首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glucose-6-phosphatase is primarily a liver and kidney enzyme. This enzyme was studied in various tumors, however, glucose-6-phosphatase activity was found only in tumors of liver, kidney, or adrenal origin. Glucose-6-phosphatase activity was useful in identifying the tissue origin of extrarenal Wilms'. Metastatic tumors within the liver or kidney that originated from other tissues did not have glucose-6-phosphatase activity. Therefore, it is suggested that glucose-6-phosphatase can be used as a specific enzyme marker for tumors of liver and kidney origin.  相似文献   

2.
The effects of 4-weeks ethanol application (20% ethanol, w/w, 2 g X kg-1 on the alcohol oxidizing systems and gluconeogenic enzyme activities of the liver in guinea pigs kept in the cold (+4 degrees C) and at room temperature (+20 degrees C) were studied. The controls were guinea pigs reared at room temperature or in a cold environment without ethanol. The study showed a significant increase (1.5-fold) in liver microsomal cytochrome P-450 after chronic ethanol treatment at room temperature, but not in a cold environment. Microsomal NADPH oxidase activity did not significantly change in any group. Ethanol treatment in a cold environment resulted in a significant increase in liver mitochondrial cytochromes, aa3 and c+c1, and at room temperature in cyt aa3. The activities of total liver homogenate alcohol dehydrogenase or catalase did not change after chronic ethanol treatment. The activity of liver fructose-1.6-diphosphatase showed a significant ethanol induced decrease at room temperature, an effect not observed in the cold environment. Ethanol increased glucose-6-phosphatase activity in the cold, but not at room temperature. In conclusion, the stimulation of liver mitochondrial cytochromes and microsomal cyt P-450 as a consequence of chronic ethanol treatment indicated an increased oxidation capacity for ethanol. The stimulation of glucose-6-phosphatase in a cold environment might be responsible for increasing glucose for heat production after chronic ethanol treatment in cold adapted animals.  相似文献   

3.
Methylthioadenosine sulfoxide (MTAS), an oxidized derivative of the cell toxic metabolite methylthioadenosine has been used in elucidating the relevance of an interrelationship between the catalytic behavior and the conformational state of hepatic glucose-6-phosphatase and in characterizing the transmembrane orientation of the integral unit in the microsomal membrane. The following results were obtained: (1) Glucose 6-phosphate hydrolysis at 37 degrees C is progressively inhibited when native microsomes are treated with MTAS at 37 degrees C. In contrast, glucose 6-phosphate hydrolysis of the same MTAS-treated microsomes assayed at 0 degrees C is not inhibited. (2) Subsequent modification of the MTAS-treated microsomes with Triton X-114 reveals that glucose-6-phosphatase assayed at 37 degrees C as well as at 0 degrees C is inhibited. (3) Although excess reagent is separated by centrifugation and the MTAS-treated microsomes diluted with buffer before being modified with Triton the temperature-dependent effect of MTAS on microsomal glucose-6-phosphatase is not reversed at all. (4) In native microsomes MTAS is shown to inhibit glucose-6-phosphatase noncompetitively. The subsequent Triton-modification of the MTAS-treated microsomes, however, generates an uncompetitive type of inhibition. (5) Preincubation of native microsomes with MTAS completely prevents the inhibitory effect of 4,4'-diisothiocyanostilbene 2,2'-disulfonate (DIDS) as well as 4,4'-diazidostilbene 2,2'-disulfonate (DASS) on glucose-6-phosphatase. (6) Low molecular weight thiols and tocopherol protect the microsomal glucose-6-phosphatase against MTAS-induced inhibition. (7) Glucose-6-phosphatase solubilized and partially purified from rat liver microsomes is also affected by MTAS in demonstrating the same temperature-dependent behavior as the enzyme of MTAS-treated and Triton-modified microsomes. From these results we conclude that MTAS modulates the enzyme catalytic properties of hepatic glucose-6-phosphatase by covalent modification of reactive groups of the integral protein accessible from the cytoplasmic surface of the microsomal membrane. The temperature-dependent kinetic behavior of MTAS-modulated glucose-6-phosphatase is interpreted by the existence of distinct catalytically active enzyme conformation forms. Detergent-induced modification of the adjacent hydrophobic microenvironment additionally generates alterations of the conformational state leading to changes of the kinetic characteristics of the integral enzyme.  相似文献   

