首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The total activities of monoamine oxidase (MAO) and the ratio of type B/type A activities were determined in mouse neuroblastoma N1E-115 cells, and in NX31T and NG108-15 hybrid cells derived from mouse neuroblastoma X rat sympathetic ganglion hybrid or mouse neuroblastoma X rat glioma hybrid cells. N1E-115 and NX31T cells possessed type A activities exclusively, although NG108-15 cells showed both type A (65-90%) and type B (10-35%) MAO activities. The activity of type A MAO in NX31T and N1E-115 cells was relatively constant during culturing periods in the presence or absence of dibutyryl cyclic AMP (Bt2cAMP), whereas total MAO activity and the ratio of type B MAO/type A MAO in NG108-15 cells increased as a function of culture periods. Prostaglandin E1 (PGE1) and theophylline, the best known combination to increase intracellular cyclic AMP content of NG108-15 cells, caused similar increases of MAO and of the type B/type A ratio in NG108-15 cells. The results suggest that MAO activity and expression of MAO B activity are regulated in NG108-15 cells in a cyclic AMP-dependent manner.  相似文献   

2.
Y Kimura  Y Oda  T Deguchi  H Higashida 《FEBS letters》1992,314(3):409-412
Neuroblastoma x glioma hybrid NG108-15 cells and mouse neuroblastoma N18TG-2 and N1E-115 cells were transiently transfected with the sense cDNA coding for rat choline acetyltransferase (ChAT). All transfected cell lines showed a high level of ChAT activity. ACh secretion was monitored by recording miniature end-plate potentials (MEPPs) in striated muscle cells that had been co-cultured with transfected cells. The number of muscle cells with synaptic responses and the MEPP frequency were higher in co-culture with transfected NG108-15 cells than with control or mock cells. No synaptic response was detected in muscle cells co-cultured with transfected N18TG-2 or N1E-115 cells. The results show that ACh secretion into the synaptic cleft was enhanced due to ChAT overexpression in NG108-15 hybrid cells but not in neuroblastoma cells.  相似文献   

3.
The ability of UTP, UDP, ATP, and ADP to influence inositol phospholipid hydrolysis in neuroblastoma origin cell lines was assessed. The mouse neuroblastoma lines N1E 115, Neuro 2a, and NB4 1A3 and the rat glioma/mouse neuroblastoma hybrid line NG108-15 gave robust responses to both UTP and UDP, which were essentially equipotent. Thus a range of cell lines of mouse neuroblastoma origin express a pyrimidine-selective P2Y receptor. The NG108-15 cells were the only cell type tested at which ATP and ADP displayed activity with EC50 values of greater than 100 μM, compared with values of 0.58 and 1.25 μM for UTP and UDP, respectively. In contrast to the cell lines derived from mouse neuroblastoma, the human neuroblastoma lines SH-SY5Y and SK-N-SH did not respond to any nucleotides, although both responded well to carbachol.  相似文献   

4.
神经母细胞瘤和神经胶质瘤细胞融合的克隆细胞系NG108-15细胞在含分化剂双丁基环化单磷酸腺苷(dBfcAMP)的培养液培养后分化,成为具神经细胞特征的细胞。本实验利用四唑盐(MTT)微量比色法,并结合焦油紫染色,测定和观察细胞的生长及分化状况,研究了低氧(2%O2+93%N2+5/CO2)对未分化的,分化中的和已分化完成的NG108-15细胞的影响。获得的主要结果是;低氧明显降低未分化细胞增殖和存活率,使分化完成的细胞大量死亡;低氧影响NG108-15细胞的分化,使细胞在分化中出现体积膨大,突起短等异常特征,经焦油紫染色,胞质中无尼氏体(即不着色)的细胞增多。低氧是否可能使未分化NG108-15细胞向更多地表达胶质细胞特征的方向分化?将是一个十分有趣的问题。  相似文献   

