首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The XYN2 gene encoding the main Trichoderma reesei QM 6a endo-beta-1,4-xylanase was amplified by PCR from first-strand cDNA synthesized on mRNA isolated from the fungus. The nucleotide sequence of the cDNA fragment was verified to contain a 699-bp open reading frame that encodes a 223-amino-acid propeptide. The XYN2 gene, located on URA3-based multicopy shuttle vectors, was successfully expressed in the yeast Saccharomyces cerevisiae under the control of the alcohol dehydrogenase II (ADH2) and phosphoglycerate kinase (PGK1) gene promoters and terminators, respectively. The 33-amino-acid leader peptide of the Xyn2 beta-xylanase was recognized and cleaved at the Kex2-like Lys-Arg residues, enabling the efficient secretion and glycosylation of the heterologous beta-xylanase. The molecular mass of the recombinant beta-xylanase was estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to be 27 kDa. The construction of fur1 ura3 S. cerevisiae strains allowed for the autoselection of the URA3-based XYN2 shuttle vectors in nonselective complex medium. These autoselective S. cerevisiae strains produced 1,200 and 160 nkat of beta-xylanase activity per ml under the control of the ADH2 and PGK1 promoters in rich medium, respectively. The recombinant enzyme showed highest activity at pH 6 and 60 degrees C and retained more than 90% of its activity after 60 min at 50 degrees C.  相似文献   

3.
Cel5A (endoglucanase II) of Trichoderma reesei was expressed in Saccharomyces cerevisiae then purified. Two components (C1 and C2) of recombinant Cel5A with different glycosylation were obtained. Purified C1 had a larger molecular mass (57 kDa) than that of the native Cel5A produced by T. reesei (48 kDa) due to the different extents of asparagines-linked glycosylation. There was no significant difference in enzymatic activity between the C1 and the native Cel5A from T. reesei. C1 treated with Endoglycosidase H had a molecular mass of 54 kDa and retained about 88% of its original activity. Unpurified C2 was larger form of hyperglycosylation proteins. Its molecular mass was larger than 85 kDa till up to 200 kDa. It still retained activity regardless of its magnitude molecular mass. With increased glycosylation extent of the enzyme components (C2 >C1 >native Cel5A), the pH range of activity become wider, and thermal stability become higher.  相似文献   

4.
Intergeneric fusants of Trichoderma reesei QM 9414/Saccharomyces cerevisiae NCIM 3288 developed in the authors' laboratory can convert cellulosic materials directly to ethanol in a single step process. The production of endoglucanase in this case is a key factor. The production profile of this enzyme by the intergeneric fusants is different from Trichoderma reesei QM 9414 (WT). The production of endoglucanase was studied seperately by Trichoderma reesei (WT) using optimal production medium which was designed as per the combined screening approach of Plackett-Burman followed by a central composite experimental plan and the intergeneric fusants using optimal production medium obtained by Box-Behnken optimization procedure. Dried grass was used as the cellulosic substance whose concentration was kept constant during the statistical optimization procedure. The concentration of dried grass was later varied keeping the other optimized medium constituents constant to find the final optimum medium composition for endoglucanase production.  相似文献   

5.
Trichoderma reesei endoglucanase I (EGI) was used as a reporter enzyme for screening mutagenized yeast strains for increased ability to produce protein. Sixteen haploid Saccharomyces cerevisiae strains, transformed with a yeast multicopy vector pALK222, containing the EGI cDNA under the ADH1 promoter, produced EGI activity of 10-5–10-4 g/l. On the average 93% of the total activity was secreted into the culture medium. Two strains with opposite mating types were mutagenized, and several mutants were isolated possessing up to 45-fold higher EGI activity. The best mutants were remutagenized and a second-generation mutant, strain 2804, with an additional twofold increase in EGI activity was selected. The mutant strain 2804 grew more slowly and reached a lower final cell density than the parental strain. In the selective minimal medium, the 2804 strain produced 40 mg/l immunoreactive EGI protein, but only 2% was active enzyme. In the rich medium the secreted EGI enzyme stayed active, but without selection pressure the EGI production ceased after 2 days of cultivation, when the strain 2804 had produced 10 mg/l of EGI. A sevenfold difference was found between the parental and the 2804 strain in their total EGI production relative to cell density. The difference in favour of the mutant strain was also detected on the mRNA level. The 2804 mutant was found to be more active than the parental strain also in the production of T. reesei cellulases, cellobiohydrolase I, and cellobiohydrolase II. Received: 22 December 1995/Received revision: 26 February 1996/Accepted: 17 March 1996  相似文献   

