首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasmatocyte-spreading peptide (PSP) is a 23-amino acid cytokine that activates a class of insect immune cells called plasmatocytes. PSP consists of two regions: an unstructured N terminus (1-6) and a highly structured core (7-23). Prior studies identified specific residues in both the structured and unstructured regions required for biological activity. Most important for function were Arg13, Phe3, Cys7, Cys19, and the N-terminal amine of Glu1. Here we have built on these results by conducting cell binding and functional antagonism studies. Alanine replacement of Met12 (M12A) resulted in a peptide with biological activity indistinguishable from PSP. Competitive binding experiments using unlabeled and 125I-M12A generated an IC50 of 0.71 nm and indicated that unlabeled M12A, at concentrations > or =100 nm, completely blocked binding of label to hemocytes. We then tested the ability of other peptide mutants to displace 125I-M12A at a concentration of 100 nm. In the structured core, we found that Cys7 and Cys19 were essential for cell binding and functional antagonism, but these effects were likely because of the importance of these residues for maintaining the tertiary structure of PSP. Arg13, in contrast, was also essential for binding and activity but is not required for maintenance of structure. In the unstructured N-terminal region, deletion of the phenyl group from Phe3 yielded a peptide that reduced binding of 125I-M12A 326-fold. This and all other mutants of Phe3 we bioassayed were unable to antagonize PSP. Deletion of Glu1 in contrast had almost no effect on binding and was a strong functional antagonist. Experiments using a photoaffinity analog indicated that PSP binds to a single 190-kDa protein.  相似文献   

2.
Growth-blocking peptide (GBP) is a 25-amino acid insect cytokine found in Lepidopteran insects that possesses diverse biological activities such as larval growth regulation, cell proliferation, and stimulation of immune cells (plasmatocytes). The tertiary structure of GBP consists of a structured core that contains a disulfide bridge and a short antiparallel beta-sheet (Tyr(11)-Arg(13) and Cys(19)-Pro(21)) and flexible N and C termini (Glu(1)-Gly(6) and Phe(23)-Gln(25)). In this study, deletion and point mutation analogs of GBP were synthesized to investigate the relationship between the structure of GBP and its mitogenic and plasmatocyte spreading activity. The results indicated that deletion of the N-terminal residue, Glu(1), eliminated all plasmatocyte spreading activity but did not reduce mitogenic activity. In contrast, deletion of Phe(23) along with the remainder of the C terminus destroyed all mitogenic activity but only slightly reduced plasmatocyte spreading activity. Therefore, the minimal structure of GBP containing mitogenic activity is 2-23 GBP, whereas that with plasmatocyte spreading activity is 1-22 GBP. NMR analysis indicated that these N- and C-terminal deletion mutants retained a similar core structure to wild-type GBP. Replacement of Asp(16) with either a Glu, Leu, or Asn residue similarly did not alter the core structure of GBP. However, these mutants had no mitogenic activity, although they retained about 50% of their plasmatocyte spreading activity. We conclude that specific residues in the unstructured and structured domains of GBP differentially affect the biological activities of GBP, which suggests the possibility that multifunctional properties of this peptide may be mediated by different forms of a GBP receptor.  相似文献   

3.
Various analogue peptides with substitution and deletion of amino acid residues have been synthesized by liquid phase method for Sperm Activating Peptides from the jelly coat of sea urchin eggs. The deletion of C-terminal Gly reduced the activity to about 1/3000, while removal of N-terminal Gly reduced the activity to 1/10. The residues Ser5 and Asp3 were replaced by Lys without significant loss of activity. Substitution of Phe2 by Gly, Ala or Pro markedly reduced the activity by the factor of 10(4)-10(6), in contrast to Tyr-substitution retaining almost full activity, indicating the essential role of the aromatic residue in exerting the activity. Substitutions, Asp3 to Glu and Gly10 to Pro, increased the activity 5-fold and 500-fold, respectively.  相似文献   

