首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Unlike its mammalian counterpart, the adult zebrafish heart is able to fully regenerate after severe injury. One of the most important events during the regeneration process is cardiomyocyte proliferation, which results in the replacement of lost myocardium. Growth factors that induce cardiomyocyte proliferation during zebrafish heart regeneration remain to be identified. Signaling pathways important for heart development might be reutilized during heart regeneration. IGF2 was recently shown to be important for cardiomyocyte proliferation and heart growth during mid-gestation heart development in mice, although its role in heart regeneration is unknown. We found that expression of igf2b was upregulated during zebrafish heart regeneration. Following resection of the ventricle apex, igf2b expression was detected in the wound, endocardium and epicardium at a time that coincides with cardiomyocyte proliferation. Transgenic zebrafish embryos expressing a dominant negative form of Igf1 receptor (dn-Igf1r) had fewer cardiomyocytes and impaired heart development, as did embryos treated with an Igf1r inhibitor. Moreover, inhibition of Igf1r signaling blocked cardiomyocyte proliferation during heart development and regeneration. We found that Igf signaling is required for a subpopulation of cardiomyocytes marked by gata4:EGFP to contribute to the regenerating area. Our findings suggest that Igf signaling is important for heart development and myocardial regeneration in zebrafish.  相似文献   

2.
3.
4.
We have established a heart slice primary culture, which allows us to mechanically separate distinct cardiac cell populations and assay their relative mitogenic and trophic effects on cardiac myocyte proliferation and survival. Using this system, we have found that a signal(s) from the epicardium, but not the trabeculae and endocardium, is required in embryonic day 10 (E10) chick heart slices for continued cardiac myocyte proliferation and survival. An examination of potential epicardial growth or trophic factors has revealed that blockade of either retinoic acid (RA) or erythopoietin (epo) signaling from the epicardium inhibits cardiac myocyte proliferation and survival. The blockade of cardiac myocyte proliferation following administration of an RA antagonist can be rescued by exogenous epo. Conversely, the blockade of cardiac myocyte proliferation following administration of an anti-epo receptor antisera can be rescued by exogenous RA. Thus, our findings suggest that RA and epo signals work in parallel to support myocardial cell proliferation. In addition, we have found that these factors do not act directly on myocardial cells. Rather, they induce another soluble factor(s) in the epicardium that directly regulates proliferation of cardiac myocytes. We therefore postulate that the epicardium controls normal heart growth in ventricular segments of the embryonic chick heart by secreting a cardiac myocyte mitogen whose expression (or activity) is regulated by both RA and erythropoietin signaling.  相似文献   

5.
6.
7.
Whitelock JM  Melrose J  Iozzo RV 《Biochemistry》2008,47(43):11174-11183
Perlecan is a ubiquitous pericellular proteoglycan ideally placed to mediate cell signaling events controlling migration, proliferation, and differentiation. Its control of growth factor signaling usually involves interactions with the heparan sulfate chains covalently coupled to the protein core's N-terminus. However, this modular protein core also binds with relatively high affinity to a number of growth factors and surface receptors, thereby stabilizing cell-matrix links. This review will focus on perlecan-growth factor interactions and describe recent advances in our understanding of this highly conserved proteoglycan during development, cancer growth, and angiogenesis. The pro-angiogenic capacities of perlecan that involve proliferative and migratory signals in response to bound growth factors will be explored, as well as the anti-angiogenic signals resulting from interactions between the C-terminal domain known as endorepellin and integrins that control adhesion of cells to the extracellular matrix. These two somewhat diametrically opposed roles will be discussed in light of new data emerging from various fields which converge on perlecan as a key regulator of cell growth and angiogenesis.  相似文献   

