首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A partially purified preparation of 1-aminocyclopropane-1-carboxylate (ACC) synthase (EC 4.4.1.14) from tomato (Lycopersicon esculentum (Mill.) fruit tissue was used to generate monoclonal antibodies (MAb) specific for the two different MAbs yielded a 50-kDa polypeptide as shown by sodium dodecylsulfate-polyacrylamide gel electrophoresis. An enzyme-linked immunosorbent assay (ELISA) capable of detecting <1 ng of antigen was developed. The ELISA system was used to demonstrate that two of the MAbs recognized different epitopes on the ACC-synthase protein. Wound-induced increases in ACC-synthase activity in tomato fruit tissue were correlated with changes in ELISA-detectable protein. In-vivo labeling of wounded tissue with [35S]methionine followed by extraction and immunopurification in the presence of various protease inhibitors yielded one major radioactive band of 50 kDa molecular mass. Pulse labeling with [35S]methionine at various times after wounding indicated that the wound-induced increase in ACC-synthase activity involved de-novo synthesis of a rapidly turning over 50-kDa polypeptide.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - ELISA enzyme-linked immunosorbent assay - MAb monoclonal antibody - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

2.
Hans Kende  Thomas Boller 《Planta》1981,151(5):476-481
Ethylene production, 1-aminocyclopropane-1-carboxylic acid (ACC) levels and ACC-synthase activity were compared in intact and wounded tomato fruits (Lycopersicon esculentum Mill.) at different ripening stages. Freshly cut and wounded pericarp discs produced relatively little ethylene and had low levels of ACC and of ACC-synthase activity. The rate of ethylene synthesis, the level of ACC and the activity of ACC synthase all increased manyfold within 2 h after wounding. The rate of wound-ethylene formation and the activity of wound-induced ACC synthase were positively correlated with the rate of ethylene production in the intact fruit. When pericarp discs were incubated overnight, wound ethylene synthesis subsided, but the activity of ACC synthase remained high, and ACC accumulated, especially in discs from ripe fruits. In freshly harvested tomato fruits, the level of ACC and the activity of ACC synthase were higher in the inside parts of the fruit than in the pericarp. When wounded pericarp tissue of green tomato fruits was treated with cycloheximide, the activity of ACC synthase declined with an apparent half life of 30–40 in. The activity of ACC synthase in cycloheximide-treated, wounded pericarp of ripening tomatoes declined more slowly.Abbreviation ACC 1-aminocyclopropane-1-carboxylic acid  相似文献   

3.
We studied the regulation of 1-aminocyclopropane-1-carboxylate (ACC) synthase activity in tomato (Lycopersicon esculentum Mill.) fruit tissue and attempted the purification of this enzyme. The increase of ACC synthase activity in wounded tomato pericarp was inhibited by cordycepin and cycloheximide. Density labeling studies showed a 0.75% increase in the buoyant density of ACC synthase isolated from tomato pericarp tissue that had been incubated on 2H2O as compared to ACC synthase from H2O-treated tissue. These data are consistent with the hypothesis that ACC synthase is synthesized de novo following wounding of tomato pericarp tissue. SDS-gel electrophoresis and fluorography showed that the pattern of incorporation of l-[35S]methionine into protein changed with time after wounding of the tissue. Radioactive protein bands that were not detected 1 hour after wounding, became apparent 2 to 3 hours after wounding.  相似文献   

4.
5.
1-Aminocyclopropane-1-carboxylate (ACC) synthase (EC 4.4.1.14) purified from apple (Malus sylvestris Mill.) fruit was subjected to trypsin digestion. Following separation by reversed-phase high-pressure liquid chromatography, ten tryptic peptides were sequenced. Based on the sequences of three tryptic peptides, three sets of mixed oligonucleotide probes were synthesized and used to screen a plasmid cDNA library prepared from poly(A)+ RNA of ripe apple fruit. A 1.5-kb (kilobase) cDNA clone which hybridized to all three probes were isolated. The clone contained an open reading frame of 1214 base pairs (bp) encoding a sequence of 404 amino acids. While the polyadenine tail at the 3-end was intact, it lacked a portion of sequence at the 5-end. Using the RNA-based polymerase chain reaction, an additional sequence of 148 bp was obtained at the 5-end. Thus, 1362 bp were sequenced and they encode 454 amino acids. The deduced amino-acid sequence contained peptide sequences corresponding to all ten tryptic fragments, confirming the identity of the cDNA clone. Comparison of the deduced amino-acid sequence between ACC synthase from apple fruit and those from tomato (Lycopersicon esculentum Mill.) and winter squash (Cucurbita maxima Duch.) fruits demonstrated the presence of seven highly conserved regions, including the previously identified region for the active site. The size of the translation product of ACC-synthase mRNA was similar to that of the mature protein on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), indicating that apple ACC-synthase undergoes only minor, if any, post-translational proteolytic processing. Analysis of ACC-synthase mRNA by in-vitro translation-immunoprecipitation, and by Northern blotting indicates that the ACC-synthase mRNA was undetectable in unripe fruit, but was accumulated massively during the ripening proccess. These data demonstrate that the expression of the ACC-synthase gene is developmentally regulated.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AdoMet S-adenosyl-l-methionine - HPLC high-pressure liquid chromatography - kDa kilodalton - kb kilobase - mAb monoclonal antibody - Met methionine - PCR polymerase chain reaction - poly(A)+ RNA polyadenylated RNA - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis This work was supported by grants DCB-9004129 and INT-8915155 from the National Science Foundation.  相似文献   

