首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The intracellular mechanisms involved in the regulation of creatine phosphokinase expression in the BC3H1 muscle-like cell line have been examined under conditions of enzyme induction and repression. In the presence of low serum concentrations, BC3H1 cells cease to grow and synthesize high levels of creatine phosphokinase. When differentiated BC3H1 cultures are exposed to media containing high serum concentrations, cell division is reinitiated and further induction of creatine phosphokinase is inhibited. Accumulation of creatine phosphokinase-mRNA appears to be intimately coupled to the state of growth of BC3H1 cells. Log phase cells do not contain detectable levels of translatable creatine phosphokinase-mRNA; however, following cessation of growth, creatine phosphokinase-mRNA accumulates in approximate proportion to the increase in creatine phosphokinase activity. Reinitiation of cell division in quiescent differentiated cultures results in the arrest of further accumulation of creatine phosphokinase-mRNA but does not inhibit the translation of pre-existing creatine phosphokinase-mRNA. Under conditions of enzyme repression, however, the newly synthesized creatine phosphokinase appears to be enzymatically inactive. These results indicate that the expression of the muscle phenotype in BC3H1 cells is regulated by components present in serum and that myogenic differentiation is at least partially reversible following re-entry of quiescent cells into the cell cycle.  相似文献   

2.
Role of creatine phosphokinase in cellular function and metabolism.   总被引:9,自引:0,他引:9  
This paper summarizes the data concerning the role of the creatine phosphokinase system in muscle cells with main attention to the cardiac muscle. Creatine phosphokinase isoenzymes play a key role in the intracellular energy transport from mitochondria to myofibrils and other sites of energy utilization. Due to the existence of the creatine phosphate pathway for energy transport, intracellular creatine phosphate concentration is apparently an important regulatory factor for muscle contraction which influences the contractile force by determining the rate of regeneration of ATP directly available for myosin ATPase, and at the same time controls the activator calcium entry into the myoplasm across the surface membrane of the cells.  相似文献   

3.
In rat liver mitochondria all nucleoside diphosphate kinase of the outer compartment is associated with the outer surface of the outer membrane (Lipskaya, T. Yu., and Plakida, K. N. (2003) Biochemistry (Moscow), 68, 1136-1144). In the present study, three systems operating as ADP donors for oxidative phosphorylation have been investigated. The outer membrane bound nucleoside diphosphate kinase was the first system tested. Two others employed yeast hexokinase and yeast nucleoside diphosphate kinase. The two enzymes exhibited the same activity but could not bind to mitochondrial membranes. In all three systems, muscle creatine phosphokinase was the external agent competing with the oxidative phosphorylation system for ADP. Determination of mitochondrial respiration rate in the presence of increasing quantities of creatine phosphokinase revealed that at large excess of creatine phosphokinase activity over other kinase activities (of the three systems tested) and oxidative phosphorylation the creatine phosphokinase reaction reached a quasi-equilibrium state. Under these conditions equilibrium concentrations of all creatine phosphokinase substrates were determined and K(eq)app of this reaction was calculated for the system with yeast hexokinase. In samples containing active mitochondrial nucleoside diphosphate kinase the concentrations of ATP, creatine, and phosphocreatine were determined and the quasi-equilibrium concentration of ADP was calculated using the K(eq)app value. At balance of quasi-equilibrium concentrations of ADP and ATP/ADP ratio the mitochondrial respiration rate in the system containing nucleoside diphosphate kinase was 21% of the respiration rate assayed in the absence of creatine phosphokinase; in the system containing yeast hexokinase this parameter was only 7% of the respiration rate assayed in the absence of creatine phosphokinase. Substitution of mitochondrial nucleoside diphosphate kinase with yeast nucleoside diphosphate kinase abolished this difference. It is concluded that oxidative phosphorylation is accompanied by appearance of functional coupling between mitochondrial nucleoside diphosphate kinase and the oxidative phosphorylation system. Possible mechanisms of this coupling are discussed.  相似文献   

