmental signals, commitment of cells to development, gene rearrangements, intricate DNA-protein interactions, and differential expression of several genes. It culminates in a physiological division of labour between heterocysts, which become the sole sites of aerobic nitrogen fixation, and vegetative cells, that provide photosynthate to the heterocysts in return for nitrogen supplies. We propose a model, to describe the chronology of the important events and to explain how cell type-specific differential gene expression is facilitated by DNA-protein interactions leading to the development of heterocysts and constitution of nitrogen-fixing apparatus inAnabaena.  相似文献   

20.
Previous studies have indicated that ADP-glucose pyrophosphorylase (ADPGlc PPase) from the cyanobacteriumAnabaena sp. strain PCC 7120 is more similar to higher-plant than to enteric bacterial enzymes in antigenicity and allosteric properties. In this paper, we report the isolation of theAnabaena ADPGlc PPase gene and its expression inEscherichia coli. The gene we isolated from a genomic library utilizes GTG as the start codon and codes for a protein of 48347 Da which is in agreement with the molecular mass determined by SDS-PAGE for theAnabaena enzyme. The deduced amino acid sequence is 63, 54, and 33% identical to the rice endosperm small subunit, maize endosperm large subunit, and theE. coli sequences, respectively. Southern analysis indicated that there is only one copy of this gene in theAnabaena genome. The cloned gene encodes an active ADPGlc PPase when expressed in anE. coli mutant strain AC70R1-504 which lacks endogenous activity of the enzyme. The recombinant enzyme is activated and inhibited primarily by 3-phosphoglycerate and Pi, respectively, as is the nativeAnabaena ADPGlc PPase. Immunological and other biochemical studies further confirmed the recombinant enzyme to be theAnabaena enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号