首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our laboratory demonstrated previously that PGE2-induced modulation of hippocampal synaptic transmission is via a pre-synaptic PGE2 EP2 receptor. However, little is known about whether the EP2 receptor is involved in hippocampal long-term synaptic plasticity and cognitive function. Here we show that long-term potentiation at the hippocampal perforant path synapses was impaired in mice deficient in the EP2 (KO), while membrane excitability and passive properties in granule neurons were normal. Importantly, escape latency in the water maze in EP2 KO was longer than that in age-matched EP2 wild-type littermates (WT). We also observed that long-term potentiation was potentiated in EP2 WT animals that received lipopolysaccharide (LPS, i.p.), but not in EP2 KO. Bath application of PGE2 or butaprost, an EP2 receptor agonist, increased synaptic transmission and decreased paired-pulses ratio in EP2 WT mice, but failed to induce the changes in EP2 KO mice. Meanwhile, synaptic transmission was elevated by application of forskolin, an adenylyl cyclase activator, both in EP2 KO and WT animals. In addition, the PGE2-enhanced synaptic transmission was significantly attenuated by application of PKA, IP3 or MAPK inhibitors in EP2 WT animals. Our results show that hippocampal long-term synaptic plasticity is impaired in mice deficient in the EP2, suggesting that PGE2-EP2 signaling is important for hippocampal long-term synaptic plasticity and cognitive function.  相似文献   

2.
The synaptic vesicle protein synaptotagmin I has been proposed to serve as a Ca(2+) sensor for rapid exocytosis. Synaptotagmin spans the vesicle membrane once and possesses a large cytoplasmic domain that contains two C2 domains, C2A and C2B. Multiple Ca(2+) ions bind to the membrane proximal C2A domain. However, it is not known whether the C2B domain also functions as a Ca(2+)-sensing module. Here, we report that Ca(2+) drives conformational changes in the C2B domain of synaptotagmin and triggers the homo- and hetero-oligomerization of multiple isoforms of the protein. These effects of Ca(2)+ are mediated by a set of conserved acidic Ca(2)+ ligands within C2B; neutralization of these residues results in constitutive clustering activity. We addressed the function of oligomerization using a dominant negative approach. Two distinct reagents that block synaptotagmin clustering potently inhibited secretion from semi-intact PC12 cells. Together, these data indicate that the Ca(2)+-driven clustering of the C2B domain of synaptotagmin is an essential step in excitation-secretion coupling. We propose that clustering may regulate the opening or dilation of the exocytotic fusion pore.  相似文献   

3.
Recruitment of the Src kinase to the activated form of the platelet-derived growth factor (PDGF) receptor involves recognition of a unique sequence motif in the juxtamembrane region of the receptor by the Src homology 2 (SH2) domain of the enzyme. This motif contains two phosphotyrosine residues separated by one residue (sequence pYIpYV where pY indicates a phosphotyrosine). Here, we provide the thermodynamic and structural basis for the binding of this motif by the Src SH2 domain. We show that the second phosphorylation event increases the free energy window for specific interaction and that the physiological target is exquisitely designed for the task of recruiting specifically an SH2 domain which otherwise demonstrates very little intrinsic ability to discriminate sequences C-terminal to the first phosphorylation event. Surprisingly, we show that water plays a role in the recognition process.  相似文献   

4.
A 35-37-kDa protease-resistant domain of synapsin Ia/ Ib, apparently produced by low levels of endogenous proteases in vapor diffusion droplets, slowly formed crystals diffracting X-rays to approximately 10 A resolution. The fragment mainly consisted of the highly conserved C domain common to the synapsin I/II family plus short N- and C-terminal flanking segments. Two constructs (SynA and SynB) of synthetic gene fragments coding for the C domain of synapsin with or without C-terminal flanking sequence were expressed in Escherichia coli as fusion proteins attached to the soluble protein glutathione-S-transferase. The fusion proteins were purified by affinity chromatography. Subsequent in situ cleavage with TEV protease resulted in the release of highly pure synapsin fragments, which were further purified by ion exchange chromatography. SynA and SynB formed crystals within three days, which diffracted to better than 3 A using a conventional X-ray source and to about 2 A using a synchrotron X-ray source. SynA crystals have the symmetry of the trigonal space groups P3(1)21 or P3(2)21 and the unit cell dimensions a = b = 77.4 A, c = 188.5 A, alpha = beta = 90 degrees, gamma = 120 degrees. SynB crystals have the symmetry of the orthorhombic space group C222(1) with the unit cell dimension a = 104.6 A, b = 113.3 A, and c = 273.8 A.  相似文献   