4.
A rat heart plasma membrane preparation isolated in a sucrose medium and some of its enzymatic properties have been investigated.It has been shown that a rat heart plasma membrane fraction contains high creatine phosphokinase activity which can not be diminished by repeated washing with sucrose solution. Creatine phosphokinase extracted from a plasma membrane fraction with potassium chloride and 0.01% deoxycholate solution is electrophoretically identical to MM isoenzyme of creatine phosphokinase. Under the conditions where (Na+,K+)-ATPase is activated by addition of Na+,K+ and MgATP, creatine phosphokinase of plasma membrane fraction is able to maintain a low ADP concentration in the medium if creatine phosphate is present. The rate of creatine release is dependent upon MgATP concentration in accordance with the kinetic parameters of the (Na+,K+)-ATPase and is significantly inhibited by ouabain (0.5 mM). The rate of creatine release is also dependent on creatine phosphate concentration in conformance with the kinetic parameters of MM isozyme of creatine phosphokinase,It is concluded that in intact heart cells the plasma membrane creatine phosphokinase may ensure effective utilization of creatine phosphate for immediate rephosphorylation of ADP produced in the (Na+,K+)-ATPase reaction.  相似文献   

5.
A rat heart plasma membrane preparation isolated in a sucrose medium and some of its enzymatic properties have been investigated. It has been shown that a rat heart plasma membrane fraction contains high creatine phosphokinase activity which can not be diminished by repeated washing with sucrose solution. Creatine phosphokinase extracted from a plasma membrane fraction with potassium chloride and 0.01% deoxycholate solution is electrophoretically identical to MM isoenzyme of creatine phosphokinase. Under the conditions where (Na+,K+)-ATPase is activated by addition of Na+, K+ and MgATP, creatine phosphokinase of plasma membrane fraction is able to maintain a low ADP concentration in the medium if creatine phosphate is present. The rate of creatine release is dependent upon MgATP concentration in accordance with the kinetic parameters of the (Na+,K+)-ATPase and is significantly inhibited by ouabain (0.5 mM). The rate of creatine release is also dependent on creatine phosphate concentration in conformance with the kinetic parameters of MM isozyme of creatine phosphokinase. It is concluded that in intact heart cells the plasma membrane creatine phosphokinase may ensure effective utilization of creatine phosphate for immediate rephosphorylation of ADP produced in the (Na+,K+)-ATPase reaction.  相似文献   

6.
Rat heart creatine phosphokinase (EC 2.7, 3.2) was extracted in the presence and absence of varying concentrations of sodium desoxycholate and the enzyme activity and total protein content of the extract was determined. Utilization of 0.05 and 0.10% desoxycholate had no effect on the extraction of creatine phosphokinase, while it caused a 70–75% increase in the protein value. Concentrations of 0.5, 0.75 and 1.0% desoxycholate almost doubled the release of creatine phosphokinase. Concomitantly, protein values rose five-to sevenfold. It is suggested that the addition of sodium desoxycholate to a concentration of 0.5% will greatly enhance myocardial creatine phosphokinase release provided the protein content of the extract is not desired as a reference point.  相似文献   

7.
The kinetics of creatine phosphokinase and adenylate kinase catalyzed reactions were studied at equilibrium by two-dimensional Fourier transform phosphorus-31 nuclear magnetic resonance. For the creatine phosphokinase reaction, a pseudo-first-order rate constant of 0.29 s-1 was determined for the transfer of a phosphate group from adenosine triphosphate to creatine phosphate. For the adenylate kinase reaction two slow rate processes were required to describe the experimental results. The conversion of adenosine diphosphate to adenosine monophosphate was found to have a pseudo-first-order rate constant of 1.2 s-1, whereas that for the release of adenosine triphosphate from its enzyme complex occurred at a rate of 14 s-1.  相似文献   