4.
The high resolution crystal structure of an N-terminal fragment of the IGF-I receptor, has been reported. While this fragment is itself devoid of ligand binding activity, mutational analysis has indicated that its N terminus (L1, amino acids 1-150) and the C terminus of its cysteine-rich domain (amino acids 190-300) contain ligand binding determinants. Mutational analysis also suggests that amino acids 692-702 from the C terminus of the alpha subunit are critical for ligand binding. A fusion protein, formed from these fragments, binds IGF-I with an affinity similar to that of the whole extracellular domain, suggesting that these are the minimal structural elements of the IGF-I binding site. To further characterize the binding site, we have performed structure directed and alanine-scanning mutagenesis of L1, the cysteine-rich domain and amino acids 692-702. Alanine mutants of residues in these regions were transiently expressed as secreted recombinant receptors and their affinity was determined. In L1 alanine mutants of Asp(8), Asn(11), Tyr(28), His(30), Leu(33), Leu(56), Phe(58), Arg(59), and Trp(79) produced a 2- to 10-fold decrease in affinity and alanine mutation of Phe(90) resulted in a 23-fold decrease in affinity. In the cysteine-rich domain, mutation of Arg(240), Phe(241), Glu(242), and Phe(251) produced a 2- to 10-fold decrease in affinity. In the region between amino acids 692 and 702, alanine mutation of Phe(701) produced a receptor devoid of binding activity and alanine mutations of Phe(693), Glu(693), Asn(694), Leu(696), His(697), Asn(698), and Ile(700) exhibited decreases in affinity ranging from 10- to 30-fold. With the exception of Trp(79), the disruptive mutants in L1 form a discrete epitope on the surface of the receptor. Those in the cysteine-rich domain essential for intact affinity also form a discrete epitope together with Trp(79).  相似文献   

5.
Growth-blocking peptide (GBP) is a 25-amino acid cytokine isolated from the lepidopteran insect Pseudaletia separata. GBP exhibits various biological activities such as regulation of larval growth of insects, proliferation of a few kinds of cultured cells, and stimulation of a class of insect immune cells called plasmatocytes. The tertiary structure of GBP consists of a well structured core domain and disordered N and C termini. Our previous studies revealed that, in addition to the structured core, specific residues in the unstructured N-terminal region (Glu1 and Phe3) are also essential for the plasmatocyte-stimulating activity. In this study, a number of deletion, insertion, and site-directed mutants targeting the unstructured N-terminal residues of GBP were constructed to gain more detailed insight into the mode of interaction between the N-terminal region and GBP receptor. Alteration of the backbone length of the linker region between the core structure and N-terminal domain reduced plasmatocyte-stimulating activity. The substitutions of Gly5 or Gly6 in this linker region with more bulky residues, such as Phe and Pro, also remarkably reduced this activity. We conclude that the interaction of GBP with its receptor depends on the relative position of the N-terminal domain to the core structure, and therefore the backbone flexibility of Gly residues in the linker region is necessary for adoption of a proper conformation suited to receptor binding. Additionally, antagonistic experiments using deletion mutants confirmed that not only the core domain but also the N-terminal region of GBP are required for "receptor-binding," and furthermore Phe3 is a binding determinant of the N-terminal domain.  相似文献   

6.
Nukacin ISK-1, a type-A(II) lantibiotic, comprises 27 amino acids with a distinct linear N-terminal and a globular C-terminal region. To identify the positional importance or redundancy of individual residues responsible for nukacin ISK-1 antimicrobial activity, we replaced the native codons of the parent peptide with NNK triplet oligonucleotides in order to generate a bank of nukacin ISK-1 variants. The bioactivity of each peptide variant was evaluated by colony overlay assay, and hence we identified three Lys residues (Lys1, Lys2 and Lys3) that provided electrostatic interactions with the target membrane and were significantly variable. The ring structure of nukacin ISK-1 was found to be crucially important as replacing the ring-forming residues caused a complete loss of bioactivity. In addition to the ring-forming residues, Gly5, His12, Asp13, Met16, Asn17 and Gln20 residues were found to be essential for antimicrobial activity; Val6, Ile7, Val10, Phe19, Phe21, Val22, Phe23 and Thr24 were relatively variable; and Ser4, Pro8, His15 and Ser27 were extensively variable relative to their positions. We obtained two variants, Asp13Glu and Val22Ile, which exhibited a twofold higher specific activity compared with the wild-type and are the first reported type-A(II) lantibiotic mutant peptides with increased potency.  相似文献   

