首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Malignant astrocytomas are among the most common brain tumours and few therapeutic options exist. It has recently been recognized that the ligand-activated nuclear receptor PPARgamma can regulate cellular proliferation and induce apoptosis in different malignant cells. We report the effect of three structurally different PPARgamma agonists inducing apoptosis in human (U87MG and A172) and rat (C6) glioma cells. The PPARgamma agonists ciglitazone, LY171 833 and prostaglandin-J2, but not the PPARalpha agonist WY14643, inhibited proliferation and induced cell death. PPARgamma agonist-induced cell death was characterized by DNA fragmentation and nuclear condensation, as well as inhibited by the synthetic receptor-antagonist bisphenol A diglycidyl ether (BADGE). In contrast, primary murine astrocytes were not affected by PPARgamma agonist treatment. The apoptotic death in the glioma cell lines treated with PPARgamma agonists was correlated with the transient up-regulation of Bax and Bad protein levels. Furthermore, inhibition of Bax expression by specific antisense oligonucleotides protected glioma cells against PPARgamma-mediated apoptosis, indicating an essential role of Bax in PPARgamma-induced apoptosis. However, PPARgamma agonists not only induced apoptosis but also caused redifferentiation as indicated by outgrowth of long processes and expression of the redifferentiation marker N-cadherin in response to PPARgamma agonists. Taken together, treatment of glioma cells with PPARgamma agonists may hold therapeutic potential for the treatment of gliomas.  相似文献   

2.
3.
The anti-diabetic thiazolidinediones (TZDs) are a class of compounds with insulin-sensitizing activity that were originally discovered using in vivo pharmacological screens. In subsequent binding studies, TZDs were demonstrated to enhance insulin action by activating peroxisome proliferator-activated receptor gamma (PPARgamma). PPARgamma is a member of the ligand-activated nuclear receptor superfamily that promotes adipogenesis and enhances insulin sensitivity by controlling the expression of genes in glucose and lipid metabolism. Given the large size of the ligand binding pocket in PPARgamma, novel classes of both full and partial agonists that are structurally distinct from TZDs have been discovered. These compounds have been effective tools in differentiating adipogenic and insulin-sensitizing activities as well as tissue selectivity of PPARgamma activation. This information has led to the hypothesis that one ligand can activate or inactivate PPARs depending upon the tissue in which the PPAR resides. Thus particular compounds can be designated selective PPAR modulators or SPPARMs, a concept similar to that observed with the activation of estrogen receptor (ER) by SERMS. Additionally, both preclinical and clinical data suggest that PPARgamma activation is useful for the prevention of atherosclerosis. However, the effects of TZDs on plasma lipid profiles do not solely account for their anti-atherogenic effects. Recent studies with macrophage cells and animal models for atherosclerosis indicate that TZDs reduce the size and number of lesions formed in the vessel wall by modulating foam cell formation and inflammatory responses by macrophages. Thus in addition to the treatment of type II diabetes, PPARgamma agonists can be potentially employed for the treatment of atherosclerosis in general population.  相似文献   

4.
5.
Peroxisome proliferator-activated receptor-gamma (PPARgamma) is expressed at very high levels in the gastrointestinal epithelium. Many of the functions of PPARgamma in gastrointestinal epithelial cells have been elucidated in recent years, and a pattern is emerging which suggests that this receptor plays an important role in gastrointestinal physiology. There is also strong evidence that PPARgamma is a colon cancer suppressor in pre-clinical rodent models of sporadic colon cancer, and there is considerable interest in exploitation of PPARgamma agonists as prophylactic or chemopreventive agents in colon cancer. Studies in mice and in human colon cancer cell lines suggest several mechanisms that might account for the tumor suppressive effects of PPARgamma agonists, although it is not in all cases clear whether these effects are altogether mediated by PPARgamma. Conversely, several reports suggest that PPARgamma agonists may promote colon cancer under certain circumstances. This possibility warrants considerable attention since several million individuals with type II diabetes are currently taking PPARgamma agonists. This review will focus on recent data related to four critical questions: what is the physiological function of PPARgamma in gastrointestinal epithelial cells; how does PPARgamma suppress colon carcinogenesis; is PPARgamma a tumor promoter; and what is the future of PPARgamma in colon cancer prevention?  相似文献   