8.
The dependence of the rate of creatine phosphate synthesis in the mitochondrial creatine phosphokinase reaction upon the rate of oxidative phosphorylation and ATP translocation from the matrix to outside of the mitochondria has been studied. It has been experimentally shown that mitochondrial creatine phosphokinase reacts slowly with ATP in the medium but is very active in utilization of ATP synthesized by the oxidative phosphorylation process. From these data, it is postulated, therefore, that the ATP-ADP translocase transports ATP molecules directly to the active site of creatine phosphokinase localized on the outer site of the inner membrane. This results in an increase in the effective concentration of ATP in the vinicity of the active sites of creatine kinase and in acceleration of the forward reaction (creatine phosphate synthesis). The kinetic theory based on this assumption allows a quantitative explanation of the observed dependences. These data indicate the tight functional coupling between ATP-ADP translocase and creatine phosphokinase in heart mitochondria. It is concluded that in heart cells energy can be transported by creatine phosphate molecules only.  相似文献   

9.
Cultured heart cells serve as a common model for studying the electronphysiology and pharmacology of intact cells of the myocardium from which they are derived (Sperelakis, N. (1982) in Cardiovascular Toxicology (Van Stel, E.W., ed.), pp. 57-108, Raven Press, New York). In this study, heart cell reaggregates were used for investigating the relationship between lipid composition and aging of the heart cells. Spherical reaggregates were prepared from newborn, 3- and 18-month-old rats, respectively. They were grown for 6 days in culture and then analyzed for their lipid composition and creatine phosphokinase levels. There was an age-related increase in total phospholipids and cholesterol level per unit of cell protein. Due to a relatively greater increase in the cholesterol, the mole ratio of cholesterol to phospholipids increased with animal age. The phospholipid composition was also affected. Thus, sphingomyelin levels increased, while those of phosphatidylcholine decreased; these alterations became much more pronounced with increasing animal age. All these changes could be affected by adding small unilamellar vesicles composed of egg phosphatidylcholine to the growth medium on the 5th day after seeding. Such treatment resulted in a lesser ratio of cholesterol to phospholipid as well as sphingomyelin to phosphatidylcholine, without reducing the total phospholipid per unit protein; the level of creatine phosphokinase was also reduced. This study demonstrated that cultured heart reaggregates can serve as a model for studying aging of the whole animal. Its main advantage is the ability to employ cells from rats of any desired age. Currently this is not possible for cultured heart monolayers.  相似文献   

10.
We previously described epidermal proteins with molecular weights of 40,000 (p40) and 34,000 (p34) as target proteins of protein kinase C in mouse skin carcinogenesis in vivo. In the present work, p40 was purified from mouse brain by the use of 32P-labeled p40 of BALB/MK-2 cells as a tracer. Following four lines of evidence indicate that p40 is creatine phosphokinase B. 1) The amino acid sequences of all peptide fragments of p40 from mouse brain were located in the primary structure of creatine phosphokinase B. 2) p40 of BALB/MK-2 cells was immunoprecipitated with goat antibody against human creatine phosphokinase B. 3) p40 of BALB/MK-2 cells was absorbed to and eluted from a creatine affinity column. 4) Purified creatine phosphokinase B was phosphorylated in vitro by purified protein kinase C, but not by cAMP-dependent kinase or casein kinase II.  相似文献   