7.
Plasmatocyte spreading peptide (PSP) is a 23-amino acid cytokine that induces a class of insect immune cells called plasmatocytes to spread on foreign surfaces. The structure of PSP consists of a disordered N terminus (residues 1-6) and a well-defined core (residues 7-23) stabilized by a disulfide bridge between Cys(7) and Cys(19), hydrophobic interactions, and a short beta-hairpin. Structural comparisons also indicate that the core region of PSP adopts an epidermal growth factor (EGF)-like fold very similar to the C-terminal subdomain of EGF-like module 5 of thrombomodulin. To identify residues important for plasmatocyte spreading activity, we bioassayed PSP mutants in which amino acids were either replaced with alanine or deleted. Within the well-defined core of PSP, alanine replacement of Cys(7) and Cys(19) (C7.19A) eliminated all activity. Alanine replacement of Arg(13) reduced activity approximately 1000-fold in comparison to wild-type PSP, whereas replacement of the other charged residues (Asp(16), Arg(18), Lys(20)) surrounding Cys(19) diminished activity to a lesser degree. The point mutants Y11A, T14A, T22A, and F23A had activity identical or only slightly reduced to that of wild-type PSP. The mutant PSP-(7-23) lacked the entire unstructured domain of PSP and was found to have no plasmatocyte spreading activity. Surprisingly, E1A and N2A had higher activity than wild-type PSP, but F3A had almost no activity. We thus concluded that the lack of activity for PSP-(7-23) was largely due to the critical importance of Phe(3). To determine whether reductions in activity correlated with alterations in tertiary structure, we compared the C7.19A, R13A, R18A, and F3A mutants to wild-type PSP by NMR spectroscopy. As expected, the simultaneous replacement of Cys(7) and Cys(19) profoundly affected tertiary structure, but the R13A, R18A, and F3A mutants did not differ from wild-type PSP. Collectively, these results indicate that residues in both the unstructured and structured domains of PSP are required for plasmatocyte-spreading activity.  相似文献   

8.
The human beta1,3-glucuronosyltransferases galactose-beta1,3-glucuronosyltransferase I (GlcAT-I) and galactose-beta1,3-glucuronosyltransferase P (GlcAT-P) are key enzymes involved in proteoglycan and HNK-1 carbohydrate epitope synthesis, respectively. Analysis of their acceptor specificity revealed that GlcAT-I was selective toward Galbeta1,3Gal (referred to as Gal2-Gal1), whereas GlcAT-P presented a broader profile. To understand the molecular basis of acceptor substrate recognition, we constructed mutants and chimeric enzymes based on multiple sequence alignment and structural information. The drastic effect of mutations of Glu227, Arg247, Asp252, and Glu281 on GlcAT-I activity indicated a key role for the hydrogen bond network formed by these four conserved residues in dictating Gal2 binding. Investigation of GlcAT-I determinants governing Gal1 recognition showed that Trp243 could not be replaced by its counterpart Phe in GlcAT-P. This result combined with molecular modeling provided evidence for the importance of stacking interactions with Trp at position 243 in the selectivity of GlcAT-I toward Galbeta1,3Gal. Mutation of Gln318 predicted to be hydrogen-bonded to 6-hydroxyl of Gal1 had little effect on GlcAT-I activity, reinforcing the role of Trp243 in Gal1 binding. Substitution of Phe245 in GlcAT-P by Ala selectively abolished Galbeta1,3Gal activity, also highlighting the importance of an aromatic residue at this position in defining the specificity of GlcAT-P. Finally, substituting Phe245, Val320, or Asn321 in GlcAT-P predicted to interact with N-acetylglucosamine (GlcNAc), by their counterpart in GlcAT-I, moderately affected the activity toward the reference substrate of GlcAT-P, N-acetyllactosamine, indicating that its active site tolerates amino acid substitutions, an observation that parallels its promiscuous substrate profile. Taken together, the data clearly define key residues governing the specificity of beta1,3-glucuronosyltransferases.  相似文献   