6.
The role of peroxisome proliferator-activated receptor gamma (PPARgamma) in adipocyte physiology has been exploited for the treatment of diabetes. The expression of PPARgamma in lymphoid organs and its modulation of macrophage inflammatory responses, T cell proliferation and cytokine production, and B cell proliferation also implicate it in immune regulation. Despite significant human exposure to PPARgamma agonists, little is known about the consequences of PPARgamma activation in the developing immune system. Here, well-characterized models of B lymphopoiesis were used to investigate the effects of PPARgamma ligands on nontransformed pro/pre-B (BU-11) and transformed immature B (WEHI-231) cell development. Treatment of BU-11, WEHI-231, or primary bone marrow B cells with PPARgamma agonists (ciglitazone and GW347845X) resulted in rapid apoptosis. A role for PPARgamma and its dimerization partner, retinoid X receptor (RXR)alpha, in death signaling was supported by 1) the expression of RXRalpha mRNA and cytosolic PPARgamma protein, 2) agonist-induced binding of PPARgamma to a PPRE, and 3) synergistic increases in apoptosis following cotreatment with PPARgamma agonists and 9-cis-retinoic acid, an RXRalpha agonist. PPARgamma agonists activated NF-kappaB (p50, Rel A, c-Rel) binding to the upstream kappaB regulatory element site of c-myc. Only doses of agonists that induced apoptosis stimulated NF-kappaB-DNA binding. Cotreatment with 9-cis-retinoic acid and PPARgamma agonists decreased the dose required to activate NF-kappaB. These data suggest that activation of PPARgamma-RXR initiates a potent apoptotic signaling cascade in B cells, potentially through NF-kappaB activation. These results have implications for the nominal role of the PPARgamma in B cell development and for the use of PPARgamma agonists as immunomodulatory therapeutics.  相似文献   

7.
8.
9.
PPARs in the brain   总被引:3,自引:0,他引:3  
The biology of peroxisome proliferator activated receptors (PPARs) in physiological and pathophysiological processes has been primarily studied in peripherial organs and tissues. Recently it became clear that PPARs play an important role for the pathogenesis of various disorders of the CNS. The finding that activation of PPARs, and in particular, the PPARgamma isoform, suppresses inflammation in peripherial macrophages and in models of human autoimmune disease, instigated the experimental evaluation of these salutary actions for several CNS disorders that have an inflammatory component. Activation of all PPAR isoforms, but especially of PPARgamma, has been found to be protective in murine in vitro and in vivo models of Multiple Sclerosis. The verification of these findings in human cells prompted the initiation of clinical studies evaluating PPARgamma activation in Multiple Sclerosis patients. Likewise, Alzheimer's disease has a prominent inflammatory component that arises in response to neurodegeneration and to extracellular deposition of beta-amyloid peptides. The fact that non steroidal anti-inflammatory drugs (NSAIDs) delay the onset and reduce the risk to develop Alzheimer's disease, while they also bind to and activate PPARgamma, led to the hypothesis that one dimension of NSAID protection in AD may be mediated by PPARgamma. Several lines of evidence from in vitro and in vivo studies have supported this hypothesis, using Alzheimer disease related transgenic cellular and animal models. The ability of PPAR agonists to elicit anti-amyloidogenic, anti-inflammatory and insulin sensitizing effects may account for the observed effects. A number of clinical trials employing PPAR agonists have yielded promising results and further trials are in preparation, which aim to delineate the exact mechanism of interaction. Animal models of other neurodegenerative diseases such as Parkinson's and Amyotrophic lateral sclerosis, both associated with a considerable degree of CNS inflammation, have been studied with a positive outcome. Yet it is not clear whether reduction of inflammation or additional mechanisms account for the observed neuroprotection. Less is known about the physiological role of PPARs for brain development, maintenance and function. Lesions from transgenic mouse models, however, provide evidence that PPARs may play pivotal roles for CNS development and function.  相似文献   