11.
1. The kinetic properties of mitochondrial creatine phosphokinase (Km for all substrates and maximal rates of the forward and reverse reaction) have been studied. Since (a) Km value for MgADP- (0.05 mM) and creatine phosphate (0.5 mM) are significantly lower than Km for MgATP2- (0.7 mM) and creatine (5.0 mM) and (b) maximal rate of the reverse reaction (creatine phosphate + ADP leads to ATP + creatine) equal to 3.5 mumol times min-1 times mg-1 is essentially higher than maximal rate of the forward reaction (0.8 mumol times min-1 times mg-1), ATP synthesis from ADP and creatine phosphate is kinetically preferable over the forward reaction. 2. A possible regulatory role of Mg2+ ions in the creatine phosphokinase reaction has been tested. It has been shown that in the presence of all substrates and products of the reaction the ratio of the rates of forward and reverse reactions can be effectively regulated by the concentration of Mg2+ ions. At limited Mg2+ concentrations creatine phosphate is preferably synthesized while at high Mg2+ concentrations (more ATP in the reaction medium) ATP synthesis takes place. 3. The kinetic (mathematical) model of the mitochondrial creatine phosphokinase reaction has been developed. This model accounts for the existence of a variety of molecular forms of adenine nucleotides in solution and the formation of their complexes with magnesium. It is based on the assumption that the mitochondrial creatine phosphokinase reactions mechanism is analogous to that for soluble isoenzymes. 4. The dependence of the overall rate of the creatine phosphokinase reaction on the concentration of total Mg2+ ions calculated from the kinetic model quantitatively correlates with the experimentally determined dependence through a wide range of substrates (ATP, ADP, creatine and creatine phosphate) concentration. The analysis of the kinetic model demonstrates that the observed regulatory effect of Mg2+ on the overall reaction rate can be expained by (a) the sigmoidal variation in the concentration of the MgADP- complex resulting from the competition between ATP AND ADP for Mg2+ and (b) the high affinity of the enzyme to MgADP-. 5. The results predicted by the model for the behavior of mitochondrial creatine phosphokinase under conditions of oxidative phosphorylation point to an intimate functional interaction of mitochondrial creatine phosphokinase and ATP-ADP translocase.  相似文献   

12.
Several blue-green algae were surveyed for the occurrence of the hydrogenase which was assayed by the oxyhydrogen or Knallgas reaction in the intact organisms. In aerobically grown cultures, the reaction was detectable in Anabaena cylindrica, Nostoc muscorum and in two Anabaena variabilis species, whereas virtually no activity was observed in Anacystis nidulans and Cyanophora paradoxa. In these latter two algae, the reaction was, however, found after growth under molecular hydrogen for several days, which drastically increased the activity levels with all the algae tested. In the nitrogen fixing species, the activity of the Knallgas reaction was enhanced when all combined nitrogen was omitted from the media. H2 and hydrogenase could not significantly support the CO2-fixation in photoreduction experiments with all blue-green algae investigated here. Hydrogenase was assayed by the dithionite and methyl viologen dependent evolution of hydrogen and was found to be present with essentially the same specific activity levels in preparations of both heterocysts and vegetative cells from Anabaena cylindrica. Na2S2O4 as well as H2 supported the C2H2-reduction of the isolated heterocysts. The H2-dependent C2H2-reduction did not require the presence of oxygen but was strictly light-dependent where H2 served as an electron donor to photosystem I of these cells. It is concluded that hydrogen can be utilized by two different pathways in blue-green algae.Abbreviations Chl chlrophyll - CP creatine phosphate - CP kinase creatine phosphokinase - DCMU N-(3,4-dichlorophenyl)N,N-dimethylurea  相似文献   

13.
Freeze-Preservation of Rice Cells Grown in Suspension Culture   总被引:1,自引:0,他引:1  
A simple procedure has been worked out for the freeze-preservation of rice (Oryza sativa L.) cells grown in suspension culture. The protocol differs in some interesting aspects from those established for other organisms. A peculiar feature of this procedure is that growth of freeze-recovered rice cells resumes after an extremely short lag period of 2–8 days and proceeds with a growth rate identical to that of untreated cells. This, together with data obtained with viability tests, rules out the possibility that selection of freeze-resistant mutant cells may occur, as postulated with other plant cells where growth resumption was considerably delayed in time. The viability of freeze-recovered rice cells, when assessed at time zero after thawing by measuring the mitochondrial respiratory efficiency, was 60–65% of that of untreated cells. However, the limits of this and other viability tests in determining the efficiency of the freeze preservation methods and the percentage of surviving cells were shown by experiments in which cell viability and cell growth were followed in cultures initiated with freeze-recovered rice cells.  相似文献   

