首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the cell cycle regulation of deoxyribonucleoside triphosphate (dNTP) metabolism in hydroxyurea-resistant (HYUR) murine S49 T-lymphoma cell lines. Cell lines 10- to 40-fold more hydroxyurea-resistant were selected in a stepwise manner. These HYUR cells exhibited increased CDP reductase activity (5- to 8-fold) and increased dNTP pools (up to 5-fold) that appeared to result from increased activity of the M2 subunit (binding site of hydroxyurea) of ribonucleotide reductase. These characteristics remained stable when the cells were grown in the absence of hydroxyurea for up to 2 years. In both wild type and hydroxyurea-resistant cell populations synchronized by elutriation, dCTP and dTTP pools increased in S phase, whereas dATP and dGTP pools generally remained the same or decreased, suggesting that allosteric effector mechanisms were operating to regulate pool sizes. Additionally, CDP reductase activity measured in permeabilized cells increased in S phase in both wild type and hydroxyurea-resistant cells, suggesting a nonallosteric mechanism of increased ribonucleotide reductase activity during periods of active DNA synthesis. While wild type S49 cells could be arrested in the G1 phase of the cell cycle by dibutyryl cyclic AMP, hydroxyurea-resistant cell lines could not be arrested in the G1 phase by exogenous cyclic AMP or agents that elevate the concentration of endogenous cyclic AMP. These data suggest that cyclic AMP-generated G1 arrest in S49 cells might be mediated by the M2 subunit of ribonucleotide reductase.  相似文献   

2.
Intracellular deoxyribonucleoside triphosphate (dNTP) pools must be tightly regulated to preserve genome integrity. Indeed, alterations in dNTP pools are associated with increased mutagenesis, genomic instability and tumourigenesis. However, the mechanisms by which altered or imbalanced dNTP pools affect DNA synthesis remain poorly understood. Here, we show that changes in intracellular dNTP levels affect replication dynamics in budding yeast in different ways. Upregulation of the activity of ribonucleotide reductase (RNR) increases elongation, indicating that dNTP pools are limiting for normal DNA replication. In contrast, inhibition of RNR activity with hydroxyurea (HU) induces a sharp transition to a slow-replication mode within minutes after S-phase entry. Upregulation of RNR activity delays this transition and modulates both fork speed and origin usage under replication stress. Interestingly, we also observed that chromosomal instability (CIN) mutants have increased dNTP pools and show enhanced DNA synthesis in the presence of HU. Since upregulation of RNR promotes fork progression in the presence of DNA lesions, we propose that CIN mutants adapt to chronic replication stress by upregulating dNTP pools.  相似文献   

3.
Intracellular pool sizes of deoxyribonucleoside triphosphates (dNTPs) are highly regulated. Unbalanced dNTP pools, created by abnormal accumulation or deficiency of one nucleotide, are known to be mutagenic and to have other genotoxic consequences. Recent studies in our laboratory on DNA replication in vitro suggested that balanced accumulation of dNTPs, in which all four pools increase proportionately, also stimulates mutagenesis. In this paper, we ask whether proportional dNTP pool increases are mutagenic also in living cells. Escherichia coli was transformed with recombinant plasmids that overexpress E. coli genes nrdA and nrdB, which encode the two protein subunits of aerobic ribonucleotide reductase. Roughly proportional dNTP pool expansion, by factors of 2- to 6-fold in different experiments, was accompanied by increases in spontaneous mutation frequency of up to 40-fold. Expression of a catalytically inactive ribonucleotide reductase had no effect on either dNTP pools or mutagenesis, suggesting that accumulation of dNTPs is responsible for the increased mutagenesis. Preliminary experiments with strains defective in SOS regulon induction suggest a requirement for one or more SOS functions in the dNTP-enhanced mutagenesis. Because a replisome extending from correctly matched 3'-terminal nucleotides is almost certainly saturated with dNTP substrates in vivo, whereas chain extension from mismatched nucleotides almost certainly proceeds at sub-saturating rates, we propose that the mutagenic effect of proportional dNTP pool expansion is preferential stimulation of chain extension from mismatches as a result of increases in intracellular dNTP concentrations.  相似文献   