9.
The Bacillus subtilis CwlC and the Bacillus polymyxa var. colistinus CwlV are the cell wall lytic N-acetylmuramoyl-l-alanine amidases in the CwlB (LytC) family. Deletion in the CwlC amidase from the C terminus to residue 177 did not change the amidase activity. However, when the deletion was extended slightly toward the N terminus, the amidase activity was entirely lost. Further, the N-terminal deletion mutant without the first 19 amino acids did not have the amidase activity. These results indicate that the N-terminal half (residues 1-176) of the CwlC amidase, the region homologous to the truncated CwlV (CwlVt), is a catalytic domain. Site-directed mutagenesis was performed on 20 highly conserved amino acid residues within the catalytic domain of CwlC. The amidase activity was lost completely on single amino acid substitutions at two residues (Glu-24 and Glu-141). Similarly, the substitution of the two glutamic acid residues (E26Q and E142Q) of the truncated CwlV (CwlV1), which corresponded to Glu-24 and Glu-141 of CwlC, was critical to the amidase activity. The EDTA-treated CwlV1 did not have amidase activity. The amidase activity of the EDTA-treated CwlV1 was restored by the addition of Zn2+, Mn2+, and Co2+ but not by the addition of Mg2+ and Ca2+. These results suggest that the amidases in the CwlB family are zinc amidases containing two glutamic acids as catalytic residues.  相似文献   

10.
Accurate random coil alpha-proton chemical shift values are essential for precise protein structure analysis using chemical shift index (CSI) calculations. The current study determines the chemical shift effects of pH, urea, peptide length and neighboring amino acids on the alpha-proton of Ala using model peptides of the general sequence GnXaaAYaaGn, where Xaa and Yaa are Leu, Val, Phe, Tyr, His, Trp or Pro, and n = 1-3. Changes in pH (2-6), urea (0-1M), and peptide length (n = 1-3) had no effect on Ala alpha-proton chemical shifts. Denaturing concentrations of urea (8M) caused significant downfield shifts (0.10 +/- 0.01 ppm) relative to an external DSS reference. Neighboring aliphatic residues (Leu, Val) had no effect, whereas aromatic amino acids (Phe, Tyr, His and Trp) and Pro caused significant shifts in the alanine alpha-proton, with the extent of the shifts dependent on the nature and position of the amino acid. Smaller aromatic residues (Phe, Tyr, His) caused larger shift effects when present in the C-terminal position (approximately 0.10 vs. 0.05 ppm N-terminal), and the larger aromatic tryptophan caused greater effects in the N-terminal position (0.15 ppm vs. 0.10 C-terminal). Proline affected both significant upfield (0.06 ppm, N-terminal) and downfield (0.25 ppm, C-terminal) chemical shifts. These new Ala correction factors detail the magnitude and range of variation in environmental chemical shift effects, in addition to providing insight into the molecular level interactions that govern protein folding.  相似文献   

11.
The muscle isoform of carnitine palmitoyltransferase I (M-CPTI) is 30- to 100-fold more sensitive to malonyl CoA inhibition than the liver isoform (L-CPTI). We have previously shown that deletion of the first 28 N-terminal amino acid residues in M-CPTI abolished malonyl CoA inhibition and high-affinity binding [Biochemistry 39 (2000) 712-717]. To determine the role of specific residues within the first 28 N-terminal amino acids of human heart M-CPTI on malonyl CoA sensitivity and binding, we constructed a series of substitution mutations and a mutant M-CPTI composed of deletion 18 combined with substitution mutations V19A, L23A, and S24A. All mutants had CPT activity similar to that of the wild type. A change of Glu3 to Ala resulted in a 60-fold decrease in malonyl CoA sensitivity and loss of high-affinity malonyl CoA binding. A change of His5 to Ala in M-CPTI resulted in only a 2-fold decrease in malonyl CoA sensitivity and a significant loss in the low- but not high-affinity malonyl CoA binding. Deletion of the first 18 N-terminal residues combined with substitution mutations V19A, L23A, and S24A resulted in a mutant M-CPTI with an over 140-fold decrease in malonyl CoA sensitivity and a significant loss in both high- and low-affinity malonyl CoA binding. This was further confirmed by a combined four-residue substitution of Glu3, Val19, Leu23, and Ser24 with alanine. Our site-directed mutagenesis studies demonstrate that Glu3, Val19, Leu23, and Ser24 in M-CPTI are important for malonyl CoA inhibition and binding, but not for catalysis.  相似文献   