5.
Tritiated DTLET (Tyr-D-Thr-Gly-Phe-Leu-Thr) binds with high affinity, specificity and saturability to neuroblastoma N18TG2 and hybrid neuroblastoma x glioma NG108-15 and NG108-5 intact cells. The delta-opioid receptor density in cells cultured in chemically defined medium was increased about 2 times compared to that in cells cultured in 10% fetal calf serum. A major and a minor protein species covalently and specifically bound to [125I]azido-DTLET (Tyr-D-Thr-Gly-pN3Phe-Leu-Thr), photoactivatable ligand, migrated on SDS-gel electrophoresis with Mr values near 33,000 and 58,000, respectively.  相似文献   

6.
Cannabimimetic drugs have been shown to inhibit adenylate cyclase activity in N18TG2 neuroblastoma cells. This investigation examines the possible role of opioid receptors in the cannabimimetic response. Opioid receptors of the delta subtype were found on N18TG2 membranes using [3H]D-Ala2-D-Leu5-enkephalin. No mu or kappa receptors were detected using selective ligands for these sites. The delta binding affinity and capacity were unaltered by cannabimimetic drugs. To test if cannabimimetic drugs may modulate opioid effector mechanisms, cyclic AMP metabolism was determined in intact cells and in membranes. N18TG2 adenylate cyclase was inhibited by the cannabimimetic drugs delta 9-tetrahydrocannabinol and desacetyllevonantradol, and by the opioid agents morphine, etorphine, and D-Ala2-Met5-enkephalinamide. The opioid inhibition was reversed by naloxone and naltrexone; however, the cannabimimetic response was unaffected. Both cannabimimetic and opioid drugs decreased cyclic AMP accumulation in intact cells, but opioid antagonists blocked the response only to the latter. Thus, cannabimimetic effects are observed even though opioid receptors are blocked by antagonist drugs. The interaction between desacetyllevonantradol and etorphine was neither synergistic nor additive at maximal concentrations, suggesting that these two drugs operate via the same effector mechanism. Other neuronal cell lines having an opioid response were also examined. The cannabimimetic inhibition of cyclic AMP accumulation in NG108-15 neuroblastoma X glioma cells was not as great as the response in N18TG2. N4TG1 neuroblastoma cells did not respond to cannabimimetic drugs under any conditions tested. Thus, the cannabimimetic inhibition of adenylate cyclase is not universally observed, and the efficacy of the cannabimimetic response does not correlate with the efficacy of the opioid response.  相似文献   

7.
8.
9.
10.
The ATP.Mg-dependent protein phosphatase activating factor (protein kinase FA) has been identified to exist in neuroblastoma x glioma hybrid 108-15 cells (NG108-15 cells). More importantly, when NG cells were induced to differentiate with N6, O2'-dibutyryl adenosine 3',5'-cyclic monophosphate (dibutyryl cAMP), the cellular activity of kinase FA was found to increase dramatically. Time course study further revealed that induction of differentiation in NG cells by dibutyryl cAMP treatment increased the FA activity to over 3 times the levels found in undifferentiated cells and in a linear day-dependent manner, indicating that the FA activity level is correlated with the state of differentiation of NG108-15 cells. This is the first report providing initial evidence that protein kinase FA (a transmembrane signal of insulin) is involved in the induction of neuronal cell differentiation.  相似文献   

11.
We have produced a polyclonal antibody that specifically recognizes cGMP-binding cGMP-specific phosphodiesterase (PDE5). The antibody was raised in rabbit using as immunogen a fusion protein, in which glutathione S-transferase was coupled to a 171 amino acid polypeptide of the N-terminal region of bovine PDE5. The antibody is able to immunoprecipitate PDE5 activity from mouse tissues and neuroblastoma extracts while it has no effect on all other PDE isoforms present in the extracts. PDE5 activity recovered in the immunoprecipitates retains its sensitivity to specific inhibitors such as zaprinast (IC(50)=0.6 microM) and sildenafil (IC(50)=3.5 nM). Bands of the expected molecular mass were revealed when solubilized immunoprecipitates were analysed in Western blots. The antibody selectively stained cerebellar Purkinje neurones, which are known to express high levels of PDE5 mRNA. Western blot analysis of mouse tissues revealed the highest expression signal in mouse lung, followed by heart and cerebellum, while a lower signal was evident in brain, kidney and a very low signal was present in the liver. In the hybrid neuroblastoma-glioma NG108-15 cells the antibody revealed a high PDE5 induction after dibutyryl-cAMP treatment.  相似文献   

