首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A protein fraction was isolated from guinea-pig liver that binds triethyltin with an affinity of approx. 2x10(6)m(-1) at pH8.0. It was shown that the protein responsible for binding 70% of the triethyltin found in guinea-pig liver after injection of radioactively labelled triethyltin is at most a few per cent of the total liver protein. Evidence is presented from the kinetics of loss of binding and loss of certain amino acids on photo-oxidation with either Methylene Blue or Rose Bengal that each binding site consists of two histidine residues.  相似文献   

2.
The product of agmatine oxidation catalyzed by Pisum sativum L. copper amine oxidase has been identified by means of one- and two-dimensional (1)H-NMR spectroscopy to be N-amidino-2-hydroxypyrrolidine. This compound inhibits competitively rat nitric oxide synthase type I and type II (NOS-I and NOS-II, respectively) and bovine trypsin (trypsin) activity, values of Ki being (1.1 +/- 0.1) x 10(-5) m (at pH 7.5 and 37.0 degrees C), (2.1 +/- 0.1) x 10(-5) m (at pH 7.5 and 37.0 degrees C), and (8.9 +/- 0.4) x 10(-5) m (at pH 6.8 and 21.0 degrees C), respectively. Remarkably, the affinity of N-amidino-2-hydroxypyrrolidine for NOS-I, NOS-II and trypsin is significantly higher than that observed for agmatine and clonidine binding. Furthermore, N-amidino-2-hydroxypyrrolidine and agmatine are more efficient than clonidine in displacing [(3)H]clonidine (= 1.0 x 10(-8) m) from specific binding sites in heart rat membranes, values of IC50 being (1.3 +/- 0.4) x 10(-9) m and (2.2 +/- 0.4) x 10(-8) m, respectively (at pH 7.4 and 37.0 degrees C).  相似文献   

3.
The 32-kDa galectin (LEC-1 or N32) of the nematode Caenorhabditis elegans is the first example of a tandem repeat-type galectin and is composed of two domains, each of which is homologous to typical vertebrate 14-kDa-type galectins. To elucidate the biological meaning of this unique structure containing two probable sugar binding sites in one molecule, we analyzed in detail the sugar binding properties of the two domains by using a newly improved frontal affinity chromatography system. The whole molecule (LEC-1), the N-terminal lectin domain (Nh), and the C-terminal lectin domain (Ch) were expressed in Escherichia coli, purified, and immobilized on HiTrap gel agarose columns, and the extent of retardation of various sugars by the columns was measured. To raise the sensitivity of the system, we used 35 different fluorescence-labeled oligosaccharides (pyridylaminated (PA) sugars). All immobilized proteins showed affinity for N-acetyllactosamine-containing N-linked complex-type sugar chains, and the binding was stronger for more branched sugars. Ch showed 2-5-fold stronger binding toward all complex-type sugars compared with Nh. Both Nh and Ch preferred Galbeta1-3GlcNAc to Galbeta1-4GlcNAc. Because the Fucalpha1-2Galbeta1-3GlcNAc (H antigen) structure was found to interact with all immobilized protein columns significantly, the K(d) value of pentasaccharide Fucalpha1-2Galbeta1-3GlcNAcbeta1-3Galbeta1-4Glc-PA for each column was determined by analyzing the concentration dependence. Obtained values for immobilized LEC-1, Nh, and Ch were 6.0 x 10(-5), 1.3 x 10(-4), and 6.5 x 10(-5) m, respectively. The most significant difference between Nh and Ch was in their affinity for GalNAcalpha1-3(Fucalpha1-2)Galbeta1-3GlcNAcbeta1-3Galbeta1-4Glc-PA, which contains the blood group A antigen; the K(d) value for immobilized Nh was 4.8 x 10(-5) m, and that for Ch was 8.1 x 10(-4) m. The present results clearly indicate that the two sugar binding sites of LEC-1 have different sugar binding properties.  相似文献   