12.
Tryptic peptides which account for all five cysteinyl residues in ribulosebisphosphate carboxylase/oxygenase from Rhodospirillum rubrum have been purified and sequenced. Collectively, these peptides contain 94 of the approximately 500 amino acid residues per molecule of subunit. Due to one incomplete cleavage at a site for trypsin and two incomplete chymotryptic-like cleavages, eight major radioactive peptides (rather than five as predicted) were recovered from tryptic digests of the enzyme that had been carboxymethylated with [3H]iodoacetate. The established sequences are: GlyTyrThrAlaPheValHisCys1Lys TyrValAspLeuAlaLeuLysGluGluAspLeuIleAla GlyGlyGluHisValLeuCys1AlaTyr AlaGlyTyrGlyTyrValAlaThrAlaAlaHisPheAla AlaGluSerSerThrGlyThrAspValGluValCys1 ThrThrAsxAsxPheThrArg AlaCys1ThrProIleIleSerGlyGlyMetAsnAla LeuArg ProPheAlaGluAlaCys1HisAlaPheTrpLeuGly GlyAsnPheIleLys In these peptides, radioactive carboxymethylcysteinyl residues are denoted with asterisks and the sites of incomplete cleavage with vertical wavy lines. None of the peptides appear homologous with either of two cysteinyl-containing, active-site peptides previously isolated from spinach ribulosebisphosphate carboxylase/oxygenase.  相似文献   

13.
G Cho  J Kim  H M Rho    G Jung 《Nucleic acids research》1995,23(15):2980-2987
To localize the DNA binding domain of the Saccharomyces cerevisiae Ars binding factor 1 (ABF1), a multifunctional DNA binding protein, plasmid constructs carrying point mutations and internal deletions in the ABF1 gene were generated and expressed in Escherichia coli. Normal and mutant ABF1 proteins were purified by affinity chromatography and their DNA binding activities were analyzed. The substitution of His61, Cys66 and His67 respectively, located in the zinc finger motif in the N-terminal region (amino acids 40-91), eliminated the DNA binding activity of ABF1 protein. Point mutations in the middle region of ABF1, specifically at Leu353, Leu399, Tyr403, Gly404, Phe410 and Lys434, also eliminated or reduced DNA binding activity. However, the DNA binding activity of point mutants of Ser307, Ser496 and Glu649 was the same as that of wild-type ABF1 protein and deletion mutants of amino acids 200-265, between the zinc finger region and the middle region (residues 323-496) retained DNA binding activity. As a result, we confirmed that the DNA binding domain of ABF1 appears to be bipartite and another DNA binding motif, other than the zinc finger motif, is situated between amino acid residues 323 and 496.  相似文献   