12.
Ethanol differentially regulates G proteins in neural cells   总被引:11,自引:0,他引:11  
Long-term incubation of clonal neural cell lines with ethanol differentially reduces the stimulation of cAMP accumulation by hormones and cholera toxin. In the NG108-15 neuroblastoma chi glioma hybrid cell line, this heterologous desensitization was associated with a 42% reduction in the expression of Gs alpha and no significant change in Gi alpha. By contrast, ethanol treatment of the parental neuroblastoma cell line N18TG2 caused little loss of response to hormones or cholera toxin and no significant change in Gs alpha or Gi alpha. Ethanol induced heterologous desensitization in N1E-115 neuroblastoma cells; however, this cell line showed a dose-dependent increase in Gi alpha and a later decrease in Gs alpha. Thus, ethanol causes heterologous desensitization of hormone-stimulated cAMP accumulation by different mechanisms in related neural cell lines.  相似文献   

13.
Distribution of three isoenzymes of brain enolase (2-phospho-D-glycerate hydro-lyase, EC 4.2.1.11) (alpha alpha, alpha gamma and gamma gamma forms) in clonal cell lines of neuroblastoma (NS20Y and N18TG-2), glioma (C6BU-1), and hybrid cells NG108-15, NCB20, Nbr10A, Nbr20A, N4G-B-a and N4G-C-a) was examined with a sensitive enzyme immunoassay system, that uses a rabbit antibody to rat brain enolase alpha alpha or gamma gamma. All cell lines tested were found to possess the enolase which contains gamma subunit (a neuron-specific protein), although the alpha alpha enolase (non-neuronal enolase) was the dominant from in these cells. A clonal rat glioma (C6BU-1) cell contained about 40, 1 and 0.07 microgram/mg protein of alpha alpha, alpha gamma and gamma gamma enolases, respectively, at the confluent stage. Inclusion of 1 mM dibutyryl cyclic AMP or 10 micrometers prostaglandin E1 plus 1 mM theophylline in the culture medium of a hybrid cell (NG108-15, mouse neuroblastoma x rat glioma) resulted in a more than 2-fold increase in the concentrations of alpha gamma and gamma gamma in the cell within a few days, with little change in the alpha alpha enolase concentration. A similar increase in the concentration of gamma subunit by the nucleotide (but not by prostaglandin E1 plus theophylline) was also observed in the glioma cell (C6BU-1) line. The results suggest that the gamma subunit or the neuron-specific protein can be regulated in NG108-15 and C6BU-1 cells in a cyclic AMP-dependent fashion.  相似文献   

