首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Batten  G. D.  Blakeney  A. B.  McGrath  V. B.  Ciavarella  S. 《Plant and Soil》1993,155(1):243-246
Plant shoot samples are frequently analysed to assess if crops require additional nitrogen or mineral elements to maintain satisfactory growth. If plant growth is limited by temperature, water stress, disease, lodging or a mineral deficiency, non-structural carbohydrates (NSC) may be accumulated in, or depleted from, tissues especially those in the lower stems. Plant testing laboratories do not routinely analyse NSC to assist in the identification of plant stress probably because skilled technicians and time are required for the wet chemical determination. In this paper we report that routine determination of NSC is possible using near-infrared reflectance spectroscopy; the errors of determination are comparable with traditional chemical methods.The concentration of NSC in the shoots of rice grown in south eastern Australia ranges from 1.6 to 22.8%, as starch. In the shoots of wheat grown in eastern Australia the range is from 2.4 to 35.2%, as fructans. In both crops the NSC content is highly inversely correlated with the shoot nitrogen content. Based on data from commercial wheat and rice crops we suggest that the ratio between nitrogen and NSC can be used to identify crops in which growth has been limited by a stress other than nitrogen and so are unlikely to show the predicted response to an application of nitrogen fertilizer.  相似文献   

4.
Unprecedented levels of nitrogen (N) have entered terrestrial ecosystems over the past century, which substantially influences the carbon (C) exchange between the atmosphere and biosphere. Temperature and moisture are generally regarded as the major controllers over the N effects on ecosystem C uptake and release. N‐phosphorous (P) stoichiometry regulates the growth and metabolisms of plants and soil organisms, thereby affecting many ecosystem C processes. However, it remains unclear how the N‐induced shift in the plant N:P ratio affects ecosystem production and C fluxes and its relative importance. We conducted a field manipulative experiment with eight N addition levels in a Tibetan alpine steppe and assessed the influences of N on aboveground net primary production (ANPP), gross ecosystem productivity (GEP), ecosystem respiration (ER), and net ecosystem exchange (NEE); we used linear mixed‐effects models to further determine the relative contributions of various factors to the N‐induced changes in these parameters. Our results showed that the ANPP, GEP, ER, and NEE all exhibited nonlinear responses to increasing N additions. Further analysis demonstrated that the plant N:P ratio played a dominate role in shaping these C exchange processes. There was a positive relationship between the N‐induced changes in ANPP (ΔANPP) and the plant N:P ratio (ΔN:P), whereas the ΔGEP, ΔER, and ΔNEE exhibited quadratic correlations with the ΔN:P. In contrast, soil temperature and moisture were only secondary predictors for the changes in ecosystem production and C fluxes along the N addition gradient. These findings highlight the importance of plant N:P ratio in regulating ecosystem C exchange, which is crucial for improving our understanding of C cycles under the scenarios of global N enrichment.  相似文献   

5.
BACKGROUND AND AIMS: The influence of initial residual leaf area and initial N reserves on N uptake, final N distribution, and yield in alfalfa regrowing after cutting, were studied. METHODS: The effects of two levels of initial residual leaf area (plants cut to 15 cm, with (L+) or without (L-) their leaves) and two initial levels of N status [high N (HN) or low N (LN)] on growth, N uptake and N partitioning, allocation and storage after 29 d of post-cutting regrowth were analysed. KEY RESULTS: During most of the regrowth period (8-29 d after the initial harvest), HN and L+ plants had higher net N uptake rates than LN and L- plants, respectively, resulting in a greater final mineral N uptake for these treatments. However, the final partitioning of exogenous N to the regrowing shoots was the same for all treatments (67 % of total exogenous N on average). Final shoot growth, total plant N content, and N allocation to the different taproot N pools were significantly lower in plants with reduced initial leaf area and initial N reserve status. CONCLUSIONS: Although both initial residual leaf area and initial N reserves influenced alfalfa regrowth, the residual leaf area had a greater effect on final forage production and N composition in the taproot, whereas the N uptake rate and final total N content in plant were more affected by the initial N reserve status than by the residual leaf area. Moreover, N storage as proteins (especially as vegetative storage proteins, rather than nitrate or amino acids) in the taproot allowed nitrate uptake to occur at significant rates. This suggests that protein storage is not only a means of sequestering N in a tissue for further mobilization, utilization for growth or tissue maintenance, but may also indirectly influence both N acquisition and reduction capacities.  相似文献   