8.
Wnt4 action in gonadal development and sex determination   总被引:1,自引:0,他引:1  
Wnt4 is a growth factor involved in multiple developmental processes such as the formation of the kidney, adrenal, mammary gland, pituitary and the female reproductive system. During mammalian embryogenesis, Wnt4 is expressed in the gonads of both sexes before sex determination events take place and is subsequently down-regulated in the male gonad. Inactivation of the Wnt4 gene in mice has revealed that it is involved at several steps of female reproductive development. Wnt4 is implicated in Müllerian duct regression, the formation of sex-specific vasculature, the inhibition of steroidogenesis and in sex-specific cell migration events. A mouse model of sex-reversal has partially unravelled the molecular pathways in which Wnt4 operates during the development of the female reproductive system. However, the specific molecular mechanism of action of Wnt4 during gonadal development remains unknown. This and downstream signaling pathways involved in Wnt4 action during female gonad development are reviewed and models of Wnt4 action are proposed for Müllerian duct formation, sex-specific vasculature development, and sex determination events. Further identification of critical downstream effectors of the Wnt4 signaling pathway in mouse models and in patients with sex-reversal conditions could help in understanding sex-reversal pathologies in humans.  相似文献   

9.
10.
11.
Wu X 《遗传学报》2010,37(9):593-603
The heart is one of the first functional embryonic organs occurring during development. The fundamental developmental processes and genes involved in cardiogenesis are conserved between the invertebrates and vertebrates. In the past fifteen years, one of signaling pathways that has been best characterized in heart development in both invertebrates and vertebrates is the Wg/Wnt signaling pathways. Since our discovery of the Wg signaling required for the early heart development in Drosophila, the past fifteen years have witnessed tremendous progress in the understanding of specific Wnt signaling pathways in vertebrate cardiogenesis. This review will summarize the current state of knowledge of Wg signaling transduction in Drosophila heart development, which will benefit our understanding of vertebrate cardiogenesis and human congenital malformations.  相似文献   

12.
Transforming growth factor β (TGFβ) regulates one of the major signaling pathways that control tissue morphogenesis. In vitro experiments using heart explants indicated the importance of this signaling pathway for the generation of cushion mesenchymal cells, which ultimately contribute to the valves and septa of the mature heart. Recent advances in mouse genetics have enabled in vivo investigation into the roles of individual ligands, receptors, and coreceptors of this pathway, including investigation of the tissue specificity of these roles in heart development. This work has revealed that (1) cushion mesenchyme can form in the absence of TGFβ signaling, although mesenchymal cell numbers may be misregulated; (2) TGFβ signaling is essential for correct remodeling of the cushions, particularly those of the outflow tract; (3) TGFβ signaling also has a role in ensuring accurate remodeling of the pharyngeal arch arteries to form the mature aortic arch; and (4) mesenchymal cells derived from the epicardium require TGFβ signaling to promote their differentiation to vascular smooth muscle cells to support the coronary arteries. In addition, a mouse genetics approach has also been used to investigate the disease pathogenesis of Loeys-Dietz syndrome, a familial autosomal dominant human disorder characterized by a dilated aortic root, and associated with mutations in the two TGFβ signaling receptor genes, TGFBR1 and TGFBR2. Further important insights are likely as this exciting work progresses.  相似文献   

13.
14.
The cell signaling pathways that are tightly regulated during development are often co-opted by cancer cells to allow them to escape from the constraints that normally limit cell growth and cell movement. In this regard, de-regulated signaling in cancer cells confers a number of key tumor-associated properties, including increased cell proliferation, decreased cell death, and increased cell motility. The identification of some of these critical signaling pathways in the nervous system has come from studies of inherited cancer syndromes in which affected individuals develop brain tumors. The study of brain tumors arising in patients with neurofibromatosis 1 (NF1), neurofibromatosis 2 (NF2), and tuberous sclerosis complex (TSC) has already uncovered several key intracellular signaling pathways important for modulating brain tumor growth. An in-depth analysis of these intracellular signaling pathways will not only lead to an improved understanding of the process of brain tumorigenesis, but may also provide important molecular targets for future therapeutic drug design.  相似文献   