4.
5.
Hydroxyurea (HU) causes inhibition of DNA synthesis in regenerating rat liver due to an inhibition of the ribonucleotide reductase. We studied the consequences of a continuous HU infusion for deoxyribonucleoside triphosphate (dNTP) pools in the liver after partial hepatectomy and tried to modify imbalances by application of deoxyribonucleosides in vivo. In normal liver, an intracellular concentration of 0.16, 0.84, 0.33 and 0.27 pmol/micrograms DNA was observed for dATP, dCTP, dGTP and dTTP, respectively. In regenerating liver the dNTP pools show minor changes until 18 h after partial hepatectomy. During and after a continuous HU infusion 14--24 h after partial hepatectomy, the intracellular dNTP pools change considerably. At 19.5 h after partial hepatectomy, 5.5 h after the start of HU infusion, and at 25 h after partial hepatectomy, 1 h after termination of HU infusion, the dTTP pool was more than 10-times, and the dGTP pool about 2-times higher than in controls, while the dATP and dCTP pools remain relatively unchanged. Simultaneous infusion of HU and deoxythymidine (dThd) 14--25 h after partial hepatectomy results in a further increase of the dTTP pool during and after HU infusion. Administration of deoxycytidine (dCyd) leads to a moderate increase of the dCTP pool and a weak decrease of the dTTP pool during HU infusion. The combined application of dCyd and dThd after HU infusion had similar effects on dNTP pools as observed with dThd alone. These results show that intracellular pools of dNTPs in hepatocytes can be altered by exogenous factors in a controlled pattern. This system can be used as a model for studying the implications of induced dNTP pool dysbalances for the initiation of liver carcinogenesis by mutagenic chemicals.  相似文献   

6.
Nuclear and whole-cell deoxynucleoside triphosphate (dNTP) pools were measured in HeLa cells at different densities and throughout the cell cycle of synchronized CHO cells. Nuclei were prepared by brief detergent (Nonidet P-40) treatment of subconfluent monolayers, a procedure that solubilizes plasma membranes but leaves nuclei intact and attached to the plastic substratum. Electron microscopic examination of monolayers treated with Nonidet P-40 revealed protruding nuclei surrounded by cytoskeletal remnants. Control experiments showed that nuclear dNTP pool sizes were stable during the time required for isolation, suggesting that redistribution of nucleotides during the isolation procedure was minimal. Examination of HeLa whole-cell and nuclear dNTP levels revealed that the nuclear proportion of each dNTP was distinct and remained constant as cell density increased. In synchronized CHO cells, all four dNTP whole-cell pools increased during S phase, with the dCTP pool size increasing most dramatically. The nuclear dCTP pool did not increase as much as the whole-cell dCTP pool during S phase, lowering the relative nuclear dCTP pool. Although the whole-cell dNTP pools decreased after 30 h of isoleucine deprivation, nuclear pools did not decrease proportionately. In summary, nuclear dNTP pools in synchronized CHO cells maintained a relatively constant concentration throughout the cell cycle in the face of larger fluctuations in whole-cell dNTP pools. Ribonucleotide reductase activity was measured in CHO cells throughout the cell cycle, and although there was a 10-fold increase in whole-cell activity during S phase, we detected no reductase in nuclear preparations at any point in the cell cycle.  相似文献   

7.
Summary Mutagenesis by 5-bromodeoxyuridine (BrdUrd) can result from base-pairing errors either during replication of a BrdUrd-containing template or at the nucleotide incorporation step. Replication errors give rise predominantly to AT-to-GC transitions, while incorporation errors, in which 5-bromo-dUTP competes with dCTP at a template guanine site, should give rise to GC-to-AT transitions. The latter pathway should be sensitive to deoxyribonucleoside triphosphate (dNTP) pool fluctuations. Since dNTP pools are regulated through allosteric control of ribonucleotide reductase, the control of this enzyme should be a determinant of BrdUrd mutagenesis — if mutagenesis results largely from incorporation errors. Since T4 phage-encoded ribonucleotide reductase is insensitive to feedback inhibition, we established conditions under which phage DNA replication is dependent upon ribonucleotide reductase of the host, Escherichia coli. We examined BrdUrd mutagenesis of rII mutants known to revert to wild type either by AT-to-GC or GC-to-AT transition pathways. While both reversion pathways were stimulated under all conditions analyzed, the AT-to-GC pathway was stimulated more when the E. coli reductase was functioning, while the GC-to-AT pathway was more specifically enhanced when the T4 reductase was active. These results confirm that ribonucleotide reductase is a determinant of BrdUrd mutagenesis, but our observations, plus experiments showing that BrdUrd has relatively small effects upon dNTP pool sizes, indicate that the relationship between deoxyribonucleotide metabolism and BrdUrd mutagenesis is more complex than anticipated.  相似文献   