14.
Eighteen components in rainbow trout serum were tested for variability among individuals and stability during storage. In addition, the precision of an automated serum analysis system was determined. Stability of serum components was observed over 42 days at temperatures of 25° C, 4° C and - 10° C. Components tested included: albumin, total protein, blood urea nitrogen, cholesterol, chloride, glucose, potassium, sodium, cholinesterase, alkaline phosphatase, lactic dehydrogenase, a-hydroxybutyrate dehydrogenase, glutamic pyruvic transaminase, phosphohexose isomerase, inorganic phosphorus, calcium, creatinine, and creatine phosphokinase. Fish serum was generally more stable than human serum when stored at 25° C and 4° C and similar in stability at - 10° C. Precision of analytical methodologies was excellent for all components measured except creatine phosphokinase.  相似文献   

15.
Mice were either rendered leukopenic by administration of nitrogen mustard or were treated with cortisone prior to intravenous challenge with Candida albicans. Leukopenic animals died five times faster following Candida challenge than untreated controls and also had significantly higher serum levels of the enzyme creatine phosphokinase. Similarly, when Candida infection occurred in cortisone-treated mice, mortality rates were markedly accelerated and serum levels of creatine phosphokinase and blood urea nitrogen were significantly higher than those found in untreated animals. Severe lesions and large numbers of Candida were observed in tissue sections of heart, kidney, and stomach from cortisone-treated animals. These data indicate that damage to host tissues is one manner by which Candida contribute to the morbidity of immunosuppressed animals.  相似文献   

16.
When embryoid bodies are grown in suspension culture in vitro, they undergo only a limited amount of morphological development. When these same embryoid bodies are permitted to attach to the surface of a culture dish, a wide variety of new morphological cell types appear. Suspension cultures of embryoid bodies do not contain significant detectable levels of acetylcholine esterase or creatine phosphokinase. These same enzymes however are produced in cell cultures derived from embryoid bodies attached to the culture dish surface. Polyacrylamide gel electrophoresis has been employed to demonstrate that the electrophoretic form of creatine phosphokinase produced by teratoma cells in culture is the brain form of the enzyme. Solid transplantable tumors containing only embryonal carcinoma cells (stem cells) do not contain either of these enzymatic activities. Well differentiated transplantable teratomas contain both enzymes.  相似文献   

17.
Synechococcus sp. (PTCC 6021), a cyanobacterium species, was cultivated in an internally illuminated photobioreactor. The reactor was designed to achieve a monoseptic cultivation of the species. The goal was to study the growth–irradiance behavior of Synechococcus sp. (PTCC 6021). To accomplish this, different initial light irradiances were implemented inside the photobioreactor and the growth of the cells was monitored. It was observed that cell growth increased with higher light intensity until the photoinhibition occurrence at light irradiance higher than 250?μE?m?2?s?1. The maximum OD600, maximum growth rate, and biomass productivity increased, and hence the extinction coefficient decreased, with the increase in light irradiance before photoinhibition. The maximum optical density (OD600) of 5.91 was obtained with irradiance below 250?μE?m?2?s?1 during a growth period of 80 days. The modified Monod function could model the growth–irradiance of cells with satisfactory agreement with the experimental data. The comparison of growth–irradiance of the studied species with other photosynthetic organisms showed the same trend as for cyanobacteria with photoinhibition.  相似文献   