14.
The three-dimensional model of human thiopurine methyltransferase (hTPMT) was constructed by molecular modeling. A multiple alignment of AdoMet dependent methyltransferases based on a structural superposition of the AdoMet binding domain of Hhai, TaqI and rCOMT was used in the modeling procedure. The reliability of the model was examined by comparing its conformation and packing properties with those of Hhai, TaqI and rCOMT and structures in the PDB-database. The examined criteria indicated a reliable model structure. The model gave insight into the structural effects of naturally occurring mutations of the hTPMT allele, and was used to characterize the ligand interactions of the protein. The residues Gln42 and Glu91 were predicted to participate in AdoMet binding through H-bond interactions whereas Phe146 participates through Van der Waal interaction. The cationic methyl-sulphonium group of AdoMet was located close to the aromatic residue Phe40. The model also indicated that substrates interact with hTPMT situated in a pocket consisting of the hydrophobic residues Phe40, Met148, Val184, Val220 and the charged residues Lys145, Glu218, Lys219. These residues were also included in a predictive explanation for the inhibitor/substrate preference of the enzyme. The most frequent of naturally occurring mutations was predicted to cause alterations on the surface of the protein with minor/none structural consequences. The mutation Ala80-Pro seemed directly to cause an inactive enzyme by disrupting the structure of the binding site of AdoMet.Electronic Supplementary Material available.  相似文献   

15.
To better understand the structural determinants of the physical-chemical and the biological properties of Ac-18A-NH(2) (acetyl-AspTrpLeuLysAlaPheTyrAspLysValAlaGluLysLeuLysGluAlaPhe-amide), we have determined its structure in 50% (v/v) trifluroethanol (TFE-d(3))/water mixture (5 mM potassium phosphate, pH 5.5, 310K) using two-dimensional proton NMR spectroscopy. Stereospecific assignments have been made for C(beta)H protons (all the residues except Ala and Val) and gammaCH(3) (Val) groups. Nuclear Overhauser effects are observed between the nonpolar side chains spaced at (i) and (i + 4) position in the primary sequence, e.g., Trp2 and Phe6, and Phe6 and Val10. This suggests that in addition to N-terminal acetyl and C-terminal amide groups, the amphipathic alpha helical structure of Ac-18A-NH(2) is further stabilized by interactions between the hydrophobic residues on the nonpolar face of the helix.  相似文献   

16.
The active site of thermolysin is composed of one zinc ion and five polypeptide regions [N-terminal sheet (Asn112-Trp115), alpha-helix 1 (Val139-Thr149), C-terminal loop 1 (Asp150-Gly162), alpha-helix 2 (Ala163-Val176) and C-terminal loop 2 (Gln225-Ser234)]. To explore their catalytic roles, we introduced single amino-acid substitutions into these regions by site-directed mutagenesis and examined their effects on the activity and stability. Seventy variants, in which one of the twelve residues (Ala113, Phe114, Trp115, Asp150, Tyr157, Gly162, Ile168, Ser169, Asp170, Asn227, Val230 and Ser234) was replaced, were produced in Escherichia coli. The hydrolytic activities of thermolysin for N-[3-(2-furyl)acryloyl]-Gly-l-Leu amide (FAGLA) and casein revealed that the N-terminal sheet and alpha-helix 2 were critical in catalysis and the C-terminal loops 1 and 2 were in substrate recognition. Twelve variants were active for both substrates. In the hydrolysis of FAGLA and N-carbobenzoxy-L-Asp-L-Phe methyl ester, the k(cat)/K(m) values of the D150E (in which Asp150 is replaced with Glu) and I168A variants were 2-3 times higher than those of the wild-type (WT) enzyme. Thermal inactivation of thermolysin at 80 degrees C was greatly suppressed with the D150H, D150W, I168A, I168H, N227A, N227H and S234A. The evidence might provide the insights into the activation and stabilization of thermolysin.  相似文献   

17.
An alpha-helix terminates when the virtual extension of its most hydrophobic, longitudinal strip containing Leu, Ile, Val, Phe, and Met lacks those residues. In each of 247 helices a template was fitted to maximize the mean hydrophobicity of positions forming a longitudinal strip-of-helix. The template was then extended into sequences beyond the ends of the helices. Leu, Ile, Val, Phe, and Met occurred in positions in the longitudinal strip-of-helix at an increased frequency (p less than 0.001), but in the first and second positions beyond either end of each true helix, they occurred at the same frequency as for their empirical distribution over all the proteins. Excesses of Asp and Glu were found in the N-terminal loop, and of Arg, His, and Lys in specific positions about the C terminus of helices. The longitudinal hydrophobic strip, the smallest amino acid in that strip, and charged amino acids in that strip, related to rotational and longitudinal orientation of alpha-helices in 15 proteins. Adjacent helices generally crossed through their longitudinal hydrophobic strips. They usually crossed through the smallest residue in the strip. Charged residues, when they occurred in the strips, were excluded from the crossing regions.  相似文献   