5.
The microtubule-associated protein tau is a principal component of neurofibrillary tangles, and has been identified as a key molecule in Alzheimer''s disease and other tauopathies. However, it is unknown how a protein that is primarily located in axons is involved in a disease that is believed to have a synaptic origin. To investigate a possible synaptic function of tau, we studied synaptic plasticity in the hippocampus and found a selective deficit in long-term depression (LTD) in tau knockout mice in vivo and in vitro, an effect that was replicated by RNAi knockdown of tau in vitro. We found that the induction of LTD is associated with the glycogen synthase kinase-3-mediated phosphorylation of tau. These observations demonstrate that tau has a critical physiological function in LTD.  相似文献   

6.
Fragile X syndrome (FXS), a common form of inherited mental retardation, is caused by the lack of fragile X mental retardation protein (FMRP). The animal model of FXS, Fmr1 knockout mice, have deficits in the Morris water maze and trace fear memory tests, showing impairment in hippocampus-dependent learning and memory. However, results for synaptic long-term potentiation (LTP), a key cellular model for learning and memory, remain inconclusive in the hippocampus of Fmr1 knockout mice. Here, we demonstrate that FMRP is required for glycine induced LTP (Gly-LTP) in the CA1 of hippocampus. This form of LTP requires activation of post-synaptic NMDA receptors and metabotropic glutamateric receptors, as well as the subsequent activation of extracellular signal-regulated kinase (ERK) 1/2. However, paired-pulse facilitation was not affected by glycine treatment. Genetic deletion of FMRP interrupted the phosphorylation of ERK1/2, suggesting the possible role of FMRP in the regulation of the activity of ERK1/2. Our study provide strong evidences that FMRP participates in Gly-LTP in the hippocampus by regulating the phosphorylation of ERK1/2, and that improper regulation of these signaling pathways may contribute to the learning and memory deficits observed in FXS.  相似文献   

7.
The C2 domain of protein kinase Calpha (PKCalpha) corresponds to the regulatory sequence motif, found in a large variety of membrane trafficking and signal transduction proteins, that mediates the recruitment of proteins by phospholipid membranes. In the PKCalpha isoenzyme, the Ca2+-dependent binding to membranes is highly specific to 1,2-sn-phosphatidyl-l-serine. Intrinsic Ca2+ binding tends to be of low affinity and non-cooperative, while phospholipid membranes enhance the overall affinity of Ca2+ and convert it into cooperative binding. The crystal structure of a ternary complex of the PKCalpha-C2 domain showed the binding of two calcium ions and of one 1,2-dicaproyl-sn-phosphatidyl-l-serine (DCPS) molecule that was coordinated directly to one of the calcium ions. The structures of the C2 domain of PKCalpha crystallised in the presence of Ca2+ with either 1,2-diacetyl-sn-phosphatidyl-l-serine (DAPS) or 1,2-dicaproyl-sn-phosphatidic acid (DCPA) have now been determined and refined at 1.9 A and at 2.0 A, respectively. DAPS, a phospholipid with short hydrocarbon chains, was expected to facilitate the accommodation of the phospholipid ligand inside the Ca2+-binding pocket. DCPA, with a phosphatidic acid (PA) head group, was used to investigate the preference for phospholipids with phosphatidyl-l-serine (PS) head groups. The two structures determined show the presence of an additional binding site for anionic phospholipids in the vicinity of the conserved lysine-rich cluster. Site-directed mutagenesis, on the lysine residues from this cluster that interact directly with the phospholipid, revealed a substantial decrease in C2 domain binding to vesicles when concentrations of either PS or PA were increased in the absence of Ca2+. In the complex of the C2 domain with DAPS a third Ca2+, which binds an extra phosphate group, was identified in the calcium-binding regions (CBRs). The interplay between calcium ions and phosphate groups or phospholipid molecules in the C2 domain of PKCalpha is supported by the specificity and spatial organisation of the binding sites in the domain and by the variable occupancies of ligands found in the different crystal structures. Implications for PKCalpha activity of these structural results, in particular at the level of the binding affinity of the C2 domain to membranes, are discussed.  相似文献   