4.
Indole glucosinolates, present in cruciferous vegetables have been investigated for their putative pharmacological properties. The current study was designed to analyse whether the treatment of the indole glucosinolates—indole-3-carbinol (I3C) and its metabolite 3,3′-diindolylmethane (DIM) could alter the carbohydrate metabolism in high-fat diet (HFD)-induced C57BL/6J mice. The plasma glucose, insulin, haemoglobin (Hb), glycosylated haemoglobin (HbA1c), glycogen and the activities of glycolytic enzyme (hexokinase), hepatic shunt enzyme (glucose-6-phosphate dehydrogenase), gluconeogenic enzymes (glucose-6-phosphatase and fructose-1,6-bisphosphatase) were analysed in liver and kidney of the treated and HFD mice. Histopathological examination of liver and pancreases were also carried out. The HFD mice show increased glucose, insulin and HbA1c and decreased Hb and glycogen levels. The elevated activity of glucose-6-phosphatase and fructose-1,6-bisphosphatase and subsequent decline in the activity of glucokinase and glucose-6-phosphate dehydrogenase were seen in HFD mice. Among treatment groups, the mice administered with I3C and DIM, DIM shows decreased glucose, insulin and HbA1c and increased Hb and glycogen content in liver when compared to I3C, which was comparable with the standard drug metformin. The similar result was also obtained in case of carbohydrate metabolism enzymes; treatment with DIM positively regulates carbohydrate metabolic enzymes by inducing the activity of glucokinase and glucose-6-phosphate dehydrogenase and suppressing the activity of glucose-6-phosphatase and fructose-1,6-bisphosphatase when compared to I3C, which were also supported by our histopathological observations.  相似文献   

5.
K T Sein  N Chu 《Enzyme》1979,24(1):72-74
Mouse liver and kidney glucose-6-phosphatase levels were found to be decreased 24 h after administration of various doses of carbon tetrachloride (CCl4) when compared to controls. Liver glucose-6-phosphatase levels were always decreased to a greater extent than the kidney enzyme in mice given the same amount of CCl4. Administration of p,p'-1,1,1,-trichloro-2,2-bis (p-chlorophenyl) ethane (p,p'-DDT) to mice did not significantly alter the glucose-6-phosphatase levels of liver or kidney.  相似文献   

6.
A method is described for the incorporation of a microsomal rat liver fraction into polyacrylamide films without significant loss of its glucose-6-phosphatase activity. The enzymatic activity was completely lost when the films were prepared with ammonium persulfate as initiator of the polymerization as previously described for alkaline phosphatase, but modification of this method showed that about 90% of the glucose-6-phosphatase activity could be retained. The enzyme in the films prepared with the new method was completely inhibited by alloxan, HgCl2, and preincubation in 0.05 M acetate buffer (pH 5.0) at 37 degrees C, as determined biochemically. Similar results were obtained for the enzyme in films determined histochemically according to the lead method of Wachstein and Meisel. In this respect the behavior of the incorporated enzyme is similar to that in suspension. Films fixed with 1.5% glutaraldehyde showed rapid inactivation of glucose-6-phosphatase. There was good correlation between the biochemical and histochemical activity determined after fixation. A method to embed polyacrylamide films in Epon for electron-microscopical investigation is also described. Dimethyl sulfoxide was used as the dehydrating agent instead of ethanol/acetone.  相似文献   