18.
Intracellular proteolysis was measured in primary cultures of newborn rat skeletal (gastrocnemius) and cardiac muscle cells by release to the medium of trichloroacetic acid-soluble label from cells grown in the presence of 14C-labeled phenylalanine. Exposure of the cultured cells to 10?7M dexamethasone for 5 days starting at day 0 of culture resulted in an enhancement of proteolysis in skeletal muscle but not in cardiac muscle cells. Dexamethasone did not affect cell viability measured by release of label from cells preloaded with Na2 51CrO4, release of creatine phosphokinase, and release of lactic dehydrogenase into the culture medium. Incorporation of 3H-thymidine into the cells increased during the first 3 to 4 days of culture and subsequently decreased, indicating that cell proliferation ceases at that time. When the exposure to dexamethasone was started on day 4 of culture, i.e., at a postmitotic stage, and continued for 4 days, proteolysis was again found to increase in skeletal but not cardiac cells, thereby suggesting that the response to the hormone is independent of the proliferative state of the culture. Ammonium chloride at a concentration of 10 mM produced a 50% reduction of the basal proteolysis in cultures of skeletal muscle cells and did not affect proteolysis in cardiac muscle cells. Exposure to ammonium chloride did not prevent the dexamethasone-induced increase of proteolysis in skeletal muscle cells. Serum-deprivation induced enhanced proteolysis which was not affected by NH4Cl in both cell types. It is concluded that the differential responses of the two cultures to dexamethasone reflects the sparing of heart proteins and concomitant wasting of skeletal muscle proteins by glucocorticoid hormones in vivo, and that the enhancement of proteolysis by the glucocorticoid hormone or by serum-deprivation is not sensitive to the lysosomotropic agent NH4Cl. Thus, while a lysosomal-autophagic enzyme system is responsible for almost half of the basal proteolysis, the accelerated proteolysis occurs via ammonium chloride-insensitive enzymes.  相似文献   

19.
The association of an altered cytoplasmic microtubule complex in cells of the dystrophic chicken was investigated. Dystrophic chickens of lines 304 and 413 were compared with their genetically matched control, 412 (obtained from UC, Davis). Explants and trypsin-dissociated tissues were prepared from breast and heart muscles of chickens at 1, 3, 7, 14, 20, 40, 80 and 120 days ex ovo. The cells were cultured for 7 days and then processed for antitubulin immunofluorescence. Over 90% of the cells displayed an extensive cytoplasmic microtubule complex, although there was significant elevation of creatine phosphokinase in the dystrophic chickens after 20 days ex ovo. In both dystrophic and control preparations, one to two distinct functionally intact microtubule-organizing centers per cell were observed. Dystrophic and control chicken brain extracts demonstrated essentially the same extent of microtubule assembly as assayed by turbidity increase and protein in sedimentable polymer. SDS-PAGE revealed no significant differences in the microtubule proteins polymerized from the dystrophic and control brains. These results suggest that no significant alteration occurs in the structure, assembly or distribution of cytoplasmic microtubules in the cells of the dystrophic chicken.  相似文献   

20.
The diffusion of beta-enolase and creatine phosphokinase in muscle cells has been studied by modulated fringe pattern photobleaching. Beta-enolase is mobile in the sarcoplasm. At 20 degrees C, the diffusion coefficient is 13.5 +/- 2.5 microm2 s(-1) in the cytosol and 56 microm2 s(-1) in aqueous media. As in the case of dextrans of the same hydrodynamic radius, its mobility is hindered by both the crowding of the fluid phase of the cytoplasm and the screening effect due to myofilaments. A fraction of creatine phosphokinase is mobile in the sarcoplasm. Its diffusion coefficient in the cytosol, 4.5 +/- 1 microm2 s(-1), is lower than that of the dextran of equivalent size. The other fraction (20 to 50%) is very slightly mobile, with an apparent diffusion coefficient varying from 0.0035 to 0.043 microm2 s(-1). This low mobility might be attributed to exchange between free and bound creatine phosphokinase. The bound fraction of the endogenous enzyme was localized by immunocytofluorescence on the cultured muscle cells. Our results favor a localization of bound cytosolic creatine phosphokinase on the M-line and a diffuse distribution in all myotubes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号