6.
The biosynthesis of ethylene was examined in suspension-cultured cells of parsley (Petroselinum hortense) treated with an elicitor from cell walls of Phytophthora megasperma. Untreated cells contained 50 nmol g-1 of the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), and produced ethylene at a rate of about 0.5 nmol g-1 h-1. Within 2 h after addition of elicitor to the culture medium, the cells started to produce more ethylene and accumulated more ACC. Exogenously added ACC did not increase the rate of ethylene production in control or elicitor-treated cells, indicating that the enzyme converting ACC to ethylene was limiting in both cases. The first enzyme in ethylene biosynthesis, ACC synthase, was very rapidly and transiently induced by the elicitor treatment. Its activity increased more than tenfold within 60 min. Density labelling with 2H2O showed that this increase was caused by the denovo synthesis of the enzyme protein. Cordycepin and actinomycin D did not affect the induction of ACC synthase, indicating that the synthesis of new mRNA was not required. The peak of ACC-synthase activity preceded the maximal phenylalanine ammonia-lyase (PAL) activity by several hours. Exogenously supplied ethylene or ACC did not induce PAL. However, aminoethoxyvinylglycine, an inhibitor of ACC synthase, suppressed the rise in ethylene production in elicitor-treated cells and partially inhibited the induction of PAL. Exogenously supplied ACC reversed this inhibition. It is concluded that induction of the ethylene biosynthetic pathway is a very early symptom of elicitor action. Although ethylene alone is not a sufficient signal for PAL induction, the enhanced activity of ACC synthase and the ethylene biosynthetic pathway may be important for the subsequent induction of PAL.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG aminoethoxyvinylglycine - PAL phenylalanine ammonia-lyase  相似文献   

7.
1-Aminocyclopropane-1-carboxylic acid (ACC), which is a precursor of ethylene in plants, has never been known to occur in microorganisms. We describe the synthesis of ACC by Penicillium citrinum, purification of ACC synthase [EC 4.4.1.14] and ACC deaminase [EC 4.1.99.4], and their properties. Analyses of P. citrinum culture showed occurrence of ACC in the culture broth and in the cell extract. ACC synthase was purified from cells grown in a medium containing 0.05% L-methionine and ACC deaminase was done from cells incubated in a medium containing 1% 2-aminoisobutyrate. The purified ACC synthase, with a specific activity of 327 milliunit/mg protein, showed a single band of M r 48,000 in SDS-polyacrylamide gel electrophoresis. The molecular mass of the native enzyme by gel filtration was 96,000 Da. The ACC synthase had the K m for S-adenosyl-L-methionine of 1.74 mM and k cat of 0.56 s-1 per monomer. The purified ACC deaminase, with a specific activity of 4.7 unit/mg protein, showed one band in SDS-polyacrylamide gel electrophoresis of M r 41,000. The molecular mass of the native ACC deaminase was 68,000 Da by gel filtration. The enzyme had a K m for ACC of 4.8 mM and k cat of 3.52 s-1. The presence of 7 mM Cu2+ in alkaline buffer solution was effective for increasing the stability of the ACC deaminase in the process of purification.  相似文献   