7.
The thermal stability of glucose-6-phosphatase in rat liver microsomes was examined in untreated and cholate-treated microsomes. Activity of the enzyme was measured with both glucose-6-P and mannose-6-P as substrates. Heat treatment did not cause glucose-6-phosphatase activity to decline to zero with a single rate constant in untreated microsomes. Instead, heat treatment produced an enzyme with a small residual activity that was stable. The residual level of activity was not stimulated by addition of detergent. In untreated microsomes the energies of activation for the processes of decay were different for glucose-6-phosphatase and mannose-6-phosphatase activities, suggesting that the rate-limiting steps for the hydrolysis of these compounds were different. Treatment of microsomes with detergent increased the rate constants for the thermal decay of glucose-6-phosphatase by about 150 times, and, in contrast to untreated microsomes, glucose-6-phosphatase and mannose-6-phosphatase decayed to zero with a single rate constant in cholate-treated microsomes. Also, rate constants for thermal inactivation of glucose-6-phosphatase and mannose-6-phosphatase were the same in cholate-treated microsomes. Removal of cholate increased the stability of glucose-6-phosphatase but did not regenerate the form of the enzyme present in untreated microsomes. The data for the stability of glucose-6-phosphatase under different conditions provide evidence that the enzyme can exist in at least five different stable states that are enzymatically active.  相似文献   

8.
The effects of carbohydrate sources/complexity and rearing temperature on hepatic glucokinase (GK) and glucose-6-phosphatase (G6Pase) activities and gene expression were studied in gilthead sea bream juveniles. Two isonitrogenous (50% crude protein) and isolipidic (19% crude lipids) diets were formulated to contain 20% waxy maize starch or 20% glucose. Triplicate groups of fish (63.5 g initial body weight) were fed each diet to near satiation during four weeks at 18 degrees C or 25 degrees C. Growth, feed intake, feed efficiency and protein efficiency ratio, were higher at the higher water temperature. At each water temperatures fish growth and feed efficiency were higher with the glucose diet. Plasma glucose levels were not influenced by water temperature but were higher in fish fed the glucose diet. Hepatosomatic index and liver glycogen were higher at the lower water temperature and within each water temperature in fish fed the glucose diet. No effect of water temperature on enzymes activities was observed, except for hexokinase and GK which were higher at 25 degrees C. Hepatic hexokinase and pyruvate kinase activities were not influenced by diet composition, whereas glucose-6-phosphate dehydrogenase activity was higher in fish fed the glucose diet. Higher GK activity was observed in fish fed the glucose diet. GK gene expression was higher at 25 degrees C in fish fed the waxy maize starch diet while in fish fed the glucose diet, no temperature effect on GK gene expression was observed. Hepatic G6Pase activities and gene expression were neither influenced by dietary carbohydrates nor water temperature. Overall, our data suggest that in gilthead sea bream juveniles hepatocytes dietary carbohydrate source and temperature affect more intensively GK, the enzyme responsible for the first step of glucose uptake, than G6Pase the enzyme involved in the last step of glucose hepatic release.  相似文献   

9.
The effects of carbohydrate sources/complexity and rearing temperature on hepatic glucokinase (GK) and glucose-6-phosphatase (G6Pase) activities and gene expression were studied in gilthead sea bream juveniles. Two isonitrogenous (50% crude protein) and isolipidic (19% crude lipids) diets were formulated to contain 20% waxy maize starch or 20% glucose. Triplicate groups of fish (63.5 g initial body weight) were fed each diet to near satiation during four weeks at 18 degrees C or 25 degrees C. Growth, feed intake, feed efficiency and protein efficiency ratio, were higher at the higher water temperature. At each water temperatures fish growth and feed efficiency were higher with the glucose diet. Plasma glucose levels were not influenced by water temperature but were higher in fish fed the glucose diet. Hepatosomatic index and liver glycogen were higher at the lower water temperature and within each water temperature in fish fed the glucose diet. No effect of water temperature on enzymes activities was observed, except for hexokinase and GK which were higher at 25 degrees C. Hepatic hexokinase and pyruvate kinase activities were not influenced by diet composition, whereas glucose-6-phosphate dehydrogenase activity was higher in fish fed the glucose diet. Higher GK activity was observed in fish fed the glucose diet. GK gene expression was higher at 25 degrees C in fish fed the waxy maize starch diet while in fish fed the glucose diet, no temperature effect on GK gene expression was observed. Hepatic G6Pase activities and gene expression were neither influenced by dietary carbohydrates nor water temperature. Overall, our data suggest that in gilthead sea bream juveniles hepatocytes dietary carbohydrate source and temperature affect more intensively GK, the enzyme responsible for the first step of glucose uptake, than G6Pase the enzyme involved in the last step of glucose hepatic release.  相似文献   