14.
The influence of GM1 on the neuritogenic phase of neuronal differentiation has been highlighted in recent reports showing upregulation of this ganglioside in the plasma and nuclear membranes concomitant with axonogenesis. These changes are accompanied by alterations in Ca2+ flux which constitute an essential component of the signaling mechanism for axon outgrowth. This study examines 2 distinct mechanisms of induced neurite outgrowth involving plasma membrane GM1, as expressed in 3 neuroblastoma cell lines. Growth of Neuro-2a and NG108-15 cells in the presence of neuraminidase (N'ase), an enzyme that increases the cell surface content of GM1, caused prolific outgrowth of neurites which, in the case of Neuro-2a, could be blocked by the B subunit of cholera toxin (Ctx B) which binds specifically to GM1; however, the latter agent applied to NG108-15 cells proved neuritogenic and potentiated the effect of N'ase. With N18 cells, the combination was also neuritogenic as was Ctx B alone, whereas N'ase by itself had no effect. Neurite outgrowth correlated with influx of extracellular Ca2+, determined with fura-2. Treatment of NG108-15 and N18 cells with Ctx B alone caused modest but persistent elevation of intracellular Ca2+ while a more pronounced increase occurred with the combination Ctx B + N'ase. Treatment with N'ase alone also caused modest but prolonged elevation of intracellular Ca2+ in NG108-15 and Neuro-2a but not N18; in the case of Neuro-2a this effect was blocked by Ctx B. Neuro-2a and N18 thus possess 2 distinctly different mechanisms for neuritogenesis based on Ca2+ modulation by plasma membrane GM1, while NG108-15 cells show both capabilities. The neurites stimulated by N'ase + Ctx B treatment of N18 cells were shown to have axonal character, as previously demonstrated for NG108-15 cells stimulated in this manner and for Neuro-2a cells stimulated by N'ase alone.  相似文献   

15.
16.
Abstract: Rat glioma mouse neuroblastoma hybrid neurotumor cells (NG108-15), synchronized by amino acid deprivation, showed a cell-cycle-dependent peak of activity of a ganglioside N-acetylgalactosaminyl transferase 14-24 h following release from the cell cycle block (S/G2 phase). Maximal expression of two typical lysosomal hydrolases, N-acetyl-β-hexosaminidase and β-galactosidase, occurred between 18 and 21 h following release (S phase), declining to G1 phase levels during the peak of N-acetylgalactosamine (GalNAc) transferase activity. In addition, glycosyltransferase activity in G2 phase cells showed an increase in apparent Vmax (suggesting the presence of more enzyme/mg of cell protein) and apparent binding affinity for uridine diphosphate N-acetylgalactosamine (UDP-GalNAc) (32 versus 14 M) when compared to transferase activity in the G1 phase. However, the opioid peptide enkephalin [D-Ala2, o-Leu5], which inhibits ganglioside GalNAc transferase activity in unsynchronized NG108-15 cultures, was much more inhibitory in whole cells 8 h after release from the cell cycle block (G1 phase) than in cells 20 h after release (G, phase), with 50% inhibition occurring at 2 ± 10-9M and 2 ± 10-7M, respectively. These results suggest that the GalNAc transferase activity is regulated in more than one way during the cell cycle, since both Vmax and Km changes are observed, and that the cyclic AMP-dependent mechanism by which opiates reduce transferase activity is receptor mediated and cell cycle dependent.  相似文献   

17.
The relative capacities of muscarinic cholinergic receptor (MR) and bradykinin (BK)-receptor activation to increase phosphoinositide hydrolysis and to increase cytosolic Ca2+ were compared in NG108-15 neuroblastoma x glioma and 1321N1 human astrocytoma cells. In 1321N1 cells, the muscarinic cholinergic agonist carbachol and BK each stimulated a concentration-dependent accumulation of inositol phosphates (K0.5 approximately 10 microM and approximately 10 nM respectively) and a rapid increase in cytosolic Ca2+ as determined by quin2 fluorescence. In NG108-15 cells, BK alone stimulated a pertussis-toxin-insensitive accumulation of inositol phosphates (K0.5 approximately 10 nM) under conditions in which pertussis toxin completely inhibited MR-mediated inhibition of adenylate cyclase. BK also stimulated a rapid increase in cytosolic Ca2+ in NG108-15 cells. In contrast, no MR-mediated increase in phosphoinositide hydrolysis or change in cytosolic Ca2+ concentration was observed in NG108-15 cells. These results support the idea that MR selectively interact with either the cyclic AMP or the inositol phosphate second-messenger systems.  相似文献   