4.
1. Rat alpha-foetoprotein, an oestrogen-binding foetal globulin, was isolated in large quantities from amniotic fluid and serum by preparative electrophoresis on polyacrylamide slab gels or by chromatography on an immunoadsorbent column. Subsequently the two electrophoretic forms of this protein were separated by electrophoresis on the same medium. 2. Both forms were found to show identical binding with oestradiol. From the extrinsic fluorescence of the bound dye 8-anilinonaphthalene-1-sulphonic acid it was shown that the polarity of the binding site is practically identical for both forms. One residue of tryptophan was determined for both forms. The two electrophoretic variants display the same amount of secondary structure as demonstrated by circular dichroism. 3. The affinity of total alpha-foetoprotein for oestradiol as a function of pH was studied by using a Sephadex G-25 gel-equilibration method. Maximal binding occurred at pH8.5. Only a fractional number of binding sites per molecule could be measured at pH7.4, whereas at higher pH the number of sites was very close to unity. There was no significant effect of pH on the value of the association constant (K(a)=4.3x10(7)+/-1.2x10(7)m(-1)). 4. Displacement experiments of bound labelled oestradiol with various steroids have permitted investigation of the specificity of alpha-foetoprotein. This foetal globulin binds rather strongly compounds that display the rigid structure of the oestratriene skeleton (oestradiol, oestrone). Diminished binding for diethylstilboestrol and a diethylstilboestrol affinity label was observed. No binding was measured with a more flexible structure such as hexoestrol [4,4'-(1,2-diethylethane-1,2-diyl)bisphenol]. 5. Chemical modification of cysteine residues of alpha-foetoprotein with two alkylating reagents [iodoacetic acid and 8-[N-(iodoacetylaminoethyl)amino]naphthalene-1-sulphonic acid] has very little effect on the oestrogen binding. It is suggested that the oestrogen-binding site does not contain a cysteine residue. From the kinetics of alkylation and from the fluorescence properties of the chemically bound thiol reagent 8-[N-(iodoacetylaminoethyl)amino]naphthalene-1-sulphonic acid], it was demonstrated that the very-slow-reacting thiol group is probably located in a non-polar region of the molecule.  相似文献   

5.
—A high affinity binding site for triethyltin was found in rat brain myelin with an affinity of approx 6·6 × 105m −1 at pH 7·5. Competitive binding studies showed that triethyl-lcad had about the same affinity and trimethyltin 30 times lower affinity than triethyltin. Hexachlorophane and 3,5-diiodo-4′-chlorosalicylanilide did not prevent triethyltin binding to rat brain myelin. Since triethyltin, hexachlorophane and 3,5-diiodo-4′-chlorosalicylanilide all produce similar oedematous lesions in the brain of rats, whereas triethyl-lead and trimethyltin do not, it is concluded that the high affinity triethyltin binding site either is not involved or is not the only factor in oedema production.  相似文献   

6.
The interaction of L-tyrosine, L-tyrosyladenylate and tRNA-Tyr with tyrosyl-tRNA synthetase from Bacillus stearothermophilus was studied by equilibrium dialysis, gel filtration and fluorescence spectroscopy. The enzyme, which consists of two identical subunits (mol. wt 2 x 44000), binds only a single molecule of L-tyrosine per dimer with a K-d of 2 x 10-5 M at pH 7.8 and 23 degrees C. The tyrosyl-tRNA synthetase--tyrosyladenylate complex which was isolated by gel filtration also has one adenylate bound per dimeric enzyme molecule. In contrast, two tRNA-Tyr molecules bind per enzyme dimer, but the two binding sites are not equivalent having K-d values of 2 x 10-7 M and 1.3 x 10-6 M respectively at pH 6.5 and 25 degrees C. Since crystallographic analysis of the free enzyme [2] shows that the monomer is the asymmetric unit, the data indicate that substrate binding induces asymmetry in the enzyme.  相似文献   

7.
Eukaryotic translation initiation factor 4G-1 (eIF4G) plays a critical role in the recruitment of mRNA to the 43 S preinitiation complex. eIF4G has two binding sites for the RNA helicase eIF4A, one in the central domain and one in the COOH-terminal domain. Recombinant eIF4G fragments that contained each of these sites separately bound eIF4A with a 1:1 stoichiometry, but fragments containing both sites bound eIF4A with a 1:2 stoichiometry. eIF3 did not interfere with eIF4A binding to the central site. Interestingly, at the same concentration of free eIF4A, more eIF4A was bound to an eIF4G fragment containing both eIF4A sites than the sum of binding to fragments containing the single sites, indicating cooperative binding. Binding of eIF4A to an immobilized fragment of eIF4G containing the COOH-terminal site was competed by a soluble eIF4G fragment containing the central site, indicating that a single eIF4A molecule cannot bind simultaneously to both sites. The association rate constant, dissociation rate constant, and dissociation equilibrium constant for each site were determined by surface plasmon resonance and found to be, respectively, 1.2 x 10(5) m(-1) s(-1), 2.1 x 10(-3) s(-1), and 17 nm for the central site and 5.1 x 10(3) m(-1) s(-1), 1.7 x 10(-3) s(-1), and 330 nm for the COOH-terminal site.  相似文献   

