首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A study of the effect of monovalent cations on the steady-state kinetic parameters for the hydrolysis of the synthetic substrate N alpha-benzoyl-L-arginine-p-nitroanilide by activated bovine plasma protein C (APC) has been undertaken. The enzyme displayed a strict requirement for monovalent cations in its expression of amidolytic activity toward this substrate. Analysis of the variation in initial hydrolytic reaction rates, as a function of metal ion concentrations, suggested that at least two cation sites, or classes of sites, were necessary for catalysis to occur. After examination of the rate equations consequential to many different enzymic mechanisms that could account for these kinetic data, a mechanism was developed that fit the great majority of the experimental observations. In this mechanism it is postulated that cations bind to the enzyme in pairs, with a kinetically observable single binding constant, either preceded by or followed by binding of substrate. Catalysis occurs only after the enzyme-(metal cation)2-substrate complex is assembled. Some physical support for this mechanism was obtained upon the discovery that the binding (dissociation) constant for a competitive inhibitor of APC, p-aminobenzamidine, as determined by kinetic methodology, was independent of the concentration of Na+ and Cs+.  相似文献   

2.
The binding isotherms of Mn2+ to bovine plasma protein C (PC), des(1-41)-light chain protein C (GDPC), and activated GDPC (GDAPC) have been measured. PC contains 14-16 total Mn2+ binding sites, a value that is reduced to approximately 7-8 in the presence of NaCl. The average Kd of the latter sites is 230 +/- 30 microM. Upon removal of a 41-residue peptide from the amino terminus of the light chain of PC, and, concomitantly, all of the gamma-carboxyglutamic acid residues, the resulting protein, GDPC, possesses a single Mn2+ site of Kd = 120 +/- 20 microM. Activation of GDPC to GDAPC results in a slight lowering of the Kd for the single Mn2+ binding site to 53 +/- 8 microM, a value that is essentially unchanged in the presence of monovalent cations, a competitive inhibitor of the enzyme, or an active site directed affinity label. The Mn2+ on GDAPC is displaced by Ca2+, suggesting that the protein binding site for these two divalent cations is the same. These studies establish that Mn2+ is a suitable spectroscopic probe for the Ca2+ binding site of GDAPC, and that the divalent cation site is separate from the monovalent cation site(s) and the active site of the enzyme.  相似文献   

3.
Activated bovine plasma protein C (APC) was not reactive with the substrate p-nitrophenyl p-guanidinobenzoate (NPGB) in the absence of cations. In the presence of increasing concentrations of Na+, the acylation rate constant, k2,app, at 7 degrees C, progressively increased from 0.32 +/- 0.03 s-1 at 12.5 mM Na+ to 1.15 +/- 0.10 s-1 at 62.5 mM Na+. A linear dependence of the reciprocal of k2,app with [Na+]-2 was observed, indicating that at least two monovalent cation sites, or classes of sites, are necessary for the catalytic event to occur. From this latter plot, the k2,max for APC catalysis of NPGB hydrolysis, at saturating [Na+] and [NPGB], was calculated to be 1.21 +/- 0.10 s-1, and the Km for Na+ was found to be 21 +/- 3 mM. The dissociation constant, Ks, for NPGB to APC, at 7 degrees C, was not altered as [Na+] was increased, yielding a range of values of 18.5 X 10(-5) to 19.9 X 10(-5) M as [Na+] was varied from 12.5 to 62.5 mM. The deacylation rate constant, k3, for p-guanidinobenzoyl-APC hydrolysis was also independent of [Na+], with a value of (3.8 +/- 1.0) X 10(-3) s-1 in the absence of Na+ or in the presence of concentrations of Na+ up to 200 mM. Identical kinetic behavior was observed when Cs+ was substituted for Na+ in the above enzymic reaction. The pre-steady-state kinetic parameters were calculated according to the same methodology as described above.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The kinetic properties of the activation by monovalent cations of the amidolytic activity of bovine des-1-41 light chain activated protein C have been examined. With the cations Cs+, K+, Li+, and Tl+, a single cation site, or class of sites, has been found to be responsible for the stimulation observed, with kinetic Ka values of 98-110, 180-210, 300-310, and 14-16 mM, respectively. The mechanism proposed for participation of these cations in the enzyme reaction involves an ordered addition, with the binding of cation preceding the binding of the amide substrate. On the other hand, the kinetic properties of this same activation by Na+ are consistent with either two cation sites, or classes of sites, of importance. Once again, however, the mechanism of the reaction appears to be of the ordered type, with cation binding occurring prior to substrate binding.  相似文献   