10.
To characterize the specificity of synthetic compounds for peroxisome proliferator-activated receptors (PPARs), three stable cell lines expressing the ligand binding domain (LBD) of human PPARalpha, PPARdelta, or PPARgamma fused to the yeast GAL4 DNA binding domain (DBD) were developed. These reporter cell lines were generated by a two-step transfection procedure. First, a stable cell line, HG5LN, expressing the reporter gene was developed. These cells were then transfected with the different receptor genes. With the help of the three PPAR reporter cell lines, we assessed the selectivity and activity of PPAR agonists GW7647, WY-14-643, L-165041, GW501516, BRL49653, ciglitazone, and pioglitazone. GW7647, L-165041, and BRL49653 were the most potent and selective agonists for hPPARalpha, hPPARdelta, and hPPARgamma, respectively. Two PPAR antagonists, GW9662 and BADGE, were also tested. GW9662 was a selective PPARgamma antagonist, whereas BADGE was a low-affinity PPAR ligand. Furthermore, GW9662 was a full antagonist on PPARgamma and PPARdelta, whereas it showed partial agonism on PPARalpha. We conclude that our stable models allow specific and sensitive measurement of PPAR ligand activities and are a high-throughput, cell-based screening tool for identifying and characterizing PPAR ligands.  相似文献   

11.
Aquaporin-4 (AQP4), the main water channel of the brain, is highly expressed in animal glioma and human glioblastoma in situ. In contrast, most cultivated glioma cell lines don't express AQP4, and primary cell cultures of human glioblastoma lose it during the first passages. Accordingly, in C6 cells and RG2 cells, two glioma cell lines of the rat, and in SMA mouse glioma cell lines, we found no AQP4 expression. We confirmed an AQP4 loss in primary human glioblastoma cell cultures after a few passages. RG-2 glioma cells if grafted into the brain developed AQP4 expression. This led us consider the possibility of AQP4 expression depends on brain microenvironment. In previous studies, we observed that the typical morphological conformation of AQP4 as orthogonal arrays of particles (OAP) depended on the extracellular matrix component agrin. In this study, we showed for the first time implanted AQP4 negative glioma cells in animal brain or flank to express AQP4 specifically in the intracerebral gliomas but neither in the extracranial nor in the flank gliomas. AQP4 expression in intracerebral gliomas went along with an OAP loss, compared to normal brain tissue. AQP4 staining in vivo normally is polarized in the astrocytic endfoot membranes at the glia limitans superficialis and perivascularis, but in C6 and RG2 tumors the AQP4 staining is redistributed over the whole glioma cell as in human glioblastoma. In contrast, primary rat or mouse astrocytes in culture did not lose their ability to express AQP4, and they were able to form few OAPs.  相似文献   

12.
Muscarinic receptors, expressed in several primary and metastatic tumours, appear to be implicated in their growth and propagation. In this work we have demonstrated that M2 muscarinic receptors are expressed in glioblastoma human specimens and in glioblastoma cell lines. Moreover, we have characterized the effects of the M2 agonist arecaidine on cell growth and survival both in two different glioblastoma cell lines (U251MG and U87MG) and in primary cultures obtained from different human biopsies. Cell growth analysis has demonstrated that the M2 agonist arecaidine strongly decreased cell proliferation in both glioma cell lines and primary cultures. This effect was dose and time dependent. FACS analysis has confirmed cell cycle arrest at G1/S and at G2/M phase in U87 cells and U251 respectively. Cell viability analysis has also shown that arecaidine induced severe apoptosis, especially in U251 cells. Chemosensitivity assays have, moreover, shown arecaidine and temozolomide similar effects on glioma cell lines, although IC50 value for arecaidine was significantly lower than temozolomide. In conclusion, we report for the first time that M2 receptor activation has a relevant role in the inhibition of glioma cell growth and survival, suggesting that M2 may be a new interesting therapeutic target to investigate for glioblastoma therapy.  相似文献   