8.
Deoxyribonucleotide pool imbalances are frequently mutagenic. We have studied two Chinese hamster ovary cell lines, Thy- 49 and Thy- 303, that were originally characterized by M. Meuth (Mol. Cell. Biol. 1:652-660, 1981). In comparison with wild-type CHO cells, both lines have elevated dCTP/dTTP ratios, resulting from loss of feedback control of CTP synthetase. While asynchronous cultures of both cell lines contain nearly identical deoxyribonucleoside triphosphate (dNTP) pools and both display elevated spontaneous mutation frequencies, the mutation frequencies between the two cell lines differ by as much as 10-fold. We asked whether differences in dNTP pools could be seen in extracts of rapidly isolated nuclei. Small differences, probably not large enough to account for the differences in mutation frequencies, were seen. However, when synchronized S-phase-enriched cell populations were examined, substantial differences were seen, both in whole-cell extracts and in nuclear extracts. Thy- 303 cells, which have higher mutation frequencies than do Thy- 49 cells, also showed the more aberrant dNTP pools. These data indicate that the Thy- 303 line contains a second mutation in addition to the mutation affecting CTP synthetase control. Evidence suggests that this putative second mutation affects an allosteric regulatory site of ribonucleotide reductase. The data on intranuclear dNTP pools in synchronized S-phase cells indicate that higher proportions of cellular dATP and dGTP are found in the nucleus than are corresponding amounts of dCTP and dGTP. Thus, despite the porous nature of the nuclear membrane, there are conditions under which the distributions of deoxyribonucleotides across this membrane are not random.  相似文献   

9.
In exponentially growing 3T6 cells, the synthesis of deoxythymidine triphosphate (dTTP) is balanced by its utilization for DNA replication, with a turnover of the dTTP pool of around 5 min. We now investigate the effects of two inhibitors of DNA synthesis (aphidicolin and hydroxyurea) on the synthesis and degradation of pyrimidine deoxynucleoside triphosphates (dNTPs). Complete inhibition of DNA replication with aphidicolin did not decrease the turnover of pyrimidine dNTP pools labeled from the corresponding [3H]deoxynucleosides, only partially inhibited the in situ activity of thymidylate synthetase and resulted in excretion into the medium of thymidine derived from breakdown of dTTP synthesized de novo. These data demonstrate continued synthesis of dTTP in the absence of DNA replication. In contrast, hydroxyurea decreased the turnover of pyrimidine dNTP pools 5-50-fold. Hydroxyurea is an inhibitor of ribonucleotide reductase and stops DNA synthesis by depleting cells of purine dNTPs but not pyrimidine dNTPs. Our results suggest that degradation of dNTPs is turned off by an unknown mechanism when de novo synthesis is blocked.  相似文献   

10.
3-Aminobenzamide does not deplete cellular purine deoxynucleoside triphosphate pools as do the structurally-related ribonucleotide reductase inhibitors, the hydroxy- and amino-substituted benzohydroxamic acids. Thus, the previously reported ability of 3-aminobenzamide to inhibit de novo synthesis of DNA purines does not appear to be due to a direct effect on pools via inhibition of ribonucleotide reductase. The enhancement rather than inhibition by 3-aminobenzamide of DNA repair in the present studies, however, leaves open the possibility that pool modulation may play a role in cell systems where repair inhibitory effects are seen.  相似文献   