8.
A procedure has been developed for the use of metal-ion buffers that depends on the formation of 2:1 complexes between suitable chelators and metal ions. beta-Alanine has been used as the chelator for Cu(2+) ions in a study of Cu(2+) binding by bovine pancreatic ribonuclease by the equilibrium-dialysis technique at pH7.0, 6.1 and 5.2. The results indicated the presence of two avid binding sites, the more avid group being implicated in the inhibition of enzyme activity by Cu(2+) ions.The binding constants of the more avid site were 2.97x10(7), 7.97x10(5) and 1.25x10(4) at pH7.0, 6.1 and 5.2 respectively, and the binding constants of the less avid site were 5.27x10(6) and 1.71x10(5) at pH7.0 and 6.1 respectively.The data show that the Cu(2+) is chelated to the protein through at least two ligand groups on the ribonuclease molecule.  相似文献   

9.
The binding of estrone-3-sulfate (E1-3-S) and estradiol-3-sulfate (E2-3-S) to adult stallion plasma was determined and compared with the binding to equine serum albumin (ESA). On the ESA molecule, two binding sites for E1-3-S with an association constant of 1.3 x 10(5) M-1 and several sites of weaker affinity were found; the data for E2-3-S showed the existence of four binding sites of moderate affinity (1 x 10(5) M-1) and several sites of weaker affinity. The removal of albumin from the stallion plasma resulted in the absence of binding of E1-3-S or E2-3-S, whereas the removal of glycoproteins resulted in binding parameters similar to those obtained with whole plasma. These results indicate that ESA is the only estrogen sulfate binder in horse plasma. Under physiological conditions, 95% of E1-3-S was bound to ESA.  相似文献   

10.
B Halle  B Lindman 《Biochemistry》1978,17(18):3774-3781
The 35Cl nuclear magnetic quadrupole relaxation enhancement on binding of chloride ions to human plasma albumin (HPA) has been studied under conditions of variable temperature, pH, ionic strength, protein, and sodium dodecyl sulfate concentration. A small number (less than 10) of chloride ions, most of which are bound to the primary detergent binding sites, contribute a major portion of the relaxation enhancement (greater than 80% at neutral pH). A comparison of the pH dependence of the relaxation rate with the hydrogen ion titration curve, which was determined and analyzed, identified ten lysyl and arginyl residues as being involved in the chloride ion binding. These data, in conjuction with NaDodSO4 titrations at different pH values and the amino acid sequence of HPA, suggests that the high-affinity chloride-binding sites are doubly cationic at neutral pH. An irreversible dimerization at acidic pH and 5 x 10(-5) m HPA was detected. The data also indicate the presence of internal modes of motion in the expanded forms of the HPA molecule, probably an independent reorientation of domains. The rate of exchange of chloride ions was shown to be much higher than the corresponding intrinsic relaxation rate in the temperature range 2--26 degrees C and pH values ranging from 4.0 to 10.5. No indications of protein-protein interaction could be found up to the physiological concentration of ca. 6 x 10(-4)m HPA at either neutral or alkaline pH. The mechanistic basis for HPA's exceptional capacity for binding of inorganic anions was discussed.  相似文献   