10.
Synopsis A glucose-6-phosphate-hydrolyzing enzyme was localized histochemically in a variety of secretory cells of the rat. Cells exhibiting enzyme activity include thyroid and parafollicular cells, parathyroid and secretory epithelium of the trachea, bronchi and bronchioles. Clusters of ganglion cells underlying these organs are also heavily reactive. In its cytoplasmic staining pattern and its ability to hydrolyze glucose-6-phosphate, the enzyme activity localized in these secretory cells appears similar to glucose-6-phosphatase found in liver and kidney.  相似文献   

11.
Growth hormone (GH), thyroxine (T4) and insulin were injected, in utero into 20.5 day-old rat fetuses to study the effects of these hormones on the activities of liver NADPH dehydrogenase, glucose-6-phosphatase and glycogen phosphorylase. It was found that at 21.5 days of gestation, GH increases the fetal liver glucose-6-phosphatase activity and decreases the liver glycogen phosphorylase activity. T4 treatment augments the activity of NADPH dehydrogenase even at 0.3% of the dose shown previously to produce premature elevation of activity. Prior to this experiment T4 in large doses has been shown to be capable of elevating glucose-6-phosphatase. However, at the lower T4 dose used, no treatment effect was observed. The fetal rat liver is responsive to insulin at 21.5 days and insulin was able to depress glucose-6-phosphatase activity. Thereby, showing that the influence of insulin on this enzyme begins prior to birth instead of just subsequent to birth.  相似文献   

12.
We have developed a method for histochemical demonstration of a wide range of enzymes in freeze-dried, resin-embedded tissue. Freeze-dried tissue specimens were embedded without fixation at low temperature (4 degrees C or -20 degrees C) in glycol methacrylate resin or LR Gold resin. Enzyme activity was optimally preserved by embedding the freeze-dried tissue in glycol methacrylate resin. All enzymes studied (oxidoreductases, esterases, peptidases, and phosphatases), except for glucose-6-phosphatase, were readily demonstrated. The enzymes displayed high activity and were accurately localized without diffusion when tissue sections were incubated in aqueous media, addition of colloid stabilizers to the incubating media not being required. Freeze-drying combined with low-temperature resin embedding permits the demonstration of a wide range of enzymes with accurate enzyme localization, high enzyme activity, and excellent tissue morphology.  相似文献   