6.
While both annual and perennial plants store nitrogen resources during the growing season, seasonal N cycling is a hallmark of the perennial habit. In Populus the vegetative storage proteins BSP, WIN4 and PNI288 all play a role in N storage during active growth, whereas BSP is the major form of reduced N storage during winter dormancy. In this review we explore cellular and molecular events implicated in seasonal N cycling in Populus, as well as environmental cues that modulate both the phenology of seasonal N cycling, and the efficiency and proficiency of autumn N resorption. We highlight recent advances that have been made using Populus genomics resources to address processes germane to seasonal N cycling. Genetic and genetological studies are enabling us to connect our understanding of seasonal N cycling at molecular and cellular levels with that at ecophysiological levels. With the genomics resources and foundational knowledge that are now in place, Populus researchers are poised to build an integrative understanding of seasonal N cycling that spans from genomes to ecosystems.  相似文献   

7.
The main objective of this study was to investigate the relationship between partitioning and isotopic fractionation of nitrogen (N) in sheep consuming diets with varying ratios of N to water-soluble carbohydrate (WSC). Six non-lactating sheep were offered a constant dry matter (DM) allowance with one of three ratios of dietary N/WSC, achieved by adding sucrose and urea to lucerne pellets. A replicated 3 dietary treatments (Low, Medium and High N/WSC) × 3 (collection periods) and a Latin square design was used, with two sheep assigned to each treatment in each period. Feed, faeces, urine, plasma, wool, muscle and liver samples were collected and analysed for 15N concentration. Nitrogen intake and outputs in faeces and urine were measured for each sheep using 6-day total collections. Blood urea N (BUN) and urinary excretion of purine derivative were also measured. Treatment effects were tested using general ANOVA; the relationships between measured variables were analysed by linear regression. BUN and N intake increased by 46% and 35%, respectively, when N/WSC increased 2.5-fold. However, no indication of change in microbial protein synthesis was detected. Results indicated effects of dietary treatments on urinary N/faecal N, faecal N/N intake and retained N/N intake. In addition, the linear relationships between plasma δ15N and urinary N/N intake and muscle δ15N and retained N/N intake based on individual measurements showed the potential of using N isotopic fractionation as an easy-to-use indicator of N partitioning when N supply exceeds that required to match energy supply in the diet.  相似文献   

8.
Here, we analysed the transition from heterotrophic to autotrophic growth of the epigeal species sunflower (Helianthus annuus), and how transition is affected by CO(2). Growth analysis and steady-state (13)CO(2)/(12)CO(2) and (15)NO(3) (-)/(14)NO(3) (-) labelling were used to quantify reserve- and current assimilation-derived carbon (C) and nitrogen (N) allocation to shoots and roots in the presence of 200 and 1,000 micromol CO(2) mol(-1) air. Growth was not influenced by CO(2) until cotyledons unfolded. Then, C accumulation at elevated CO(2) increased to a rate 2-2.5 times higher than in sub-ambient CO(2) due to increased unit leaf rate (+120%) and leaf expansion (+60%). CO(2) had no effect on mobilization and allocation of reserve-derived C and N, even during the transition period. Export of autotrophic C from cotyledons began immediately following the onset of photosynthetic activity, serving roots and shoots near-simultaneously. Allocation of autotrophic C to shoots was increased at sub-ambient CO(2). The synchrony in transition from heterotrophic to autotrophic supply for different sinks in sunflower contrasts with the sequential transition reported for species with hypogeal germination.  相似文献   

9.
Several biodiversity experiments have shown positive effects of species richness on aboveground biomass production, but highly variable responses of individual species. The well-known fact that the competitive ability of plant species depends on size differences among species, raises the question of effects of community species richness on small-stature subordinate species. We used experimental grasslands differing in species richness (1-60 species) and functional group richness (one to four functional groups) to study biodiversity effects on biomass production and ecophysiological traits of five small-stature herbs (Bellis perennis, Plantago media, Glechoma hederacea, Ranunculus repens and Veronica chamaedrys). We found that ecophysiological adaptations, known as typical shade-tolerance strategies, played an important role with increasing species richness and in relation to a decrease in transmitted light. Specific leaf area and leaf area ratio increased, while area-based leaf nitrogen decreased with increasing community species richness. Community species richness did not affect daily leaf carbohydrate turnover of V. chamaedrys and P. media indicating that these species maintained efficiency of photosynthesis even in low-light environments. This suggests an important possible mechanism of complementarity in such grasslands, whereby smaller species contribute to a better overall efficiency of light use. Nevertheless, these species rarely contributed a large proportion to community biomass production or achieved higher yields in mixtures than expected from monocultures. It seems likely that the allocation to aboveground plant organs to optimise carbon assimilation limited the investment in belowground organs to acquire nutrients and thus hindered these species from increasing their performance in multi-species mixtures.  相似文献   