8.
Glyoxysomal citrate synthase (gCS) was purified from crude extracts of watermelon (Citrullus vulgaris Schrad.) cotyledons, yielding a homogenous protein with a subunit MW of 48 kDa. The enzyme was selectively inhibited by 5,5-dithiobis-(2-nitrobenzoic acid), allowing quantification in the presence of the mitochondrial isoenzyme (mCS). Differences were also observed with respect to inhibition by ATP (k i=2.6 mmol · l-1 for gCS, k i=0.33 mmol · l-1 for mCS). The antibodies prepared against gCS did not cross-react with mCS. The immunocytochemical localization of gCS by the indirect protein A-gold procedure was restricted to the glyoxysomal membrane or the peripheral matrix of glyoxysomes. Other compartments, e.g. the endoplasmic reticulum, were not labeled. Xenopus oocytes were used for the translation of watermelon polyadenylated RNA (poly(A)+RNA). A translation product with a MW of 51 kDa was immunoprecipitated by the anti-gCS antibodies. It was absent in controls without poly(A)+RNA or with preimmune serum. A similar translation product was also immunoprecipitated after cell-free synthesis of watermelon poly(A)+RNA in a reticulocyte system, in contrast to the in-vivo labeled gCS (48 kDa). It was concluded that gCS is synthesized as a higher-molecular-weight precursor.Abbreviations DTNB 5,5-dithiobis-(2-nitrobenzoic acid) - gCS glyoxysomal citrate synthase - gMDH glyoxysomal malate dehydrogenase - k i inhibitor constant - mCS mitochondrial citrate synthase - OAA oxaloacetate - poly(A)+RNA polyadenylated RNA - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

9.
Many abiotic environmental factors elicit the production of stress‐ethylene in higher plants. To elucidate the molecular mechanisms underlying the regulation of stress‐ethylene production and the physiological roles played by stress‐ethylene in stress responses of plants, we studied the gene expression of ACC synthase in tobacco plants that had been subjected to environmental stresses. Four new tobacco ACC synthase cDNA fragments, NT‐ACS2, NT‐ACS3, NT‐ACS4 and NT‐ACS5, were identified and sequenced. It was found that NT‐ACS2 could be induced by wounding, cold temperature and, especially, sunlight. NT‐ACS4 was induced at a faster kinetics by wounding. The multiple environmental stress‐responsive (MESR) NT‐ACS2 gene was found to contain three introns and four exons and encode a polypeptide of 484 amino acids, 54·6 kDa and pI 6·87. Computer analysis of the 3·4 kb 5 ′ flanking region upstream of the ACS coding region revealed the existence of a group of putative cis‐acting regulatory elements potentially conferring wounding, chilling, and UV light inducibility. Phylogenetic analysis of ACC synthase genes of different plant origins indicated that the chill‐inducible NT‐ACS2 gene is closely related to a chilling‐inducible citrus ACS gene.  相似文献   

10.
11.
Wound-induced 1-aminocyclopropane-1-carboxylate (ACC) synthasewas purified by an immunoaffinity column from wounded mesocarpof winter squash (Cucurbita maxima Duch. cv. Ebisu) fruit, anda specific antibody was raised in rabbit. Translatable mRNAcoding for ACC synthase was barely detectable in fresh tissuebut clearly increased after wounding. The apparent molecularsize of the purified enzyme as estimated by SDS-polyacrylamidegel electrophoresis (PAGE) was about 50 kDa. However, SDS-PAGEfluorograms of in vitro translation product of ACC synthasemRNA and the in vivo labeled enzyme as well as Western blotanalysis showed that the subunit size of the enzyme was 58 kDa.The enzyme was partially degraded or processed to a 50 kDa peptideboth in vivo and in vitro. (Received December 19, 1987; Accepted June 13, 1988)  相似文献   

12.
To investigate the relationship between methyl jasmonate (MeJA) and ethylene in leaf senescence, we studied the effects of MeJA on ethylene production and ethylene biosynthetic enzyme activities in oat(Avena sativa L.) leaf segments incubated in darkness. MeJA promoted dark-induced senescence judged from the contents of chlorophyll and protein, and increased ethylene production 6 times of the control. MeJA also increased the activities of ethylene biosynthetic enzymes, 1-aminocyclopropane carboxylic acid (ACC) synthase and ACC oxidase as compared to control. In MeJA-treated leaf segments, ACC synthase activity reached its maximum level at 24 h of incubation and ACC oxidase activity peaked at 6 h of incubation. Aminoethoxyvinylglycine (AVG) and Co2+, inhibitors of ACC synthase and ACC oxidase respectively, reduced MeJA-induced ethylene production. They also delayed leaf senescence that was promoted by the treatment of MeJA. From these results, we can suggest that MeJA increased the activities of ACC synthase and ACC oxidase, these increased activities lead to increase in ethylene production and this increased ethylene production might promote dark-induced leaf senescence.  相似文献   