11.
Thermodynamics of the Op18/stathmin-tubulin interaction   总被引:1,自引:0,他引:1  
Op18/stathmin (stathmin) is an intrinsically disordered protein involved in the regulation of the microtubule filament system. One function of stathmin is to sequester tubulin dimers into assembly incompetent complexes, and recent studies revealed two tubulin binding sites per stathmin molecule. Using high sensitivity isothermal titration calorimetry, we document that at 10 degrees C and under the conditions of 80 mM PIPES, pH 6.8, 1 mM EGTA, 1 mM MgCl2, 1 mM GTP these two binding sites are of equal affinity with an equilibrium binding constant of K0 = 6.0 x 10(6) m(-1). The obtained large negative molar heat capacity change of deltaCp0 = -860 cal mol(-1) K(-1) (referring to tubulin) for the tubulin-stathmin binding equilibrium suggests that the hydrophobic effect is the major driving force of the binding reaction. Replacing GTP by GDP on beta-tubulin had no significant effect on the thermodynamic parameters of the tubulin-stathmin binding equilibrium. The proposed pH-sensitive dual function of stathmin was further evaluated by circular dichroism spectroscopy and nuclear magnetic resonance. At low temperatures, stathmin was found to be extensively helical but devoid of any stable tertiary structure. However, in complex with two tubulin subunits stathmin adopts a stable conformation. Both the stability and conformation of the individual proteins and complexes were not significantly affected by small changes in pH. A 4-fold decrease in affinity of stathmin for tubulin was revealed at pH 7.5 compared with pH 6.8. This decrease could be attributed to a weaker binding of the C terminus of stathmin. These findings do not support the view that stathmin works as a pH-sensitive protein.  相似文献   

12.
Interaction of the pore-forming protein (porin) from Yersinia pseudotuberculosis with S- and R-forms of the endogenous lipopolysaccharide (LPS) was studied at various ionic strengths (20-600 mM NaCl), concentrations of divalent cations (5-100 mM CaCl2, MgCl2), and pH values from 3.0 to 9.0. The interaction of the R-LPS with porin has been shown in all experimental conditions to be in consensus with the model suggesting binding at independent sites of two types. S-LPS binds to interacting sites of relatively high affinity and to independent sites of low affinity at all pH values examined and at low NaCl concentration. The cooperative interaction of the S-LPS and porin is not observed at high ionic strength and in divalent cation-free medium. The number of binding sites of porin and association constants (Ka) for both LPS forms decrease significantly on increasing the solution ionic strength. The Ka values for the R- and S-LPS change oppositely on changing the pH: the Ka value for the R-LPS is maximal (Ka = 6.7 x 10(5) M-1), but that for S-LPS is minimal (Ka = 0.4 x 10(5) M(-1) at pH 5.0-5.5. The number of high-affinity and low-affinity binding sites for both LPS forms is maximal at pH 5.0-5.5. In this case, the numbers of high- and low-affinity sites for R-LPS are 3 and 10, respectively, and those for the S-LPS are 7 and 20, respectively. These data suggest an important role of electrostatic interactions on binding of LPS to porin. The contribution of conformational changes of the ligand and protein and hydrophobic interactions are discussed.  相似文献   

13.
The acid-basic properties of ellipticine have been re-estimated. The apparent pK of protonation at 3 microM drug concentration is 7.4 +/- 0.1. The ellipticine free base (at pH 9, I = 25 mM) intercalates into calf-thymus DNA with an affinity constant of 3.3 +/- 0.2 X 10(5) M-1, and a number of binding sites per phosphate of 0.23. The ellipticinium cation (pH 5, I = 25 mM) binds also to DNA with a constant of 8.3 +/- 0.2 x 10(5) M-1 and at a number of binding sites (n = 0.19). It is postulated that the binding of the drug to DNA at pH 9 is driven by hydrophobic and/or dipolar effects. Even at pH 5, where ellipticine exists as a cation, it is thought that the hydrophobic interaction is the main contribution to binding. The neutral and cationic forms share common binding within DNA sites but yield to structurally different complexes. The free base has 0.04 additional specific binding sites per phosphate. As determined from temperature-jump experiments, the second-order rate constant of the binding of the free base (pH 9) is 3.4 x 10(7) M-1 s-1 and the residence time of the base within the DNA is 8 ms. The rate constant for the binding of the ellipticinium cation is 9.8 x 10(7) M-1 s-1 when it is assumed that drug attachment occurs via a pathway in which the formation of an intermediate ionic complex is not involved (competitive pathway).  相似文献   

14.
Human low-molecular-weight kininogen (LK) was shown by fluorescence titration to bind two molecules of cathepsins L and S and papain with high affinity. By contrast, binding of a second molecule of cathepsin H was much weaker. The 2:1 binding stoichiometry was confirmed by titration monitored by loss of enzyme activity and by sedimentation velocity experiments. The kinetics of binding of cathepsins L and S and papain showed the two proteinase binding sites to have association rate constants kass,1 = 10.7-24.5 x 10(6) M-1 s-1 and kass,2 = 0.83-1.4 x 10(6) M-1 s-1. Comparison of these kinetic constants with previous data for intact LK and its separated domains indicate that the faster-binding site is also the tighter-binding site and is present on domain 3, whereas the slower-binding, lower-affinity site is on domain 2. These results also indicate that there is no appreciable steric hindrance for the binding of proteinases between the two binding sites or from the kininogen light chain.  相似文献   