5.
The effect of the divalent cations Ca2+ and Mn2+ on the amidolytic activity of bovine plasma activated protein C and a limited chymotryptic digestion product, des-1-41-light chain activated protein C, which lacks all of the gamma-carboxyglutamic acid present in activated protein C, has been examined at 30 degrees C. In each case, the enzymic activities were dependent upon the presence of these cations, which exerted their effects primarily through influence on the kcat of the reaction. For both enzymes (E), the mechanism of the reaction was most consistent with a rapid equilibrium, random addition of substrate (S), and a single cation (A), with substrate hydrolysis occurring only with the ternary complex of S.E.A. The divalent cation site of importance was not associated with gamma-carboxyglutamic acid residues and was found to be independent of the monovalent cation sites, which also function to activate the amidolytic and esterolytic activities of these enzymes.  相似文献   

6.
The paramagnetic effect of Mn2+ on the longitudinal relaxation rate (T1)-1 of 205Tl+, when both cations are bound to des-1-41-light chain bovine plasma protein C (GDPC) and its activation product, des-1-41-light chain-activated bovine plasma protein C (GDAPC), has been assessed by 205Tl+ NMR spectroscopy. A substantial shortening of the T1 for Tl+ bound to either protein was observed in the presence of Mn2+, an effect not noted upon substitution of Mn2+ with the diamagnetic cation Ca2+, which is known to bind to these proteins in a similar fashion to Mn2+. This paramagnetic effect was employed to estimate distances between the monovalent and divalent cation sites in these proteins, approximately 6.7 +/- 0.2 A with GDPC and 8.3 +/- 0.2 A in GDAPC. These data suggest that a conformational alteration occurs upon activation of GDPC which leads to an increase in the distance between the monovalent and divalent cation sites.  相似文献   

7.
Inactivation of factor Va (FVa) by activated protein C (APC) is a predominant mechanism in the down-regulation of thrombin generation. In normal FVa, APC-mediated inactivation occurs after cleavage at Arg306 (with corresponding rate constant k'306) or after cleavage at Arg506 (k506) and subsequent cleavage at Arg306 (k306). We have studied the influence of heparin on APC-catalyzed FVa inactivation by kinetic analysis of the time courses of inactivation. Peptide bond cleavage was identified by Western blotting using FV-specific antibodies. In normal FVa, unfractionated heparin (UFH) was found to inhibit cleavage at Arg506 in a dose-dependent manner. Maximal inhibition of k506 by UFH was 12-fold, with the secondary cleavage at Arg306 (k306) being virtually unaffected. In contrast, UFH stimulated the initial cleavage at Arg306 (k'306) two- to threefold. Low molecular weight heparin (Fragmin) had the same effects on the rate constants of FVa inactivation as UFH, but pentasaccharide did not inhibit FVa inactivation. Analysis of these data in the context of the 3D structures of APC and FVa and of simulated APC-heparin and FVa-APC complexes suggests that the heparin-binding loops 37 and 70 in APC complement electronegative areas surrounding the Arg506 site, with additional contributions from APC loop 148. Fewer contacts are observed between APC and the region around the Arg306 site in FVa. The modeling and experimental data suggest that heparin, when bound to APC, prevents optimal docking of APC at Arg506 and promotes association between FVa and APC at position Arg306.  相似文献   

8.
Activated protein C (APC) is a multi-modular anticoagulant serine protease, which degrades factor V/Va and factor VIIIa. Human APC (hAPC) is inhibited by human alpha 1-antitrypsin (AAT), while the bovine enzyme (bAPC) is fully resistant to this serpin. Structural features in the catalytic domains between the two species cause this difference, but detailed knowledge about the causal molecular difference is missing. To gain insight into the APC-AAT interaction and to create a human protein C resistant to AAT inhibition, we have used molecular modeling and site-directed mutagenesis. First, a structural model for bAPC based on the Gla-domainless X-ray structure of hAPC was built. Screening the molecular surface of the human and bovine APC enzymes suggested that a hAPC molecule resistant to AAT inhibition could be constructed by substituting only a few amino acids. We thus produced recombinant hAPC molecules with a single mutation (S173E, the numbering follows the chymotrypsinogen nomenclature), two mutations (E60aS/S61R) or a combination of all these substitutions (E60aS/S61R/S173E). Amidolytic and anticoagulant activities of the three mutant APC molecules were similar to those of wild-type hAPC. Inhibition of wild-type hAPC by AAT was characterized by a second-order rate constant (k2) of 2.71 M-1 s-1. The amino acid substitution at position 173 (S173E mutant) led to partial resistance to AAT (k2 = 0.84 M-1 s-1). The E60aS/S61R mutant displayed mild resistance to AAT inhibition (k2 = 1.70 M-1 s-1), whereas the E60aS/S61R/S173E mutant was inefficiently inactivated by AAT (k2 = 0.40 M-1 s-1). Inhibition of recombinant APC molecules by the serpin protein C inhibitor (PCI) in the presence and absence of heparin was also investigated.  相似文献   