13.
The pathway of ethylene biosynthesis was examined in two lower plants, the semi-aquatic ferns Regnellidium diphyllum Lindm. and Marsilea quadrifolia L. As a positive control for the ethylene-biosynthetic pathway of higher plants, leaves of Arabidopsis thaliana (L.) Heynh. were included in each experiment. Ethylene production by Regnellidium and Marsilea was not increased by treatment of leaflets with 1-aminocyclopropane-1-carboxylic acid (ACC), the precursor of ethylene in higher plants. Similarly, ethylene production was not inhibited by application of aminoethoxyvinylglycine and -aminoisobutyric acid, inhibitors of the ethylene biosynthetic enzymes ACC synthase and ACC oxidase, respectively. However, ACC was present in both ferns, as was ACC synthase. Compared to leaves of Arabidopsis, leaflets of Regnellidium and Marsilea incorporated little [14C]ACC and [14C]methionine into [14C]ethylene. From these data, it appears that the formation of ethylene in both ferns occurs mainly, if not only, via an ACC-independent route, even though the capacity to synthesize ACC is present in these lower plants.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AdoMet S-adenosyl-l-methionine - AIB -aminoisobutyric acid - AVG aminoethoxyvinylglycine This research was supported by the U.S. Department of Energy through grant No. DE-FG02-91ER20021 and, in part, by a fellowship of the National Engineering and Research Council of Canada to Jacqueline Chernys.  相似文献   

14.
利用5′/3′RACE PCR技术,从桃(Prunus persica (L.) Batsch)果实中克隆了植物乙烯生物合成的关键酶--ACC合酶的全长cDNA pacs,对pacs基因进行全序列测定表明,该基因全长1 848个碱基,编码区为1 449个碱基,5′端有177个碱基的非编码区序列,3′端有219个碱基的非编码区序列(不包括终止密码子TAA).pacs基因编码区共编码483个氨基酸,蛋白质大小为54 kD,等电点为6.43.pacs与番茄(S19677)、梅(AB031026)、番木瓜(U68216)、苹果(AB034993)等其他植物ACC合酶cDNA氨基酸序列同源性分别为65%、70%、75%、90%,并存在与这些ACC合酶氨基酸的活性位点保守序列SLSKDMGFPGFR.RT-PCR结合杂交分析表明,pacs和我们以前克隆的桃ACC合酶cDNA pacs12(AF467782)在叶片和花中基因表达模式基本一致,伤处理和IAA均能诱导叶片pacs 和pacs12基因的表达,但pacs在伤处理叶片的表达水平比pacs12高;pacs 和pacs12基因在果实表达有所不同,pacs在绿熟和成熟果实中均有表达,而pacs12在绿熟果实中基本检测不到,在成熟果实中才有表达,两者在果实中的表达水平比伤处理和IAA处理叶片和花中要低.  相似文献   

15.
16.
1-Aminocyclopropane-1-carboxylic acid (ACC) synthase activityincreased rapidly after wounding of mesocarp tissue of wintersquash fruit (Cucurbita maxima Duch.) and reached a peak at16 h after excision and then declined sharply. The rise in ACCsynthase activity was followed by increases in the endogenousACC content and the rate of ethylene production. The activityof ethylene forming enzyme (EFE) also increased rapidly in theexcised discs of mesocarp of winter squash fruit. ACC synthase activity was strongly inhibited by aminoethoxyvinylglycinewith a Ki value of 2.1 µM. Michaelis-Menten constant ofACC synthase for S-adenosylmethionine was 13.3 µM. Ethylene suppressed the induction of ACC synthase in the woundedmesocarp tissue. The suppression by ethylene increased withthe increasing concentrations of applied ethylene and the maximumeffect was obtained at about 100 µl 1–1 ethylene,at which point the induction was suppressed by 54%. Ethylenedid not inhibit ACC synthase activity, nor did it suppress theinduction of EFE, but rather it slightly enhanced the latter. (Received August 24, 1984; Accepted October 29, 1984)  相似文献   

17.
18.
19.
Although intact fruits of unripe cantaloupe (Cucumis melo L.) produce very little ethylene, a massive increase in ethylene production occurred in response to excision. The evidence indicates that this wound ethylene is produced from methionine via 1-aminocyclopropanecarboxylic acid (ACC) as in ripening fruits. Excision induced an increase in both ACC synthase and the enzyme converting ACC to ethylene. Ethylene further increased the activity of the enzyme system converting ACC to ethylene. The induction by ethylene required a minimum exposure of 1 hour; longer exposure had increasingly larger effect. The response was saturated at approximately 3 microliters per liter ethylene and was inhibited by Ag+. Neither ethylene nor ACC had a promotive or inhibitory effect on ACC synthase beyond the effect attributable to wounding.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号