8.
Normal brain ageing is associated with a degree of functional impairment of neuronal activity that results in a reduction in memory and cognitive functions. One mechanism proposed to explain the age-dependent changes was the "Ca(2+) hypothesis of ageing" but data accumulated in the last decade revealed a number of inconsistencies. Two important questions were raised: (a) which are, if any, the most reliable age-associated change in neuronal Ca(2+) homeostasis and (b) are these changes primary, and thus determinant of the ageing phenotype, or are they secondary to other changes in the physiology of the aged neurones. After a brief review of the evidence accumulated for the age-induced changes in synaptic plasticity, we assess the proposal that these changes are, ultimately, determined by changes in the metabolic state of the aged neurones, that are manifest particularly after neuronal stimulation. In this context, it appears that the changes in mitochondrial status and function are of primary importance.  相似文献   

9.
Synaptotagmin (Syt) family members consist of six separate domains: a short amino terminus, a single transmembrane domain, a spacer domain, a C2A domain, a C2B domain and a short carboxyl (C) terminus. Despite sharing the same domain structures, several synaptotagmin isoforms show distinct subcellular localization. Syt IV is mainly localized at the Golgi, while Syt I, a possible Ca(2+)-sensor for secretory vesicles, is localized at dense-core vesicles and synaptic-like microvesicles in PC12 cells. In this study, we sought to identify the region responsible for the Golgi localization of Syt IV by immunocytochemical and biochemical analyses as a means of defining the distinct subcellular localization of the synaptotagmin family. We found that the unique C-terminus of the spacer domain (amino acid residues 73-144) between the transmembrane domain and the C2A domain is essential for the Golgi localization of Syt IV. In addition, the short C-terminus is probably involved in proper folding of the protein, especially the C2B domain. Without the C-terminus, Syt IVdeltaC proteins are not targeted to the Golgi and seem to colocalize with an endoplasmic reticulum (ER) marker (i.e. induce crystalloid ER-like structures). On the basis of these results, we propose that the divergent spacer domain among synaptotagmin isoforms may contain certain signals that determine the final destination of each isoform.  相似文献   

10.
Chen L  Jiang ML  Han TZ 《生理学报》2006,58(3):287-291
标准低频率连续刺激(1~2 Hz,15 min)能够诱导幼年大鼠(<4周)海马CA1区同突触长时程压抑(long-term depression,LTD),而只有较高频率且持续时间较长的连续刺激才能诱导出成年动物该部位稳定的LTD.本研究采用成年大鼠海马脑片标本,电刺激Schaffer侧枝传入纤维,在CA1区锥体细胞层记录群体锋电位,选用两种新的刺激参数以观测不同刺激型式在诱导成年大鼠LTD中的作用.诱导LTD的刺激参数为(1)2 Hz,5串,串长60 s,串间隔60 s;(2)5 Hz,5串,串长24 s,串间隔96 s;(3)对照组参数2 Hz,300 s.结果显示,对照参数未能诱导出LTD;而两种频率不同但脉冲总数与刺激总时程相同的多串刺激,即参数(1)与参数(2),均在成年大鼠海马CA1区诱导产生了LTD.两种参数所诱导的LTD特征具有参数特异性,该特征主要表现为LTD诱导潜伏期和LTD的幅度参数(1)、(2)诱导的LTD的潜伏期分别为15~25 min和30~40 min;强直刺激后80 min时LTD的幅度分别为(57.5±2.8)%和(67.7±3.4)%.以上结果表明特定型式的低频率刺激能够诱导成年大鼠海马CA1区的LTD,提示LTD的诱导与刺激的组合型式相关,并且2 Hz较5 Hz的多串刺激在诱导LTD中更为有效.  相似文献   

11.
The C2 domain is a Ca(2+)-binding motif of approximately 130 residues in length originally identified in the Ca(2+)-dependent isoforms of protein kinase C. Single and multiple copies of C2 domains have been identified in a growing number of eukaryotic signalling proteins that interact with cellular membranes and mediate a broad array of critical intracellular processes, including membrane trafficking, the generation of lipid-second messengers, activation of GTPases, and the control of protein phosphorylation. As a group, C2 domains display the remarkable property of binding a variety of different ligands and substrates, including Ca2+, phospholipids, inositol polyphosphates, and intracellular proteins. Expanding this functional diversity is the fact that not all proteins containing C2 domains are regulated by Ca2+, suggesting that some C2 domains may play a purely structural role or may have lost the ability to bind Ca2+. The present review summarizes the information currently available regarding the structure and function of the C2 domain and provides a novel sequence alignment of 65 C2 domain primary structures. This alignment predicts that C2 domains form two distinct topological folds, illustrated by the recent crystal structures of C2 domains from synaptotagmin 1 and phosphoinositide-specific phospholipase C-delta 1, respectively. The alignment highlights residues that may be critical to the C2 domain fold or required for Ca2+ binding and regulation.  相似文献   