6.
Thermosensitive mutants of Saccharomyces cerevisiae, affected in the endoplasmic reticulum (ER) located glycosylation, i.e. in Dol-P-Man synthase (dpm1), in beta-1,4 mannosyl transferase (alg1) and in alpha-1,3 mannosyltransferase (alg2), were used to assess the role of GDP-Man availability for the synthesis of dolichol-linked saccharides. The mutants were transformed with the yeast gene MPG1 (PSA1/VIG9) encoding GDP-Man pyrophosphorylase catalyzing the final step of GDP-Man formation. We found that overexpression of MPG1 allows growth at non-permissive temperature and leads to an increase in the cellular content of GDP-Man. In the alg1 and alg2 mutants, complemented with MPG1 gene, N-glycosylation of invertase was in part restored, to a degree comparable to that of the wild-type control. In the dpm1 mutant, the glycosylation reactions that depend on the formation of Dol-P-Man, i.e. elongation of Man(5)GlcNAc(2)-PP-Dol, O-mannosylation of chitinase and synthesis of GPI anchor were normal when MPG1 was overexpressed.Our data indicate that an increased level of GDP-Man is able to correct defects in mannosylation reactions ascribed to the ER and to the Golgi.  相似文献   

7.
β-葡萄糖苷酶在酿酒酵母表面的表达   总被引:1,自引:0,他引:1  
应用表面表达技术对来自Trichodermareesei的β-葡萄糖苷酶在酿酒酵母表面的表达及后期性质进行了研究。实验结果表明酵母表面表达酶有活性,该酶的最佳诱导时间为24h,最适温度是70℃,而酶活的最适pH是5.5。使异源表面表达了Bgl1的酵母在以纤维二糖为唯一碳源的培养基中生长,发酵结果表明纤维二糖被明显利用了,但在培养186h后,发酵液中仍残留一定量的纤维二糖。这种技术对纤维素发酵系统中纤维二糖酶活性低的现状有所帮助。  相似文献   

8.
Expression of the Saccharomyces cerevisiae DPM1 gene (coding for dolichylphosphate mannose synthase) in Trichoderma reesei (Hypocrea jecorina) increases the intensity of protein glycosylation and secretion and causes ultrastructural changes in the fungal cell wall. In the present work, we undertook further biochemical and morphological characterization of the DPM1-expressing T. reesei strains. We established that the carbohydrate composition of the fungal cell wall was altered with an increased amount of N-acetylglucosamine, suggesting an increase in chitin content. Calcofluor white staining followed by fluorescence microscopy indicated changes in chitin distribution. Moreover, we also observed a decreased concentration of mannose and alkali-soluble beta-(1,6) glucan. A comparison of protein secretion from protoplasts with that from mycelia showed that the cell wall created a barrier for secretion in the DPM1 transformants. We also discuss the relationships between the observed changes in the cell wall, increased protein glycosylation, and the greater secretory capacity of T. reesei strains expressing the yeast DPM1 gene.  相似文献   