18.
The enzymatic basis for ganglioside regulation during differentiation of NG108-15 mouse neuroblastoma x rat glioma hybrid cells was studied. This cell line contains four gangliosides that lie along the same biosynthetic pathway: GM3, GM2, GM1, and GD1a. Chemically induced neuronal differentiation of NG108-15 cells led to an 80% drop in the steady-state level of their major ganglioside, GM3, a sixfold increase in the level of a minor ganglioside, GM2 (which became the predominant ganglioside of differentiated cells); and relatively little change in the levels of GM1 and GD1a, which lie further along the same biosynthetic pathway. The enzymatic basis for this selective change in ganglioside expression was investigated by measuring the activity of two glycosyltransferases involved in ganglioside biosynthesis. UDP-N-acetylgalactosamine: GM3 N-acetylgalactosaminyltransferase (GM2-synthetase) activity increased fivefold during butyrate-induced differentiation, whereas UDP-galactose: GM2 galactosyltransferase (GM1-synthetase) activity decreased to 10% of its control level. Coordinate regulation of these two glycosyltransferases appears to be primarily responsible for the selective increase of GM2 expression during NG108-15 differentiation.  相似文献   

19.
1. Using [3H]DHA and unlabeled L-alprenolol, a substantial amount of over 64% specific binding of beta-adrenergic receptor has been identified on the neuroblastoma x glioma hybrid NG108-15 cell, which has been proven to display numerous functional characteristics of intact neurons. 2. Beta-adrenergic receptor binding on intact NG108-15 cells does not change significantly upon morphological differentiation, induced by 1 mM dibutyryl cyclic AMP (dBcAMP). 3. The [3H]DHA binding on intact NG108-15 cells is rapid, saturable, and reversible, having a t1/2 of 1.0 min for association and 3.5 min for dissociation. 4. The affinity constant (Kd) and maximum binding capacity (Bmax) for binding of [3H]DHA to beta-adrenergic receptors on NG108-15 cells have been estimated by Scatchard plot analysis to be 2.5 and 0.23 nM, respectively. Further analysis indicates a single class of receptors for [3HDHA binding on NG108-15 cells. 5. Studies on kinetic properties have revealed on-rate (K + 1) and off-rate (K - 1) constants of 0.7 X 10(-9) M min-1 and 0.19 min-1, respectively. Further, the IC50 value and inhibition constant (Ki) for unlabeled L-alprenolol to inhibit [3HDHA binding on NG108-15 cells have been estimated to be 10(-5) and 8.9 X 10(-6) M, respectively. 6. The rank-order potency of catecholamine agonists, (-)ISO greater than (+)ISO greater than EPI greater than NE, reveals the presence of type 2 receptor for the beta-adrenergic binding on both differentiated and undifferentiated NG108-15 cells. 7. The present study indicates that the clonal neuroblastoma x glioma hybrid NG108-15 cell line possesses substantial amounts of beta-adrenergic receptors with characteristics similar to those on neuronal cells.  相似文献   

20.
Ling KK  Siow NL  Choi RC  Tsim KW 《FEBS letters》2005,579(11):2469-2474
The role of adenosine 5'-triphosphate (ATP) and P2Y(1) nucleotide receptor in potentiating agrin-induced acetylcholine receptor (AChR) aggregation is being demonstrated in a co-culture system of NG108-15 cell, a mouse neuroblastoma X rat glioma hybrid cell line that resembles spinal motor neuron, with C2C12 myotube. In the co-cultures, antagonized P2Y(1) receptors showed a reduction in NG108-15 cell-induced AChR aggregation. Parallel to this observation, cultured NG108-15 cell secreted ATP into the conditioned medium in a time-dependent manner. Enhancement of ATP release from the cultured NG108-15 cells by overexpression of active mutants of small GTPases increased the aggregation of AChRs in co-culturing with C2C12 myotubes. In addition, ecto-nucleotidase was revealed in the co-culture, which rapidly degraded the applied ATP. These results support the notion that ATP has a role in directing the formation of post-synaptic apparatus in vertebrate neuromuscular junctions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号