10.
张慧玲  杨万勤  汪明  廖姝  张川  吴福忠 《生态学报》2016,36(7):1967-1974
森林溪流木质残体是森林生态系统与水域之间物质循环和能量流动的主要联结之一,其碳、氮和磷贮量不仅可影响森林与溪流生态系统的结构和功能,而且与下游水体环境密切相关。因此,于2013年8月雨季以岷江上游典型高山森林为研究对象,调查了12条森林溪流木质残体的碳、氮和磷贮量分配特征,并汇算了研究区域内碳、氮和磷在溪流中单位面积的总贮量。结果表明,高山森林溪流木质残体碳、氮和磷的溪流单位面积总贮量分别为312.1 g/m2、809.5 mg/m2和110.9 mg/m2;在溪流中,木质残体碳、氮和磷贮量以径级为1—2.5 cm和2.5—5 cm的木质残体分布居多,分别共占碳、氮和磷总贮量的86.71%、87.20%和84.55%;木质残体碳、氮和磷贮量以Ⅴ腐烂级分配最多,分别共占碳、氮和磷总贮量的65.86%、67.86%和60.31%;尽管溪流各项特征与碳、氮和磷元素贮量的相关性不显著,但基本达到中度相关关系。这些结果为认识森林生态系统中以木质残体为载体的碳、氮和磷输出潜力提供了基础数据。  相似文献   

11.
Kabeya D  Sakai S 《Annals of botany》2005,96(3):479-488
BACKGROUND AND AIMS: Plants need some kind of stored resources to resprout after shoot destruction. The aim of this study was to determine the relative importance of carbohydrate and nitrogen (N) storage levels for their ability to resprout. METHODS: A shoot clipping experiment was conducted on Quercus crispula seedlings, which were grown in a factorial experimental design, with two light levels (40% and 3% of full light) and three nutrient concentrations (low, medium and high). KEY RESULTS: At the time of shoot clipping (the end of spring leaf expansion), seedlings exposed to 40% light had an average total non-structural carbohydrate (TNC) concentration of 17.0% in their roots compared with 4.9% in the roots of seedlings exposed to 3% light, and the average amount of TNC (TNC pools) in the roots was 203.8 mg and 20.0 mg at 40% light and 3% light, respectively. In contrast, root N concentration averaged 2.3% in the 3% light treatment compared with 1.2% in the 40% light treatment, and it increased with successive rises in nutrient concentrations at both light levels. Regardless of the nutrient status, at the 40% light level >80% of the seedlings resprouted after shoot clipping. Few seedlings, however, resprouted at the 3% light level, particularly in the medium- and high-nutrient treatments. Furthermore, both root TNC concentrations and TNC pools decreased after resprouting, but the amount of root N remained constant. CONCLUSIONS: These results suggest that carbohydrate storage has a stronger influence on resprouting in Quercus crispula than N storage. However, the size of the resprouting shoot was positively correlated with the amount of both N and TNC in roots. The level of N storage is, therefore, also important for the growth of resprouting shoots.  相似文献   

12.
The accumulation and storage of nitrogen by herbaceous plants   总被引:18,自引:5,他引:13  
Abstract Accumulation of nitrogen (N) by plants in response to N supply outstripping demand is contrasted with storage of N, which implies that N in one tissue can be reused for the growth or maintenance of another. Storage can, therefore, occur in N-deficient plants; accumulation can not. The consequence of accumulation and storage of N is considered, particularly in relation to the reproductive growth of annual plants, which can often use a great deal of stored N. Nitrate and proteins are the forms of N most often stored in vegetative tissues and, quantitatively, ribulose 1,5-bisphosphate carboxylase/oxygenase is often the most important protein store. While storing nitrate will be less costly to the plant in terms of energy, protein stores offer several possible advantages. These advantages are (i) maximizing the potential for carbon assimilation, (ii) avoiding problems with the regulation of leaf turgor and (iii) allowing the reduction on nitrate to occur in the young, fully illuminated leaf.  相似文献   