15.
Mechanism of reaction of myeloperoxidase with nitrite   总被引:10,自引:0,他引:10  
Myeloperoxidase (MPO) is a major neutrophil protein and may be involved in the nitration of tyrosine residues observed in a wide range of inflammatory diseases that involve neutrophils and macrophage activation. In order to clarify if nitrite could be a physiological substrate of myeloperoxidase, we investigated the reactions of the ferric enzyme and its redox intermediates, compound I and compound II, with nitrite under pre-steady state conditions by using sequential mixing stopped-flow analysis in the pH range 4-8. At 15 degrees C the rate of formation of the low spin MPO-nitrite complex is (2.5 +/- 0.2) x 10(4) m(-1) s(-1) at pH 7 and (2.2 +/- 0.7) x 10(6) m(-1) s(-1) at pH 5. The dissociation constant of nitrite bound to the native enzyme is 2.3 +/- 0.1 mm at pH 7 and 31.3 +/- 0.5 micrometer at pH 5. Nitrite is oxidized by two one-electron steps in the MPO peroxidase cycle. The second-order rate constant of reduction of compound I to compound II at 15 degrees C is (2.0 +/- 0.2) x 10(6) m(-1) s(-1) at pH 7 and (1.1 +/- 0.2) x 10(7) m(-1) s(-1) at pH 5. The rate constant of reduction of compound II to the ferric native enzyme at 15 degrees C is (5.5 +/- 0.1) x 10(2) m(-1) s(-1) at pH 7 and (8.9 +/- 1.6) x 10(4) m(-1) s(-1) at pH 5. pH dependence studies suggest that both complex formation between the ferric enzyme and nitrite and nitrite oxidation by compounds I and II are controlled by a residue with a pK(a) of (4.3 +/- 0.3). Protonation of this group (which is most likely the distal histidine) is necessary for optimum nitrite binding and oxidation.  相似文献   

16.
N-benzoyl-L-phenylalanyl-L-phenylalanine is an excellent peptide substrate for carboxy-peptidase A; at 30 degrees C and pH 7.5, K(m) is 2.6 x 10(-5) M while k(cat) is 177 s(-1) (k(cat)/K(m) = 6.8 x 10(6) M(-1) s(-1)). Indole-3-acetic acid is a noncompetitive or mixed inhibitor towards the peptide and toward hippuryl-L-phenylalanine; plots of E/V vs [Inhibitor] are linear. N-Benzoyl-L-phenylalanine is a competitive inhibitor of peptide hydrolysis, and plots of E/V vs [Inhibitor] are again linear. One molecule of inhibitor binds per active site, and these inhibitors bind in different sites. At constant peptide substrate concentration and a series of constant concentrations of indole-3-acetic acid, plots of E/V vs the concentration of N-benzoyl-L-phenylalanine are linear and intersect behind the E/V axis and above the [Inhibitor] axis. This shows that both inhibitors can bind simultaneously and that binding of one facilitates the binding of the other (beta = 0.18). Employing the ester substrate hippuryl-DL,beta-phenyllactate, the same type of behavior is observed in the reverse sense; N-benzoyl-L-phenylalanine is a linear noncompetitive inhibitor and indole-3-acetic acid is a linear competitive inhibitor. Again the two inhibitor plot is linear and intersects above the [Inhibitor] axis (beta = 0.12). Previous X-ray crystallographic studies have indicated that indole-3-acetic acid binds in the hydrophobic pocket of the S'(1) site, while N-benzoyl-L-phenylalanine binds in the S(1)-S(2) site. The product complex for hydrolysis of N-benzoyl-L-phenylalanyl-L-phenylalanine (phenylalanine + N-benzoyl-L-phenylalanine) occupies both of these sites. However, the present work shows that the peptide substrate does not bind to the enzyme at pH 7.5 so as to be competitive with indole-3-acetic acid. The binding sites may be formed via conformational changes induced or stabilized by substrate and product binding. Copyright 2000 Academic Press.  相似文献   