9.
Protein C is a vitamin-K dependent zymogen of the anti-coagulant serine protease activated protein C (APC). In this paper, we report four lines of evidence that APC can activate protein C in pooled normal plasma, and purified protein C. First, the addition of APC to protein C-deficient plasma supplemented with protein C produces a prolongation of the clotting time of plasma that is proportional to the amount of protein C. This behavior was observed with APC from the Chromogenix APC resistance kit (Dia Pharm, Franklin, OH, USA) and from APC derived from the thrombin activation of human protein C (Enzyme Research Laboratories, South Bend, IN, USA). Secondly, using immunoblotting after gel electrophoresis, the disappearance of epitopes for monoclonal antibodies that recognize protein C but not APC indicates a time course for the activation by APC of protein C in pooled normal plasma and protein C purified from plasma. Thirdly, the same time course for the disappearance of protein C specific epitope can be followed using ELISA. Finally, protein C can be activated by APC as indicated by the increase in APC specific synthetic substrate Tryp-Arg-Arg-p nitroaniline hydrolysis. Kinetic data indicate a value of 4.7+/-0.4 mM(-1) s(-1) for the activation of protein C by APC under physiological conditions and in the presence of calcium. These observations document that APC must function not only in the inactivation of activated factors V and VIII, but also in the activation of protein C. This additional action of APC may be important to consider more broadly because of APC in the treatment of sepsis.  相似文献   

10.
Tyrosine phenol-lyase (TPL) from Citrobacter freundii is activated about 30-fold by monovalent cations, the most effective being K(+), NH(4)(+), and Rb(+). Previous X-ray crystal structure analysis has demonstrated that the monovalent cation binding site is located at the interface between subunits, with ligands contributed by the carbonyl oxygens of Gly52 and Asn262 from one chain and monodentate ligation by one of the epsilon-oxygens of Glu69 from another chain [Antson, A. A., Demidkina, T. V., Gollnick, P., Dauter, Z., Von Tersch, R. L., Long, J., Berezhnoy, S. N., Phillips, R. S., Harutyunyan, E. H., and Wilson, K. S. (1993) Biochemistry 32, 4195]. We have studied the effect of mutation of Glu69 to glutamine (E69Q) and aspartate (E69D) to determine the role of Glu69 in the activation of TPL. E69Q TPL is activated by K(+), NH(4)(+), and Rb(+), with K(D) values similar to wild-type TPL, indicating that the negative charge on Glu69 is not necessary for cation binding and activation. In contrast, E69D TPL exhibits very low basal activity and only weak activation by monovalent cations, even though monovalent cations are capable of binding, indicating that the geometry of the monovalent cation binding site is critical for activation. Rapid-scanning stopped-flow kinetic studies of wild-type TPL show that the activating effect of the cation is seen in an acceleration of rates of quinonoid intermediate formation (30-50-fold) and of phenol elimination. Similar rapid-scanning stopped-flow results were obtained with E69Q TPL; however, E69D TPL shows only a 4-fold increase in the rate of quinonoid intermediate formation with K(+). Preincubation of TPL with monovalent cations is necessary to observe the rate acceleration in stopped flow kinetic experiments, suggesting that the activation of TPL by monovalent cations is a slow process. In agreement with this conclusion, a slow increase (k < 0.5 s(-)(1)) in fluorescence intensity (lambda(ex) = 420 nm, lambda(em) = 505 nm) is observed when wild-type and E69Q TPL are mixed with K(+), Rb(+), and NH(4)(+) but not Li(+) or Na(+). E69D TPL shows no change in fluorescence under these conditions. High concentrations (>100 mM) of all monovalent cations result in inhibition of wild-type TPL. This inhibition is probably due to cation binding to the ES complex to form a complex that releases pyruvate slowly.  相似文献   