18.
 An enzymatically active monomeric analog of human copper,zinc superoxide dismutase (SOD) was produced by replacing four hydrophobic residues at the dimer interface of wild-type SOD (WT) with hydrophilic residues in a manner which has maintained the overall protein charge (i.e., Phe50Glu, Gly51Glu, Val148Lys, Ile151Lys). This analog has been characterized by (1) molecular weight determination, (2) several spectroscopic techniques probing catalytic site geometry and (3) enzymatic activity measurements at various ionic strengths. At physiological ionic strength the present monomer has sizable activity being five times that of a previously reported monomeric analog carrying only two of these substitutions with an overall charge two units more negative than WT (i.e., Phe50Glu, Gly51Glu). Unlike the catalytic activity of the latter analog, this one reveals an ionic strength dependency like that of WT. Enzymatic behavior is discussed with regard to factors affecting substrate diffusion towards the catalytic site. Received: 11 October 1996 / Accepted: 24 February 1997  相似文献   

19.
Lee JE  Luong W  Huang DJ  Cornell KA  Riscoe MK  Howell PL 《Biochemistry》2005,44(33):11049-11057
5'-Methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) is important in a number of cellular functions such as polyamine biosynthesis, methionine salvaging, biological methylation, and quorum sensing. The nucleosidase is found in many microbes but not in mammalian systems, thus making MTAN a broad-spectrum antimicrobial drug target. Substrate binding and catalytic residues were identified from the crystal structure of MTAN complexed with 5'-methylthiotubercidin [Lee, J. E., Cornell, K. A., Riscoe, M. K. and Howell, P. L. (2003) J. Biol. Chem. 278 (10) 8761-8770]. The roles of active site residues Met9, Glu12, Ile50, Ser76, Val102, Phe105, Tyr107, Phe151, Met173, Glu174, Arg193, Ser196, Asp197, and Phe207 have been investigated by site-directed mutagenesis and steady-state kinetics. Mutagenesis of residues Glu12, Glu174, and Asp197 completely abolished activity. The location of Asp197 and Glu12 in the active site is consistent with their having a direct role in enzyme catalysis. Glu174 is suggested to be involved in catalysis by stabilizing the transition state positive charge at the O3', C2', and C3' atoms and by polarizing the 3'-hydroxyl to aid in the flow of electrons to the electron withdrawing purine base. This represents the first indication of the importance of the 3'-hydroxyl in the stabilization of the transition state. Furthermore, mutation of Arg193 to alanine shows that the nucleophilic water is able to direct its attack without assistance from the enzyme. This mutagenesis study has allowed a reevaluation of the catalytic mechanism.  相似文献   

20.
Muscarinic acetylcholine receptors comprise a family of G-protein-coupled receptors that display differential localization in polarized epithelial cells. We identify a seven-residue sequence, Ala(275)-Val(281), in the third intracellular loop of the M(3) muscarinic receptor that mediates dominant, position-independent basolateral targeting in Madin-Darby canine kidney cells. Mutational analyses identify Glu(276), Phe(280), and Val(281) as critical residues within this sorting motif. Phe(280) and Val(281) comprise a novel dihydrophobic sorting signal as mutations of either residue singly or together with leucine do not disrupt basolateral targeting. Conversely, Glu(276) is required and cannot be substituted with alanine or aspartic acid. A 19-amino acid peptide representing the M(3) sorting signal and surrounding sequence was analyzed via two-dimensional nuclear magnetic resonance spectroscopy. Solution structures show that Glu(276) resides in a type IV beta-turn and the dihydrophobic sequence Phe(280)Val(281) adopts either a type I or IV beta-turn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号