11.
Ribonucleotide reductase (RNR) provides the cell with a balanced supply of deoxyribonucleoside triphosphates (dNTP) for DNA synthesis. In budding yeast DNA damage leads to an up-regulation of RNR activity and an increase in dNTP pools, which are essential for survival. Mammalian cells contain three non-identical subunits of RNR; that is, one homodimeric large subunit, R1, carrying the catalytic site and two variants of the homodimeric small subunit, R2 and the p53-inducible p53R2, each containing a tyrosyl free radical essential for catalysis. S-phase-specific DNA replication is supported by an RNR consisting of the R1 and R2 subunits. In contrast, DNA damage induces expression of the R1 and the p53R2 subunits. We now show that neither logarithmically growing nor G(o)/G1-synchronized mammalian cells show any major increase in their dNTP pools after DNA damage. However, non-dividing fibroblasts expressing the p53R2 protein, but not the R2 protein, have reduced dNTP levels if exposed to the RNR-specific inhibitor hydroxyurea, strongly indicating that there is ribonucleotide reduction in resting cells. The slow, 4-fold increase in p53R2 protein expression after DNA damage results in a less than 2-fold increase in the dNTP pools in G(o)/G1 cells, where the pools are about 5% that of the size of the pools in S-phase cells. Our results emphasize the importance of the low constitutive levels of p53R2 in mammalian cells, which together with low levels of R1 protein may be essential for the supply of dNTPs for basal levels of DNA repair and mitochondrial DNA synthesis in G(o)/G1 cells.  相似文献   

12.
ATP:AMP phosphotransferase from baker''s yeast. Purification and properties   总被引:2,自引:0,他引:2  
Synchronous cells of the green alga, Scenedesmus obliquus, cultured in a 14-h/10-h light/dark regime, contain a peak of ribonucleoside-diphosphate reductase activity and maximum deoxyribonucleoside 5'-triphosphate concentrations at the 12th hour of the cell cycle, coinciding with DNA synthesis and preceding the formation of eight daughter cells. The intracellular dTTP pool reaches 4.5 pmol and the other pools 2-3 pmol/10(6) cells. Algal reductase activity is sensitive to cycloheximide, but not to lincomycin. These correlations demonstrate the functioning of the NDP leads to dNDP leads to dNTP pathway of DNA precursor biosynthesis in plant cells. In the presence of 20 micrograms 5-fluorodeoxyuridine/ml, an inhibitor of thymidylate synthesis, the dTTP pool is rapidly depleted and DNA synthesis ceases. 5-Fluorouracil and methotrexate produce similar effects. At the same time the ribonucleotide reductase activity and also the dATP pool are greatly increased, especially when fluorodeoxyuridine treatment is combined with continued illumination of the algae. In contrast, arabinosylcytosine, an inhibitor of DNA replication, has no effect on ribonucleotide reduction. The control of de novo enzyme synthesis in the eucaryotic algae therefore appears to depend on the presence of dTTP (or a related nucleotide), but not directly coupled to DNA synthesis. This interdependence resembles the situation observed in HeLa cells, while it may differ in detail from control mechanisms of ribonucleotide reductase studied in bacteria.  相似文献   

13.
We investigated deoxyribonucleoside triphosphate metabolism in S49 mouse T-lymphoma cells synchronized in different phases of the cell cycle. S49 wild-type cultures enriched for G1 phase cells by exposure to dibutyryl cyclic AMP (Bt2cAMP) for 24 h had lower dCTP and dTTP pools but equivalent or increased pools of dATP and dGTP when compared with exponentially growing wild-type cells. Release from Bt2cAMP arrest resulted in a maximum enrichment of S phase occurring 24 h after removal of the Bt2cAMP, and was accompanied by an increase in dCTP and dTTP levels that persisted in colcemid-treated (G2/M phase enriched) cultures. Ribonucleotide reductase activity in permeabilized cells was low in G1 arrested cells, increased in S phase enriched cultures and further increased in G2/M enriched cultures. In cell lines heterozygous for mutations in the allosteric binding sites on the M1 subunit of ribonucleotide reductase, the deoxyribonucleotide pools in S phase enriched cultures were larger than in wild-type S49 cells, suggesting that feedback inhibition of ribonucleotide reductase is an important mechanism limiting the size of deoxyribonucleoside triphosphate pools. The M1 and M2 subunits of ribonucleotide reductase from wild-type S49 cells were identified on two-dimensional polyacrylamide gels, but showed no significant change in intensity during the cell cycle. These data are consistent with allosteric inhibition of ribonucleotide reductase during the G1 phase of the cycle and release of this inhibition during S phase. They suggest that the increase in ribonucleotide reductase activity observed in permeabilized S phase-enriched cultures may not be the result of increased synthesis of either the M1 or M2 subunit of the enzyme.  相似文献   