12.
Protein kinase C eta (PKCeta) is one of several PKC isoforms found in humans. It is a novel PKC isoform in that it is activated by diacylglycerol and anionic phospholipids but not calcium. The crystal structure of the PKCeta-C2 domain, which is thought to mediate anionic phospholipid sensing in the protein, was determined at 1.75 A resolution. The structure is similar to that of the PKC epsilon C2 domain but with significant variations at the putative lipid-binding site. Two serine residues within PKC eta were identified in vitro as potential autophosphorylation sites. In the unphosphorylated structure both serines line the putative lipid-binding site and may therefore play a role in the lipid-regulation of the kinase.  相似文献   

13.
During translocation peptidyl-tRNA moves from the A-site to the P-site and mRNA is displaced by three nucleotides in the 3' direction. This reaction is catalyzed by elongation factor-G (EF-G) and is associated with ribosome-dependent hydrolysis of GTP. The molecular basis of translocation is the most important unsolved problem with respect to ribosome function. A critical question, one that might provide a clue to the mechanism of translocation, is the precise identity of the contacts between EF-G and ribosome components. To make the identification, a covalent bond was formed, by ultraviolet irradiation, between EF-G and a sarcin/ricin domain (SRD) oligoribonucleotide containing 5-iodouridine. The cross-link was established, by mass spectroscopy and by Edman degradation, to be between a tryptophan at position 127 in the G domain in EF-G and either one of two 5-iodouridine nucleotides in the sequence UAG2655U in the SRD. G2655 is a critical identity element for the recognition of the factor's ribosomal binding site. The site of the cross-link provides the first direct evidence that the SRD is in close proximity to the EF-G catalytic center. The proximity suggests that the SRD RNA has a role in the activation of GTP hydrolysis that leads to a transition in the conformation of the factor and to its release from the ribosome.  相似文献   

14.
Arachidonic acid, one of the major unsaturated fatty acids released during cell stimulation, participates in the signaling necessary for activation of different enzymes, including protein kinase C (PKC). Here, we demonstrate that arachidonic acid is a direct activator of PKCalpha, but needs the cooperation of Ca(2+) to exert its function. By using several mutants of the C2 and C1 domains, we were able to determine the molecular mechanism of this activation. More specifically, site-directed mutagenesis in key residues found in the C2 domain showed that the Ca(2+)-binding region was essential for the arachidonic acid-dependent localization and activation of PKCalpha. However, the lysine-rich cluster, also located in the C2 domain, played no relevant role in either the membrane localization or activation of the enzyme. Moreover, site-directed mutagenesis in key residues placed in the C1A and C1B subdomains, which are responsible for the diacylglycerol/phorbil ester interaction, demonstrated that the C1A subdomain was involved in the membrane localization and activation mechanism. Taken together, these data suggest a very precise mechanism for PKCalpha activation by arachidonic acid, involving a sequential model of activation in which an increase in intracytosolic Ca(2+) leads to the interaction of arachidonic acid with the Ca(2+)-binding region; only after this step, does the C1A subdomain interact with arachidonic acid, leading to full activation of the enzyme.  相似文献   

15.
Synaptotagmin I has two tandem Ca(2+)-binding C(2) domains, which are essential for fast synchronous synaptic transmission in the central nervous system. We have solved four crystal structures of the C(2)B domain, one of them in the cation-free form at 1.50 A resolution, two in the Ca(2+)-bound form at 1.04 A (two bound Ca(2+) ions) and 1.65 A (three bound Ca(2+) ions) resolution and one in the Sr(2+)-bound form at 1.18 A (one bound Sr(2+) ion) resolution. The side chains of four highly conserved aspartic acids (D303, D309, D363, and D365) and two main chain oxygens (M302:O and Y364:O), together with water molecules, are in direct contact with two bound Ca(2+) ions (sites 1 and 2). At higher Ca(2+) concentrations, the side chain of N333 rotates and cooperates with D309 to generate a third Ca(2+) coordination site (site 3). Divalent cation binding sites 1 and 2 in the C(2)B domain were previously identified from NMR NOE patterns and titration studies, supplemented by site-directed mutation analysis. One difference between the crystal and NMR studies involves D371, which is not involved in coordination with any of the identified Ca(2+) sites in the crystal structures, while it is coordinated to Ca(2+) in site 2 in the NMR structure. In the presence of Sr(2+), which is also capable of triggering exocytosis, but with lower efficiency, only one cation binding site (site 1) was occupied in the crystallographic structure.  相似文献   