15.
The epicardium serves as a source of growth factors that regulate myocardial proliferation and as a source of epicardial-derived cells (EPDC), which give rise to interstitial cardiac fibroblasts and perivascular cells. These progenitors populate the compact myocardium to become part of the mature coronary vasculature and fibrous skeleton of the heart. Little is known about the mechanisms that regulate EPDC migration into the myocardium or the functions carried out by these cells once they enter the myocardium. However, it has been proposed that cardiac fibroblasts are important for growth of the heart during late gestation and are a source of homeostatic factors in the adult. Here, we identify a myocardial to epicardial fibroblast growth factor (FGF) signal, mediated by FGF10 and FGFR2b, that is essential for movement of cardiac fibroblasts into the compact myocardium. Inactivation of this signaling pathway results in fewer epicardial derived cells within the compact myocardium, decreased myocardial proliferation and a resulting smaller thin-walled heart.  相似文献   

16.
In the present study we characterized a "crosstalk" mechanism between transforming growth factor beta-1 (TGF beta-1) and endothelin-1 (ET1) signaling pathways in neonatal cardiac myocytes. A 5 minute pretreatment with 1 ng/ml concentrations of TGF beta-1 attenuated ET1-induced negative chronotropic effects and translocation of the alpha, delta and varepsilonPKC isozymes to the particulate cell fraction. We found no effect of TGF beta-1 on responses induced by the P(2) purinergic agonist ATP or phorbol ester. Treatment of cardiac myocytes with acidic fibroblast growth factor (aFGF) did not alter ET1- or ATP-mediated effects on contraction rate or translocation of PKC isozymes to the particulate fraction. Our studies suggest that TGF beta-1 may act as a negative modulator of ET1- but not ATP- or phorbol ester-induced PKC isozyme signaling events in neonatal cardiac myocytes. A better understanding of the complex ET1 and TGF beta-1 signaling mechanisms in neonatal heart cells should enhance our knowledge regarding the interplay between these pathways.  相似文献   

17.
Heart development begins with the induction of cardiogenic cells from the embryonic mesoderm, followed by the coalescing of these cells into a linear heart tube. Subsequent looping of the heart tube brings the rudimentary atria and ventricles into alignment for further development into the four-chambered heart. Underlying these morphologic events is a complex program of signaling between cells and tissues that orchestrates their participation in heart development. Among these signals are bone morphogenetic proteins, fibroblast growth factors, Wnts, Hedgehog, and members of the transforming growth factor-beta family of signaling molecules. We review here the various properties of these signaling molecules and their signal transduction pathways in hopes of providing a greater appreciation of the molecular events driving heart development.  相似文献   

18.
The gaseous phytohormone ethylene is implicated in virtually all phases of plant growth and development and thus has a major impact on crop production. This agronomic impact makes understanding ethylene signaling the Philosopher’s Stone of the plant biotechnology world in applications including post-harvest transport of foodstuffs, consistency of foodstuff maturity pre-harvest, decorative flower freshness and longevity, and biomass production for biofuel applications. Ethylene is biosynthesized by plants in response to environmental factors and plant life-cycle events, and triggers a signaling cascade that modulates over 1000 genes. The key components in the perception of ethylene are a family of copper dependent receptors, the bioinorganic chemistry of which has been largely ignored by the chemical community. Since identification of these receptors two decades ago, there has been tremendous growth in knowledge in the biological community on the signal transduction pathways and mechanisms of ethylene signaling. In this review, we highlight these advances and key chemical voids in knowledge that are overdue for exploration, and which are required to ultimately regulate and control ethylene signaling.  相似文献   

19.
During development there is a multitude of signaling events governing the assembly of the developing organism. Receptors for signaling molecules such as fibroblast growth factor receptor 2 (FGFR2) enable the embryo to communicate with the surrounding environment and activate downstream pathways. The neural cell adhesion molecule (NCAM) was first characterized as a cell adhesion molecule highly expressed in the nervous system, but recent studies have shown that it is also a signaling receptor. Using a novel single oocyte adaptation of the proximity ligation assay, we here show a close association between NCAM and FGFR2 in mouse oocytes and 2-cell embryos. Real-time PCR analyses revealed the presence of messenger RNA encoding key proteins in downstream signaling pathways in oocytes and early mouse embryos. In summary these findings show a co-localization of NCAM and FGFR2 in early vertebrate development with intracellular signaling pathways present to enable a cellular response.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号