13.
Tomasz Wyka 《Oecologia》1999,120(2):198-208
I tested hypotheses for ecological roles of storage carbohydrates in perennating organs (roots and branches) of alpine Oxytropis sericea, a leguminous herb. In naturally growing plants, total nonstructural carbohydrates achieved their maximal concentration in the fall, declined during winter, and reached minimal levels immediately after growth initiation in the spring. Experimental manipulation of carbon sink-source relations through shading of leaves of reproductive plants revealed that the normally unused portion of these carbohydrates is largely available for withdrawal. In another experiment, plants subjected to carbohydrate depletion through shading suffered decreased leaf growth after winter dormancy and had a lower probability of flowering and decreased inflorescence biomass. The dependence of reproductive growth on stored carbohydrates, however, was limited to its initial stages, because accumulation of storage carbohydrates occurred simultaneously with inflorescence expansion, flowering, and fruiting. Moreover, the whole-plant photosynthetic rate, estimated from gas exchange measurements also peaked at the time of inflorescence growth. To address whether stored reserves allow compensatory regrowth following defoliation, plants were subjected to experimental removal of leaves and inflorescences. Defoliated O. sericea partly regrew the lost leaves but withdrawal of stored carbohydrates was limited. Similarly, in a second defoliation experiment where infructescences were left intact, the plants used little stored carbohydrate and only partly compensated for fruit growth. However, carbohydrate accumulation was negatively affected by defoliation. While the ecological importance of stored nonstructural carbohydrates cannot be attributed to any function in isolation, winter respiration, leaf regrowth after winter, and early reproductive growth in O. sericea all depend to a significant extent on stored reserves. Maintaining a large storage pool may protect these functions in years when carbon status is less favorable than during this study. Received: 13 May 1998 / Accepted: 24 November 1998  相似文献   

14.
Plants of Cirsium vulgare (Savi) Ten. were cultivated under five different nitrogen regimes in order to investigate the effects of nitrogen supply on the storage processes in a biennial species during its first year of growth. External N supply increased total biomass production without changing the relationship between ‘productive plant compartments’ (i.e. shoot plus fine roots) and ‘storage plant compartments’ (i.e. structural root dry weight, which is defined as the difference between tap root biomass and the amount of stored carbohydrates and N compounds). The amount of carbohydrates and N compounds stored per unit of structural tap root dry weight was not affected by external N availability during the season, because high rates of N supply increased the concentration of N compounds whilst decreasing the carbohydrate concentration, and low rates of N supply had the opposite effect. Mobilization of N from senescing leaves was not related to the N status of the plants. The relationship between nitrogen compounds stored in the tap root and the maximum amount of nitrogen in leaves was an increasing function with increasing nitrogen supply. We conclude that the allocation between vegetative plant growth and the growth of storage structures over a wide range of N availability seems to follow predictions from optimum allocation theory, whereas N storage responds in a rather plastic way to N availability.  相似文献   

15.
The cost of nitrogen storage to current growth was examined in relation to N availability in the biennial Cirsium vulgare. Plants were grown outdoors, in sand culture, with continuous diel drip irrigation of fertilization medium containing one of five different N concentrations. Plants grown at the highest N concentration stored twice as much N in their tap roots as did plants grown at the lowest N concentration. In high-N-grown plants, the storage of N reserves occurred during the period of maximum growth, at the same time as tap-root production. At the time of maximum biomass, stored N was also at a maximum. During the period following maximum biomass, no additional storage of N occurred. This pattern was observed despite frequent late-season leaf senescence which resulted in a large pool of potentially mobile N which could have been stored at no cost to growth. In low-N-grown plants, the production of tap-root storage tissue and the filling of that tissue with stored N were staggered. Tap-root production and growth occurred during the period of maximum growth, as in the high-N-grown plants. However, filling of the storage tissue with N occurred late in the growing season, when the pool of mobile N from senescent leaves was large. The utilization of this late-season N source occurred with little or no cost to growth, and this N is labelled, according to previous definitions, as ‘accumulated’. The costs of storing N in plants of the different N treatments were calculated using two models based on different growth constraints. In one model, the cost of N storage was represented as lost growth due to allocation of N to storage, rather than to the photosynthetic shoot (i.e. growth was assumed to be limited by carbon acquisition). In the second model, the storage cost was calculated as lost growth due to allocation of N to storage, rather than to the nitrogen-acquiring fine-root system (i.e. growth was assumed to be limited by nitrogen acquisition). In both models, the total cost of N storage was predicted to decrease as N availability decreased due to smaller storage pool sizes in plants of the low-N treatments. The cost of filling the tap root with stored N as a percentage of the total storage cost was also reduced as N availability decreased due to the occurrence of late-season accumulation. By relying, at least in part, on late-season accumulation, plants grown at the lowest three levels of N availability reduced total storage costs by 15 to 22%. The results demonstrate that plants are capable of adjusting their storage patterns in response to low nitrogen availability such that the costs of storage are reduced.  相似文献   