16.
17.
The Vav family of proteins are guanine nucleotide exchange factors (GEFs) for the Rho family of GTPases, which regulate various cellular functions, including T-cell activation. They contain a catalytic Dbl homology (DH) domain that is invariably followed by a pleckstrin homology (PH) domain, which is often required for catalytic activity. Vav proteins are the first GEFs for which an additional C1 domain is required for full biological activity. Here, we present the structure of a Vav1 fragment comprising the DH-PH-C1 domains bound to Rac1. This structure shows that the PH and C1 domains form a single structural unit that packs against the carboxy-terminal helix of the DH domain to stabilize its conformation and to promote nucleotide exchange. In contrast to previous reports, this structure shows that there are no direct contacts between the GTPase and C1 domain but instead suggests new mechanisms for the regulation of Vav1 activity.  相似文献   

18.
Rabphilin is generally thought to be involved in the regulation of secretory vesicle exocytosis in neurons and neuroendocrine cells, and it has recently been hypothesized that the C2B domain of rabphilin promotes the docking of dense-core vesicles to the plasma membrane through simultaneous interaction with a vesicle protein, Rab3A/27A, and a plasma membrane protein, SNAP-25 (synaptosome-associated protein of 25 kDa). However, the physiological significance of the rabphilin-SNAP-25 interaction in the vesicle-docking step has never been elucidated. In this study we demonstrated by a mutation analysis that the polybasic sequence (587 KKAKHKTQIKKK 598) in the C2B domain of rabphilin is required for SNAP-25 binding, and that the Asp residues in the Ca(2+)-binding loop 3 (D628 and D630) of the C2B domain are not required. We also investigated the effect of Lys-->Gln (KQ) mutations in the polybasic sequence of the C2B domain on vesicle dynamics by total internal reflection fluorescence microscopy in individual PC12 cells. A rabphilin(KQ) mutant that completely lacks SNAP-25-binding activity significantly decreased the number of plasma-membrane-docked vesicles and strongly inhibited high-KCl-induced dense-core vesicle exocytosis. These results indicate that the polybasic sequence in the C2B domain functions as an effector domain for SNAP-25 and controls the number of 'releasable' vesicles docked to the plasma membrane.  相似文献   

19.
Inositol polyphosphate 4 phosphatases (IP4Ps) are enzymes involved in the regulation of phosphoinositide 3-kinase lipid signaling. They catalyze the hydrolysis of the 4-position phosphate from phosphatidylinositol 3,4-bisphosphate to phosphatidylinositol 3-phosphate. In this paper we have characterized a lipid binding C2 domain located on the N-terminus of type I IP4Ps. Mutational analysis of the lipid binding loops suggests that Asp61, Asp120, Asp123, Lys122, Arg124 are involved in lipid binding in vitro. In addition, we show that this C2 domain binds calcium but calcium is not involved in lipid binding. This paper provides insight into the mechanism of membrane interaction of IP4Ps.  相似文献   

20.
The coiled-coil domain of TRAF6 is essential for its auto-ubiquitination   总被引:1,自引:0,他引:1  
Tumor necrosis factor receptor-associated factor 6 (TRAF6) is a crucial signaling transducer that regulates a diverse array of physiological processes, including adaptive immunity, innate immunity, and bone metabolism. Importantly, it is essential for activating NF-kappaB signaling pathway in response to interleukin-1 and Toll-like receptor ligands. Previously, we characterized TRAF6 to be a ubiquitin ligase. In combination with the ubiquitin conjugating enzyme complex Ubc13/Uev1A, TRAF6 could catalyze the formation on itself of unique Lys-63 linked polyubiquitin chain that positively regulated NF-kappaB signaling pathway. However, it remains unknown how this auto-ubiquitination process is regulated. In this study, we found that the coiled-coil domain of TRAF6 was essential for its auto-ubiquitination and activating NF-kappaB signaling pathway. This domain served not as the specific target where the polyubiquitin chain was linked, but as a specific bridge to recruit Ubc13/Uev1A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号