13.
The expression of focal adhesion kinase family interacting protein of 200-kDa (FIP200) in normal brain is limited to some neurons and glial cells. On immunohistochemical analysis of biopsies of glioblastoma tumors, we detected FIP200 in the tumor cells, tumor-associated endothelial cells, and occasional glial cells. Human glioblastoma tumor cell lines and immortalized human astrocytes cultured in complete media also expressed FIP200 as did primary human brain microvessel endothelial cells (MvEC), which proliferate in culture and resemble reactive endothelial cells. Downregulation of endogenous expression of FIP200 using small interfering RNA resulted in induction of apoptosis in the human glioblastoma tumor cells, immortalized human astrocytes, and primary human brain MvEC. It has been shown by other investigators using cells from other tissues that FIP200 can interact directly with, and inhibit, proline-rich tyrosine kinase 2 (Pyk2) and focal adhesion kinase (FAK). In the human glioblastoma tumor cells, immortalized human astrocytes, and primary human brain MvEC, we found that downregulation of FIP200 increased the activity of Pyk2 without increasing its expression, but did not affect the activity or expression of FAK. Coimmunoprecipitation and colocalization studies indicated that the endogenous FIP200 was largely associated with Pyk2, rather than FAK, in the glioblastoma tumor cells and brain MvEC. Moreover, the pro-apoptotic effect of FIP200 downregulation was inhibited significantly by a TAT-Pyk2-fusion protein containing the Pyk2 autophosphorylation site in these cells. In summary, downregulation of endogenous FIP200 protein in glioblastoma tumor cells, astrocytes, and brain MvECs promotes apoptosis, most likely due to the removal of a direct interaction of FIP200 with Pyk2 that inhibits Pyk2 activation, suggesting that FIP200 expression may be required for the survival of all three cell types found in glioblastoma tumors.  相似文献   

14.
15.
16.
Permanent lines of pluripotent stem cells can be obtained from humans and monkeys using different techniques and from different sources—inner cell mass of the blastocyst, primary germ cells, parthenogenetic oocytes, and mature spermatogonia—as well as by transgenic modification of various adult somatic cells. Despite different origin, all pluripotent lines demonstrate considerable similarity of the major biological properties: active self-renewal and differentiation into various somatic and germ cells in vitro and in vivo, similar gene expression profiles, and similar cell cycle structure. Ten years of intense studies on the stability of different human and monkey embryonic stem cells demonstrated that, irrespective of their origin, long-term in vitro cultures lead to the accumulation of chromosomal and gene mutations as well as epigenetic changes that can cause oncogenic transformation of cells. This review summarizes the research data on the genetic and epigenetic stability of different lines of pluripotent stem cells after long-term in vitro culture. These data were used to analyze possible factors of the genome and epigenome instability in pluripotent lines. The prospects of using pluripotent stem cells of different origin in cell therapy and pharmacological studies were considered.  相似文献   

17.
Wang  Zhaotao  Liu  Zhi  Yu  Guoyong  Nie  Xiaohu  Jia  Weiqiang  Liu  Ru-en  Xu  Ruxiang 《Neurochemical research》2018,43(3):760-774

Paeoniflorin (PF) is a polyphenolic compound derived from Radix Paeoniae Alba thathas anti-cancer activities in a variety of human malignancies including glioblastoma. However, the underlying mechanisms have not been fully elucidated. Epithelial to mesenchymal transition (EMT), characterized as losing cell polarity, plays an essential role in tumor invasion and metastasis. TGFβ, a key member of transforming growth factors, has been demonstrated to contribute to glioblastoma aggressiveness through inducing EMT. Therefore, the present studies aim to investigate whether PF suppresses the expression of TGFβ and inhibits EMT that plays an important role in anti-glioblastoma. We found that PF dose-dependently downregulates the expression of TGFβ, enhances apoptosis, reduces cell proliferation, migration and invasion in three human glioblastoma cell lines (U87, U251, T98G). These effects are enhanced in TGFβ siRNA treated cells and abolished in cells transfected with TGFβ lentiviruses. In addition, other EMT markers such as snail, vimentin and N-cadherin were suppressed by PF in these cell lines and in BALB/c nude mice injected with U87 cells. The expression of MMP2/9, EMT markers, are also dose-dependently reduced in PF treated cells and in U87 xenograft mouse model. Moreover, the tumor sizes are reduced by PF treatment while there is no change in body weight. These results indicate that PF is a potential novel drug target for the treatment of glioblastoma by suppression of TGFβ signaling pathway and inhibition of EMT.