13.
Thermotropic effects on the kinetics of glucose-6-phosphatase (D-glucose-6-phosphate phosphohydrolase, EC 3.1.3.9) activity of hepatic microsomes from normal and alloxan-diabetic rat liver were investigated by determining V, Km and Ki (substrate inhibition) values. Influence of deoxycholate (0.1%) and 1-anilino-8-naphthalene sulfonate (2.5 mM) on the kinetics was also evaluated. 1. Substrate inhibition occurred at 0.06 M for the enzyme from normal rats and at 0.0-0.025 M for the enzyme from diabetic rats. 2. The enzyme from diabetic rats showed a transition that extended between 22.7 and 27 degrees C in the Arrhenius plot (log V vs. T-1) instead of at 19.5 degrees C. 3. Deoxycholate increased the V value of both enzymes without affecting substrate inhibition at all the temperatures but did not completely abolish the transition in the Arrhenius plot of the enzyme from diabetic rats. 4. 1-Anilino-8-naphthalene sulfonate eliminated substrate inhibition and activated the enzyme of normal rats above 27.5 degrees C by increasing both V and Km values. Below this temperature, the enzyme showed biphasic or allosteric kinetics. At low substrate concentrations it was activated as both V and Km values were increased. The enzyme from diabetic rats, on the other hand, was activated at all the temperatures and exhibited linear kinetics. 5. Binding of 1-anilino-8-naphthalene sulfonate to the microsomal fraction increased with decreasing temperature as revealed by the increase of relative fluorescence. The microsomal fraction of diabetic rats showed a more anomalous fluorescence response between 13-18 degrees C. 6. Enthalpy changes for glucose 6-phosphate binding to the inhibition site were slightly larger than binding to the active site. Calculated entropies of activation for transition state complex of glucose-6-phosphatase reaction were fairly large and negative. The free energy of activation (28-30 kcal/mol) was independent of temperature and experimental conditions. 7. In the microsomal fraction (total as well as rough), phospholipid content and fatty acid unsaturation index of phospholipids were decreased after diabetes. The level of free cholesterol remained unchanged but the molar ratio of cholesterol to phospholipid increased. The different thermal response and 1-anilino-8-naphthalene sulfonate interaction to the enzyme from diabetic rat and liver could be ascribed to the altered lipid environment of the enzyme on the endoplasmic reticulum membrane.  相似文献   

14.
The transport model of glucose-6-phosphatase (EC 3.1.3.9) was recently challenged by a report that detergent treatment had no effect on the presteady state kinetics of glucose-6-P hydrolysis catalyzed at 0 degree C by the enzyme in liver microsomes previously frozen in 0.25 M mannitol (Zakim, D., and Edmondson, D. E. (1982) J. Biol. Chem. 257, 1145-1148). The lack of response to detergent is shown to be the expected consequence of the conditions used in the presteady state measurements. First, when the assay temperature was reduced from 30 to 0 degree C the depression in the glucose-6-P phosphohydrolase activity of intact microsomes (i.e. the system) was much greater than that of fully disrupted microsomes (i.e. enzyme). This indicates that temperature influences transport much more than hydrolysis of glucose-6-P. As a result, the contribution of a small fraction of enzyme associated with disrupted structures is markedly exaggerated, so it becomes the predominant hydrolytic activity before detergent treatment. Second, freezing microsomes in 0.25 M mannitol caused such extensive disruption that all of the activity manifest at 0 degree C could be attributed to enzyme in disrupted structures. The present findings underscore the importance of assessing the state of intactness of "untreated" microsomes and quantifying the contribution of the disrupted component in kinetic analyses of the glucose-6-phosphatase system. The proposition that the detergent-induced changes in the kinetic properties of glucose 6-phosphatase represent removal of constraints imposed on the enzyme by the membrane environment rather than increased access of enzyme to substrate is critically analyzed.  相似文献   

15.
The aim of this work was to elucidate if the previous results observed in hepatic glucokinase (GK) and glucose-6-phosphatase (G6Pase) activities in European sea bass and gilthead sea bream are due to temperature per se or to differences in feed intake at different water temperatures. For that purpose triplicate groups of fish (30 g initial body weight) were kept at 18 degrees C or 25 degrees C during two weeks and fed a fixed daily ration of a glucose-free or 20% glucose diet. At the end of the experimental period, plasma glucose levels in both species were not influenced by water temperature but were higher in fish fed the glucose diet. Higher hepatic GK activity was observed in the two fish species fed the glucose diet than the glucose-free diet. In the glucose fed groups, GK activity was higher at 25 degrees C than at 18 degrees C. Glucose-6-phosphatase activities in both species were not influenced by water temperature. In European sea bass and in contrast to gilthead sea bream it was observed an effect of dietary composition on G6Pase activities with surprising higher activities recorded in fish fed the glucose diet than in fish fed the glucose-free diet. Overall, our data strongly suggest that European sea bass and gilthead sea bream are apparently capable to strongly regulate glucose uptake by the liver but not glucose synthesis, which is even enhanced by dietary glucose in European sea bass. Within limits, increasing water temperature enhances liver GK but not G6Pase activities, suggesting that both species are more able to use dietary carbohydrates at higher rearing temperatures.  相似文献   