17.
Cat haemoglobin binds 2 mol of triethyltin/mol of haemoglobin. Pretreatment of the haemoglobin with diethyl pyrocarbonate at pH6.0 prevents binding to one site only, whereas photo-oxidation with Methylene Blue removes both sites. Pretreatment of rat haemoglobin with diethyl pyrocarbonate also leads to the loss of one binding site. The possibility is discussed that the two binding sites for triethyltin on both cat and rat haemoglobin have a different chemical nature.  相似文献   

18.
Ligand-binding studies with labelled triethyltin on yeast mitochondrial membranes showed the presence of high-affinity sites (KD = 0.6 micronM; 1.2 +/- 0.3 nmol/mg of protein) and low-affinity sites (KD less than 45 micronM; 70 +/- 20 nmol/mg of protein). The dissociation constant of the high-affinity site is in good agreement with the concentration of triethyltin required for inhibition of mitochondrial ATPase (adenosine triphosphatase) and oxidative phosphorylation. The high-affinity site is not competed for by oligomycin or venturicidin, indicating that triethyltin reacts at a different site from these inhibitors of oxidative phosphorylation. Fractionation of the mitochondrial membrane shows a specific association of the high-affinity sites with the ATP synthase complex. During purification of ATP synthase (oligomycin-sensitive ATPase) there is a 5-6-fold purification of oligomycin- and triethyltin-sensitive ATPase activity concomitant with a 7-9-fold increase in high-affinity triethyltin-binding sites. The purified yeast oligomycin-sensitive ATPase complex contains approximately six binding sites for triethyltin/mol of enzyme complex. It is concluded that specific triethyltin-binding sites are components of the ATP synthase complex, which accounts for the specific inhibition of ATPase and oxidative phosphorylation by triethyltin.  相似文献   

19.
The equilibrium binding of hydroxyethyl vinyl deuteroporphyrin (HVD) and of irreversible porphyrin aggregates to human serum albumin was studied at the molecular level. This protein may function as an endogenous drug carrier for porphyrins in photodynamic therapy of tumours. HVD-protein binding studies revealed two types of binding sites, which are attributed to the two HVD isomers. The binding constant for the high-affinity isomer, 2.1 (+/- 0.3) x 10(8) M-1, is similar to that previously determined for protoporphyrin. At the same time the binding constant for the lower-affinity HVD isomer, 1.8(+/- 0.3) x 10(6) M-1, is similar to that previously determined for haematoporphyrin. Irreversible porphyrin aggregates were purified from the haematoporphyrin derivative and from Photofrin and are defined by spectral and chromatographic data. Gel-exclusion studies indicate that the dominant size of these aggregates is ten porphyrin monomeric units. The protein-binding constant of these aggregates is 1.7(+/- 0.2) x 10(5) M-1, with four binding sites per protein molecule. The distinction between the HVD isomers along the porphyrin-protein affinity sequence gives insight into the relationship of porphyrin structure to porphyrin-albumin binding. On the basis of this study an evaluation of human serum albumin as an endogenous carrier for porphyrins (at various aggregation states) in photodynamic therapy of tumours is presented.  相似文献   

20.
Calcium binding to carbohydrate binding module CBM4-2 of xylanase 10A (Xyn10A) from Rhodothermus marinus was explored using calorimetry, NMR, fluorescence, and absorbance spectroscopy. CBM4-2 binds two calcium ions, one with moderate affinity and one with extremely high affinity. The moderate-affinity site has an association constant of (1.3 +/- 0.3) x 10(5) M(-1) and a binding enthalpy DeltaH(a) of -9.3 +/- 0.4 kJ x mol(-1), while the high-affinity site has an association constant of approximately 10(10) M(-1) and a binding enthalpy DeltaH(a) of -40.5 +/- 0.5 kJ x mol(-1). The locations of the binding sites have been identified by NMR and structural homology, and were verified by site-directed mutagenesis. The high-affinity site consists of the side chains of E11 and D160 and backbone carbonyls of E52 and K55, while the moderate-affinity site comprises the side chain of D29 and backbone carbonyls of L21, A22, V25, and W28. The high-affinity site is in a position analogous to the calcium site in CBM4 structures and in a recent CBM22 structure. Binding of calcium increases the unfolding temperature of the protein (T(m)) by approximately 23 degrees C at pH 7.5. No correlation between binding affinity and T(m) change was noted, as each of the two calcium ions contributes almost equally to the increase in unfolding temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号