9.
beta-Mannanase (endo-1,4-beta-mannanase; mannan endo-1,4-beta-mannosidase; EC 3.2.1.78) catalyzes endo-wise hydrolysis of the backbone of mannan and heteromannans, including hemicellulose polysaccharides, which are among the major components of plant cell walls. The gene man1, which encodes beta-mannanase, of the filamentous fungus Trichoderma reesei was isolated from an expression library by using antiserum raised towards the earlier-purified beta-mannanase protein. The deduced beta-mannanase consists of 410 amino acids. On the basis of hydrophobic cluster analysis, the beta-mannanase was assigned to family 5 of glycosyl hydrolases (cellulase family A). The C terminus of the beta-mannanase has strong amino acid sequence similarity to the cellulose binding domains of fungal cellulases and is preceded by a serine-, threonine-, and proline-rich region. Consequently, the beta-mannanase is probably organized similarly to the T. reesei cellulases, having a catalytic core domain separated from the substrate-binding domain by an O-glycosylated linker. Active beta-mannanase was expressed and secreted by using the yeast Saccharomyces cerevisiae as the host. The results indicate that the man1 gene encodes the two beta-mannanases with different isoelectric points (pIs 4.6 and 5.4) purified earlier from T. reesei.  相似文献   

10.
11.
The phenomenon of nonsense suppression, which leads to the stop codons reading-through, may be related to disturbances in the operation of various components of the translation apparatus and the proteins interacting with them. The phosphatase Ppzlp is one of the factors affecting the nonsense suppression efficiency in Saccharomyces yeast. In this work, the impact of the overexpression of gene PPZ1 and its mutant allele PPZ1-R451L on the phenotypic expression of various mutant alleles of genes SUP35 and SUP45 or the yeast prion [PSI +] was analyzed. On the basis of the data obtained, a suggestion about the possible role of proteins Sup35p and Sup45p in the processes mediating the influence of gene PPZ1 overexpression on the efficiency of nonsense suppression is made.  相似文献   

12.
The phenomenon of nonsense suppression, which leads to the reading of stop codons as sense codons, may be related to disturbances in the operation of various components of the translation apparatus and the proteins interacting with them. The phosphatase Ppzlp is one of the factors affecting the nonsense suppression efficiency in the saccharomycete yeast. In this work, the impact of the overexpression of gene PPZ1 and its mutant allele PPZ1-R451L on the phenotypic expression of various mutant alleles of genes SUP35 and SUP45 or the yeast prion [PSI+] was analyzed. On the basis of the data obtained, a suggestion about the possible role of proteins Sup35p and Sup45p in the processes mediating the influence of gene PPZ1 overexpression on the efficiency of nonsense suppression is made.  相似文献   

13.
S Aho 《FEBS letters》1991,291(1):45-49
The function of the domains of Trichoderma reesei endoglucanase I (EGI) has been studied. Truncated EGI proteins were expressed from the 3'-end deleted cDNAs in the yeast Saccharomyces cerevisiae under the control of the ADC1 expression cassette. EGI protein was detected by monoclonal antibody EI-2 and EGI activity as cleared zones around growing colonies on agar plates containing hydroxyethylcellulose (HEC) covalently stained with Ostazin brilliant red (OBR). The results showed that the The-Ser-rich hinge region and the conserved 'tail' are not necessary for the efficient synthesis and secretion of EGI in yeast, but the intact core region is necessary for the enzymatic activity.  相似文献   

14.
15.
瑞氏木霉EG Ⅰ 3‘—UTR对基因在酿酒酵母中表达的影响   总被引:1,自引:1,他引:1  
将纤维素降解菌丝状真菌瑞氏木霉内切葡聚糖酶Ⅰ(EGⅠ)全长cDNA克隆于酿酒酵母H158中得到表达。重组酿酒酵母产生的EIⅠ的最适pH值为5.0,最适作用温度为50℃-60℃。EGⅠcDNA中的3‘- 非翻译区(3‘-UTR)序列的删除导致EGI基因在酵母菌中没有活性产物表达。通过RT-PCR技术检测EGⅠmRNA转录水平的结果表明,带有3‘-UTA的EGⅠcDNA在酿酒酵母中具有明显的转录产物生成,但删除3‘-UTR之后的EGⅠcDNA去检测不到转录产物。这说明EGⅠ的3‘-UTA对基因在酵母菌中的表达具有重要作用。  相似文献   