14.
L6 and L8 rat myoblast cell lines have been selected for resistance to hydroxyurea, an antineoplastic agent whose intracellular target is the rate-limiting enzyme activity of DNA synthesis, ribonucleotide reductase. In contrast to the differentiation-competent parental lines from which they were selected, the drug-resistant lines exhibit a grossly altered or absent myogenic capacity. Independent selections have revealed a strong correlation between changes in ribonucleotide reductase, as determined by velocity levels and product pool analyses, and altered myogenic potential. These results provide the first indication that alterations in this key enzyme activity and its accompanying deoxyribonucleoside triphosphate pools can affect cellular differentiation.  相似文献   

15.
We described a strategy which facilitates the identification of cell mutants which are restricted in DNA synthesis in a temperature-dependent manner. A collection of over 200 cell mutants temperature-sensitive for growth was isolated in established Chinese hamster cell lines (CHO and V79) by a variety of selective and nonselective techniques. Approximately 10% of these mutants were identified as ts DNA- based on differential inhibition of macromolecular synthesis at the restrictive temperature (39 degrees C) as assessed by incorporation of [3H]thymidine and [35S]methionine. Nine such mutants, selected for further study, demonstrated rapid shutoff of DNA replication at 39 degrees C. Infections with two classes of DNA viruses extensively dependent on host-cell functions for their replication were used to distinguish defects in DNA synthesis itself from those predominantly affecting other aspects of DNA replication. All cell mutants supported human adenovirus type 2 (Ad2) and mouse polyomavirus DNA synthesis at the permissive temperature. Five of the nine mutants (JB3-B, JB3-O, JB7-K, JB8-D, and JB11-J) restricted polyomavirus DNA replication upon transfection with viral sequences at 33 degrees C and subsequent shift to 39 degrees C either before or after the onset of viral DNA synthesis. Only one of these mutants (JB3-B) also restricted Ad2 DNA synthesis after virion infection under comparable conditions. No mutant was both restrictive for Ad2 and permissive for polyomavirus DNA synthesis at 39 degrees C. The differential effect of these cell mutants on viral DNA synthesis is expected to assist subsequent definition of the biochemical defect responsible.  相似文献   

16.
The responses of the systems of synthesis of deoxyribonucleotides (dNTPs), DNA, and proteins in hematopoietic organs and liver of animals to γ-radiation, administration of radioprotectants and antioxidants as well as the dependence of these responses on the doses of radiation and drugs were studied. Radioprotectants of acute (indralin) and durable effects (indomethaphen) as well as natural α2-tocopherol) and synthetic antioxidants (ionol or 2,6-di-tert-butyl-4-methylphenol) efficient in survival test were used. Three stages could be recognized in the standard unspecific response of the studied systems to radiation: (1) immediate increase in ribonucleotide reductase activity in the tissues within the first 30 min as a part of the integrated SOS response to DNA damage, which activates dNTP synthesis; (2) inhibition of the synthesis of dNTPs, DNA, and proteins; and (3) restoring ribonucleotide reductase activity and integral increase in the production of dNTPs, DNA, and total protein, which is essential for the development of compensatory and restorative responses of the organism. The radioprotectants significantly increased ribonucleotide reductase activity, which increased intracellular concentrations of the four dNTP types in organs during radiation exposure and three following days. Within this period, ribonucleotide reductase activity was inhibited by 40–50% in animals not treated with radioprotectants as compared to control. Balanced high pools of dNTPs in the organs of radioprotectant-treated animals provided for high-performance repair of DNA damage. The radioprotectant-induced activation of dNTP synthesis during the development of compensatory and restorative responses provides for an earlier restoration of the cellular composition and functioning of the organs. Antioxidants stimulated the synthesis of dNTPs, DNA, and proteins in animal tissues in a strict dose interval. Their effect on the studied syntheses was dose-dependent: single or multiple long-term administration of high antioxidant doses inhibited synthesis of dNTPs, DNA, and proteins. Radioprotectants and antioxidants affected the pool of blood protein Fe3+-transferrin controlling the synthesis of iron-containing ribonucleotide reductase activity in hematopoietic organs, and hence, the iron-dependent stage in DNA synthesis—dNTP synthesis. Activation of protein synthesis in organs by the studied substances increased the pools of Fe3+-transferrin and Cu2+-ceruloplasmin in the blood, which activated dNTP and DNA synthesis. Activated synthesis of dNTP, DNA, and proteins in the organs and increased pools of studied plasma proteins underlay the formation of body resistance to DNA-damaging factors.__________Translated from Izvestiya Akademii Nauk, Seriya Biologicheskaya, No. 4, 2005, pp. 401–422.Original Russian Text Copyright © 2005 by Sharygin, Pulatova, Shlyakova, Mitrokhin, Todorov.  相似文献   