  相似文献   

18.
Peroxisome proliferator activated receptor gamma (PPARgamma) is a nuclear hormone receptor that has been shown to regulate differentiation and cell growth. Studies of the differentiative effects of PPARgamma agonists on several cancer cell lines led to the hypothesis that dysfunction of PPARgamma contributes to tumorigenesis. These functional observations were strengthened by genetic evidence: somatic loss-of-function mutations in PPARG, encoding PPARgamma, in sporadic colorectal carcinomas and somatic translocation of PAX8 and PPARG in follicular thyroid carcinoma. Recently overrepresentation of the H449H variant was found in a cohort of American patients with glioblastoma multiforme. The glioblastoma multiforme data suggest that PPARG contributes common, low-penetrance alleles for cancer susceptibility. To test this hypothesis in a broader range of cancers we examined a series of carcinomas of the cervix, endometrium, ovary, prostate, and kidney for germline sequence variation in PPARG. In addition to the two common sequence variants, P12A and H449H, there were five other sequence variants. P12A alleles were underrepresented in renal cell carcinoma patients compared to country-of-origin race-matched controls (3.75% vs. 12.1%, P<0.04). In contrast, the H449H variant was overrepresented in individuals with endometrial carcinoma compared to controls (14.4% vs. 6.25%, P<0.02). These observations lend genetic evidence consistent with our hypothesis that PPARG serves as a common, low-penetrance susceptibility gene for cancers of several types, especially those epidemiologically associated with obesity and fat intake.  相似文献   

19.
Glioblastoma is one of the most aggressive human cancers with poor prognosis, and therefore a critical need exists for novel therapeutic strategies for management of glioblastoma patients. Itraconazole, a traditional antifungal drug, has been identified as a novel potential anticancer agent due to its inhibitory effects on cell proliferation and tumor angiogenesis; however, the molecular mechanisms involved are still unclear. Here, we show that itraconazole inhibits the proliferation of glioblastoma cells both in vitro and in vivo. Notably, we demonstrate that treatment with itraconazole induces autophagic progression in glioblastoma cells, while blockage of autophagy markedly reverses the antiproliferative activities of itraconazole, suggesting an antitumor effect of autophagy in response to itraconazole treatment. Functional studies revealed that itraconazole retarded the trafficking of cholesterol from late endosomes and lysosomes to the plasma membrane by reducing the levels of SCP2, resulting in repression of AKT1-MTOR signaling, induction of autophagy, and finally inhibition of cell proliferation. Together, our studies provide new insights into the molecular mechanisms regarding the antitumor activities of itraconazole, and may further assist both the pharmacological investigation and rational use of itraconazole in potential clinical applications.  相似文献   

20.
The harmonious development of the central nervous system depends on the interactions of the neuronal and glial cells. Extracellular matrix elements play important roles in these interactions, especially laminin produced by astrocytes, which has been shown to be a good substrate for neuron growth and axonal guidance. Glioblastomas are the most common subtypes of primary brain tumors and may be astrocytes in origin. As normal laminin-producing glial cells are the preferential substrate for neurons, and glial tumors have been shown to produce laminin, we questioned whether glioblastoma retained the same normal glial-neuron interactive properties with respect to neuronal growth and differentiation. Then, rat neurons were co-cultured onto rat normal astrocytes or onto three human glioblastoma cell lines obtained from neurosurgery. The co-culture confirmed that human glioblastoma cells as well as astrocytes maintained the ability to support neuritogenesis, but non-neural normal or tumoral cells failed to do so. However, glioblastoma cells did not distinguish embryonic from post-natal neurons in relation to neurite pattern in the co-cultures, as normal astrocytes did. Further, the laminin organization on both normal and tumoral glial cells was altered from a filamentous arrangement to a mixed punctuate/filamentous pattern when in co-culture with neurons. Together, these results suggest that glioblastoma cells could identify neuronal cells as partners, to support their growth and induce complex neurites, but they lost the normal glia property to distinguish neuronal age. In addition, our results show for the first time that neurons modulate the organization of astrocytes and glioblastoma laminin on the extracellular matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号