16.
Glucose-6-phosphatase (EC 3.1.3.9) activities were determined in isolated microsomes, cytoplasmic smooth and rough membranes, ribosomes and free cytosol from rat liver undergoing carcinogenesis by diethylnitrosamine (DENA) and compared with cytoplasmic fractions isolated in parallel from healthy animals from the same age.With continuous administration of a low dose of DENA (2.6 mg/kg rat per day for 20 weeks in the drinking water) livers of carcinogen treated rats became heavier than the control livers but the body weight decreased. About 70% of total glucose-6-phosphatase activity could be detected in the microsomal fraction. While there was no significant difference in this activity in both animal groups up to the 4th week, glucose-6-phosphatase of cancerous liver showed a distinct decrease of activity compared with normal liver.During cancer induction this enzyme became more soluble, confirmed by the observation that it was detached from firmer structures of cytoplasm as rough membranes and polysomes and translocated to smooth membranes and the soluble cytoplasmic fraction successively. The corresponding increase in glucose-6-phosphatase activity in the 105 000 g supernatant appears to be due to the loss of enzyme activity in a distinct cytoplasmic membrane fraction. These data strongly suggest that in parallel with alteration of cytoplasmic membrane structures during carcinogen feeding glucose-6-phosphatase is detached from heavier components of the cytoplasm while total activity decreased. Possible mechanisms of these findings are discussed.  相似文献   

17.
Glucose-6-phosphatase (EC 3.1.3.9) activity in human fetal liver remains constant at 8–28 nmoles/min per mg protein from the 8th week of gestation to at least week 28 and this value is approximately 25–35% of that found in the adult. This enzyme activity was well maintained for 2–3 days in organ culture of fetal liver explants. Incubation with dibutyryl cyclic AMP (0.1 mM) and theophylline (0.5 mM) increased glucose-6-phosphatase activity 4–8-fold within 24 h. Theophylline alone was ineffective, but markedly potentiated the effects of dibutyryl cyclic AMP. This increase in enzyme activity was completely abolished by simultaneous incubation with cycloheximide or actinomycin D. Insulin clearly decreased glucose-6-phosphatase activity in control tissues after 24 h incubation and tended to diminish the elevated glucose-6-phosphatase activity which resulted from pre-incubation with dibutyryl cyclic AMP.The smallest specimen obtained (36 mm crown-rump length = 6 weeks gestation) was capable of elevating glucose-6-phosphatase activity more than 3-fold in response to dibutyryl cyclic AMP incubation, suggesting that the human fetal liver has the competence to respond to hormonal agents at a very early stage of development.  相似文献   