17.
Implications for a reduced DNA-elongation rate in polyamine-depleted cells   总被引:1,自引:0,他引:1  
Treatment of Ehrlich ascites tumor cells with 2-difluoromethylornithine (F2MeOrn), an enzyme-activated irreversible inhibitor of ornithine decarboxylase, resulted in depleted putrescine and spermidine content, and reduced growth rate. We have previously shown that adenine ribonucleotide levels are substantially increased in these polyamine-depleted cells. The present paper addresses the question whether the elevated ATP pool is accompanied by a concomitant increase in the dATP pool. If this is the case, the observed growth inhibition could be explained by the well-known dATP-mediated feedback inhibition of ribonucleotide reductase. We found that dNTP pools were not unbalanced and that dNTP synthesis was not arrested in polyamine-depleted cells. Moreover, the dNTP content and the activity of ribonucleotide reductase (CDP reduction) and thymidylate synthase, remained elevated despite the fact that the cells were inhibited in their growth by F2MeOrn treatment. Incorporation of a radiolabeled precursor into DNA was initially lower in F2MeOrn-treated. cells than in control cells. However, while incorporation of a radiolabeled precursor into DNA decreased markedly in plateau-phase control cells, it remained at a higher level in cells inhibited in growth by polyamine depletion. This discrepancy may be explained by the fact that polyamine-depleted cells accumulated in the S phase, and that they had an increased content of acid-soluble radiolabeled DNA precursor. Our data indicate that polyamine depletion adversely affects the DNA synthetic machinery by reducing the rate of elongation.  相似文献   

18.
19.
Hydroxyurea inactivates ribonucleotide reductase from mammalian cells and thereby depletes them of the deoxynucleoside triphosphates required for DNA replication. In cultures of exponentially growing 3T6 cells, with 60-70% of the cells in S-phase, 3 mM hydroxyurea rapidly stopped ribonucleotide reduction and DNA synthesis (incorporation of labeled thymidine). The pool of deoxyadenosine triphosphate (dATP) decreased in size primarily, but also the pools of the triphosphates of deoxyguanosine and deoxycytidine (dCTP) were depleted. Paradoxically, the pool of thymidine triphosphate increased. After addition of hydroxyurea this pool was fed by a net influx and phosphorylation of deoxyuridine from the medium and by deamination of intracellular dCTP. An influx of deoxycytidine from the medium contributed to the maintenance of intracellular dCTP. 10 min after addition of hydroxyurea, DNA synthesis appeared to be completely blocked even though the dATP pool was only moderately decreased. As possible explanations for this discrepancy, we discuss compartmentation of pools and/or vulnerability of newly formed DNA strands to nuclease action and pyrophosphorolysis.  相似文献   

20.
The levels of the four deoxyribonucleoside triphosphate pools and the distribution of cells in the various phases of the cell cycle have been examined in Chinese hamster cells as thymidine, present as a regular constituent in the growth medium, was removed in stages. The results indicate that: 1. Duration of the DNA synthetic phase was lengthened when thymidine was removed from the growth medium. 2.Temporally correlated with lengthening of the DNA synthetic phase upon thymidine removal was a 7-fold increase in level of the dCTP pool, reduction in the dGTP pools, and little or no change in dATP pool. 3.Radioactive labeling procedures indicated that expansion of the dCTP pool could be completely accounted for by increased ribonucleotide reductase activity and that the dTTP pool switched from a largely exogenous thymidine source to endogenous dTTP synthesis as the extracellular thymidine concentration was reduced. 4.Deoxyuridine and thymidine were apparently transported by the same system in Chinese hamster cells, while deoxycytidine was transported by a different system. Although deoxycytidine transport was unaffected by thymidine, phosphorylation of intracellular deoxycytidine compounds to the triphosphate level was stimulated by thymidine. Cytidine transport was not significantly affected by thymidine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号