16.
17.
Cellobiohydrolase II of Trichoderma reesei was produced in laboratory and pilot scale using a transformant strain of Saccharomyces cerevisiae harbouring a multicopy expression plasmid. Different strategies were compared for concentration and partial purification of the enzyme produced in a 200 1 pilot cultivation. After efficient separation of biomass and sub-cellular particulate matter, a combination of ultrafiltration and adsorbent treatment for removal of protein impurities was used to provide a concentrate for chromatographic purification. Effective purification of the CBH II protein was obtained by passing the concentrate through a column of DEAE Sepharose, on which almost all the yeast proteins were adsorbed. The purified enzyme reacted with antibodies prepared against T. reesei CBH II and catalyzed partial solubilization of crystalline cellulose to soluble sugars.  相似文献   

18.
Bioenergy, particularly biofuel, from lignocellulosic biomass has been considered as one of the most promising renewable and sustainable energies. The industrial productivity and efficiency of microbial lignocellulolytic enzymes for cellulosic biofuel applications are significantly affected by pH of culture condition. This study established and compared hydrolytic protein expression profiles of Trichoderma reesei QM6a, QM9414, RUT C30 and QM9414MG5 strains at different pH in cellulosic culture media. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of secretome of T. reesei cultured from pH 3.0-9.0 revealed significantly higher hydrolytic protein expressions at acidic pH. The Bray-Curtis similarity indices, clustering, and Shannon diversity index elucidated differences in protein secretion at different pHs in individuals and among the strains. This study demonstrated a comparative lignocellulolytic enzyme secretion profile of T. reesei and its mutants at different pHs and provides pH sensitive and resistance enzyme targets for industrial lignocellulose hydrolysis.  相似文献   

19.
The Aspergillusniger and Trichodermareesei genes encoding the functional homologues of the small GTP-binding protein SAR1p, which is involved in the secretion pathway in Saccharomyces cerevisiae, have been cloned and characterised. The A. niger gene (sarA) contains five introns, whereas the T. reesei gene (sar1) has only four. In both cases the first intron is at the same position as the single S. cerevisiae SAR1 intron. The encoded proteins show 70–80% identity to the SAR1 protein. Complementation of S. cerevisiaesar1 and sec12 mutants by expression vectors carrying the A. nigersarA and T. reesei sar1 cDNA clones confirmed that the cloned genes are functional homologues of the S. cerevisiae SAR1 gene. Three mutant alleles of the A. nigersarA gene (D29G, E109K, D29G/E109K), generated by site-directed mutagenesis, revealed a thermosensitive dominant-negative phenotype in the presence of the wild-type sarA allele. This result contrasts with the situation in S. cerevisiae, where similar mutations have a thermosensitive phenotype. Taken together, our results indicate that the sarA gene is involved in an essential function in A. niger.  相似文献   

20.
Sorbitol is often used at 1 mol/liter as an osmotic stabilizer for cultivation of fungi with a fragile cell wall phenotype. On the other hand, at this concentration sorbitol causes an osmotic stress in fungal cells resulting in intensive production of intracellular glycerol. The highly increased consumption of glucose for glycerol synthesis may lead to changes in processes requiring carbohydrate residues. This study provides new information on the consequences of osmotic stress to the cell wall composition, protein production and glycosylation, and cell morphology of Trichoderma reesei. We observed that high osmolarity conditions enhanced biomass production and strongly limited synthesis of cell wall glucans and chitin. Moreover, in these conditions the amount of secreted protein decreased nearly ten-fold and expression of cbh1 and cbh2 genes coding for cellobiohydrolase I and cellobiohydrolase II, the main secretory proteins in T. reesei, was inhibited resulting in a lack of the proteins in the cell and cultivation medium. The activity of DPM synthase, enzyme engaged in both N- and O-glycosylation pathways, was reduced two-fold, suggesting an overall inhibition of protein glycosylation. However, the two modes of glycosylation were affected divergently: O-glycosylation of secreted proteins decreased in the early stages of growth while N-glycosylation significantly increased in the stationary phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号