16.
松嫩草地80种草本植物叶片氮磷化学计量特征   总被引:12,自引:0,他引:12       下载免费PDF全文
以松嫩草地常见草本植物为研究对象, 分析了各生活型和功能群叶片氮磷化学计量特征。结果显示: 松嫩草地80种草本植物的叶片氮、磷质量浓度分别为(24.2 ± 0.96) mg·g -1和(2.0 ± 0.10) mg·g -1, 面积浓度分别为(13.0 ± 0.54) mg·cm -2和(1.0 ± 0.05) mg·cm -2, 氮磷比为13.0 ± 0.39, 氮磷比与叶片磷质量浓度、叶片氮、磷面积浓度有显著相关关系; 松嫩草地植物生长受到氮限制。一年生植物叶片氮、磷质量浓度和变异系数高于其他生活型, 各生活型之间氮面积浓度和氮磷比差异不显著。豆科植物叶片氮的质量浓度、面积浓度和氮磷比高于其他功能群。在不同生活型或功能群之间, 植物叶片磷的面积浓度差异不显著, 都在1.0 mg·cm -2左右; 适当地增加群落中豆科植物的比例, 可能有助于提高松嫩草地产量和质量。  相似文献   

17.
18.
BACKGROUND: and Aims In many studies of nitrogen-limited plant growth a linear relationship has been found between relative growth rate and plant nitrogen concentration, showing a negative intercept at a plant nitrogen concentration of zero. This relationship forms the basis of the nitrogen productivity theory. On the basis of empirical findings, several authors have suggested that there is also a distinctive relationship between allocation and plant nitrogen concentration. The primary aim of this paper is to develop a simple plant growth model that quantifies this relationship in mathematical terms. The model was focused on nitrogen allocation to avoid the complexity of differences in nitrogen concentrations in the different plant compartments. The secondary aim is to use the model for examining the processes that underlie the empirically based nitrogen productivity theory. METHODS: In the construction of the model we focused on the formation and degradation of biologically active nitrogen in enzymes involved in the photosynthetic process (photosynthetic nitrogen). It was assumed that, in nitrogen-limiting conditions, the formation of photosynthetic nitrogen is proportional to nitrogen uptake. Furthermore it was assumed that the degradation of photosynthetic nitrogen is governed by first-order kinetics. Model predictions of nitrogen allocation were compared with data from literature describing four studies of growth. Model predictions of whole plant growth were compared with the above-mentioned nitrogen productivity theory. KEY RESULTS: Allocation predictions agreed well with the investigated empirical data. The ratio of leaf nitrogen and plant nitrogen declines linearly with the inverse of plant nitrogen concentration. Nitrogen productivity is proportional to this ratio. Predictions for whole-plant growth were in accordance with the nitrogen productivity theory. CONCLUSIONS: The agreement between model predictions and empirical findings suggests that the derived equation for nitrogen allocation and its relationship to plant nitrogen concentration might be generally applicable. The negative intercept in the linear relationship between relative growth rate and plant nitrogen concentration is interpreted as being equal to the degradation constant of photosynthetic nitrogen.  相似文献   

19.
20.
The effects of partial defoliation on photosynthesis, whole-seedling carbon allocation, partitioning and growth were studied for two species with contrasting foliar traits. Field-grown seedlings of deciduous Japanese larch ( Larix leptolepis ) and evergreen red pine ( Pinus resinosa ) were defoliated by hand in early summer for 2 consecutive years. In the first year (1990), seedlings were defoliated by removing the distal 0, 25, 50 or 75% of each needle. In the second year (1991), seedlings were defoliated either 0 or 50%, regardless of previous defoliation treatments. Defoliation had little effect on photosynthesis and starch concentration in whole seedlings of either species in the first year. In the second year, photosynthesis increased in both species in response to the 1991 defoliation treatment, and in red pine also increased in response to the 1990 defoliation treatment. Further, in 1991 both larch and pine had decreased whole-seedling total non-structural carbohydrate concentrations in all seedlings that were defoliated at least once over the 2-yr period. This decrease was noted mostly in the starch component of the non-structural carbohydrates, and was similar in both species. In 1991, biomass was similarly decreased in both species in response to 1991 defoliation. Both species showed overcompensation in total and component biomass in seedlings defoliated by 25% in 1990. Overall, the results do not support the widely held belief that evergreen trees are substantially more affected than deciduous trees by defoliation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号