18.
Studies of the thermal stability of rat liver glucose-6-phosphatase (EC 3.1.3.9) were carried out to further elevate the proposal that the enzymic activity is the result of the coupling of a glucose-6-P-specific translocase and a nonspecific phosphohydrolase-phosphotransferase. Inactivation was observed when micorsomes were incubated at mild temperatures between pH 6.2 and 5.6. The rate of inactivation increased either with increasing hydrogen ion concentration or temperature. However, no inactivation was seen below 15 degrees in media as low as pH 5 or at neutral pH up to 37 degrees. The thermal stability of the enzyme may be controlled by the physical state of the membrane lipids and the degree of protonation of specific residues in the enzyme protein. Microsomes were exposed to inactivating conditions, and kinetic analyses were made of the glucose-6-P phosphohydrolase activities before and after supplementation to 0.4% sodium taurocholate. The results support the postulate and the kinetic characteristics of a given preparation of intact microsomes are determined by the relative capacities of the transport and catalytic components. Before detergent treatment, inactivation (i.e. a decrease in Vmax) was accompanied by a decrease in Km and a reduction in the fraction of latent activity, whereas only Vmax was depressed in disrupted preparations. The possibility that the inactivating treatments caused concurrent disruption of the microsomal membrane was ruled out. It is concluded that exposures to mild heat in acidic media selectively inactivate the catalytic component of the glucose-6-phosphatase system while preserving an intact permeability barrier and a functional glucose-6-P transport system. Analyses of kinetic data obtained in the present and earlier studies revealed several fundamental mathematical relationships among the kinetic constants describing the glucose-6-P phosphohydrolase activities of intact (i.e. the "system") and disrupted microsomes (i.e. the catalytic component). The quantitative relationships appear to provide a means to calculate a velocity constant (VT) and a half-saturation constant (KT) for glucose-6-P influx. The well documented, differential responses of the rat liver glucose-6-phosphatase system induced by starvation, experimental diabetes, or cortisol administration were analyzed in terms of these relationships. The possible influences of cisternal inorganic phosphate on the apparent kinetic constants of the intact system are discussed.  相似文献   

19.
The role of phospholipids in the glucose-6-phosphatase system, including glucose-6-P phosphohydrolase and glucose-6-P translocase, was studied in rat liver microsomes by using phospholipases C and detergents. In the time course experiments on detergent exposure, the maximal activation of glucose-6-P phosphohydrolase varied according to the nature of the detergent used. On treatment of microsomes with phospholipase C of C. perfringens, the activity of glucose-6-P phosphohydrolase without detergent (i.e. without rupture of translocase activity) was gradually decreased with the progressive hydrolysis of phosphatidylcholine and phosphatidylethanolamine on the microsomal membrane, and was restored by incubation of these microsomes with egg yolk phospholipids. The extent of decrease in this phosphohydrolase activity in the detergent-exposed microsomes (with rupture of translocase activity) also varied depending on the detergent used (Triton X-114 or taurocholate). When 66% of the phosphatidylinositol on the membrane was hydrolyzed by phosphatidylinositol-specific phospholipase C of B. thuringiensis, the inhibition of glucose-6-P phosphohydrolase activity without detergent was very small. Although the inhibition of enzyme activity with detergent was apparently greater than that without detergent, the enzyme activity was stimulated by the breakdown of phosphatidylinositol when the enzyme activity was measured at lower concentration (0.5 mM) of substrate, glucose-6-P. The latency of mannose-6-P phosphohydrolase, a plausible index of microsomal integrity, remained above 70% after the hydrolysis of phosphatidylcholine, phosphatidylethanolamine, or phosphatidylinositol. The results show that the glucose-6-phosphatase system requires microsomal phospholipids for its integrity, suggesting that there exists a close relation between phosphatidylinositol and glucose-6-P translocase.  相似文献   

20.
1. Feeding British United turkeys (BUT) and Nicholas turkeys (NT) diets with varying carbohydrate levels for 24 hr post-hatch resulted in lower hepatic glucose-6-phosphatase activity and higher plasma glucose levels as dietary carbohydrate level was increased. 2. There were no differences between the strains in liver weight or glucose-6-phosphatase activity, but BUT exhibited higher plasma glucose values than did NT at the two highest levels of carbohydrate. Plasma glucose did not differ between strains at the lowest level of carbohydrate or in fasted poults. 3. Blood glucose values were consistently higher in both strains when sampled 1 hr after initial sampling of fasted poults. 4. Both strains were able to maintain the 1 hr blood glucose levels through 24 hr when kept at approximately 37 degrees C. 5. When held at approximately 21 C for the first hour and at approximately 37 degrees C through 24 hr fasted NT were able to maintain the initial blood glucose rise while BUT were not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号