11.
The pyruvate kinase (ATP: pyruvate 2-O-phosphotransferase, EC 2.7.1.40) from Streptococcus lactis C10 had an obligatory requirement for both a monovalent cation and divalent cation. NH+4 and K+ activated the enzyme in a sigmoidal manner (nH =1.55) at similar concentrations, whereas Na+ and Li+ could only weakly activate the enzyme. Of eight divalent cations studied, only three (Co2+, Mg2+ and Mn2+) activated the enzyme. The remaining five divalent cations (Cu2+, Zn2+, Ca2+, Ni2+ and Ba2+) inhibited the Mg2+ activated enzyme to varying degrees. (Cu2+ completely inhibited activity at 0.1 mM while Ba2+, the least potent inhibitor, caused 50% inhibition at 3.2 mM). In the presence of 1 mM fructose 1,6-diphosphate (Fru-1,6-P2) the enzyme showed a different kinetic response to each of the three activating divalent cations. For Co2+, Mn2+ and Mg2+ the Hill interaction coefficients (nH) were 1.6, 1.7 and 2.3 respectively and the respective divalent cation concentrations required for 50% maximum activity were 0.9, 0.46 and 0.9 mM. Only with Mn2+ as the divalent cation was there significatn activity in the absence of Fru-1,6-P2. When Mn2+ replaced Mg2+, the Fru-1,6-P2 activation changed from sigmoidal (nH = 2.0) to hyperbolic (nH = 1.0) kinetics and the Fru-1,6-P2 concentration required for 50% maximum activity decreased from 0.35 to 0.015 mM. The cooperativity of phosphoenolpyruvate binding increased (nH 1.2 to 1.8) and the value of the phosphoenolpyruvate concentration giving half maximal velocity decreased (0.18 to 0.015 mM phosphoenolyruvate) when Mg2+ was replaced by Mn2+ in the presence of 1 mM Fru-1,6-P2. The kinetic response to ADP was not altered significantly when Mn2+ was substituted for Mg2+. The effects of pH on the binding of phosphoenolpyruvate and Fru-1,6-P2 were different depending on whether Mg2+ or Mn2+ was the divalent cation.  相似文献   

12.
The 5-enol-pyruvylshikimate-3-phosphate (EPSP) synthase from Bacillus subtilis was activated by monovalent cations, catalytic activity being negligible in the absence of monovalent cations. The order of cation effectiveness (NH4+ greater than K+ greater than Rb+ greater than Na+ = Cs+ = Li+) indicated that the extent of activation was directly related to the unhydrated cation radius. Ammonium salts, at physiological concentrations, were dramatically more effective than other cations. Activation by ammonium was instantaneous, was not influenced by the counter ion, and gave a hyperbolic saturation curve. Hill plots did not show detectable cooperativity in the binding of ammonium. Double-reciprocal plots indicated that ammonium increases the maximal velocity and decreases the apparent Michaelis constants of EPSP synthase with respect to both phosphoenol pyruvate (PEP) and shikimate 3-phosphate (S3P). A direct relationship between sensitivity to inhibition by glyphosate and the activation state of EPSP synthase was demonstrated. Hill plots indicated a single value for glyphosate binding throughout the range of ammonium activation. Double-reciprocal plots of substrate saturation data obtained with ammonium-activated enzyme in the presence of glyphosate showed glyphosate to behave as a competitive inhibitor with respect to PEP and as a mixed-type inhibitor relative to S3P. The increased glyphosate sensitivity of ammonium-activated EPSP synthase is attributed to a lowering of the inhibitor constant of glyphosate with respect to PEP. Erroneous underestimates of sensitivities of some bacterial EPSP synthases to inhibition by glyphosate may result from failure to recognize cation requirements of EPSP synthases.  相似文献   

13.
The procoagulant function of activated factor V (FVa) is inhibited by activated protein C (APC) through proteolytic cleavages at Arg306, Arg506, and Arg679. The effect of APC is potentiated by negatively charged phospholipid membranes and the APC cofactor protein S. Protein S has been reported to selectively stimulate cleavage at Arg306, an effect hypothesized to be related to reorientation of the active site of APC closer to the phospholipid membrane. To investigate the importance of protein S and phospholipid in the APC-mediated cleavages of individual sites, recombinant FV variants FV(R306Q/R679Q) and FV(R506Q/R679Q) (can be cleaved only at Arg506 and Arg306, respectively) were created. The cleavage rate was determined for each cleavage site in the presence of varied protein S concentrations and phospholipid compositions. In contrast to results on record, we found that protein S stimulated both APC cleavages in a phospholipid composition-dependent manner. Thus, on vesicles containing both phosphatidylserine and phosphatidylethanolamine, protein S increased the rate of Arg306 cleavage 27-fold and that of Arg506 cleavage 5-fold. Half-maximal stimulation was obtained at approximately 30 nm protein S for both cleavages. In conclusion, we demonstrate that APC-mediated cleavages at both Arg306 and Arg506 in FVa are stimulated by protein S in a phospholipid composition-dependent manner. These results provide new insights into the mechanism of APC cofactor activity of protein S and the importance of phospholipid composition.  相似文献   

14.
Kinetic studies on the interaction of protein kinase C with cations and substrates were performed and the effects of essential activators on the interaction of protein kinase C with its substrates were studied. The catalytic fragment of protein kinase C interacted with protein substrate, MgATP, and Mg2+. The dual divalent cation requirement was shown by kinetic analysis as well as by the ability of Mn2+ to substitute for Mg2+. Analysis of kinetic data based on equilibrium assumptions suggested a random order of interaction of the catalytic fragment with its substrate and Mg2+ cofactor. Activation of intact protein kinase C required Ca2+, phosphatidylserine (PS), and diacylglycerol (DAG) as essential activators. Kinetic analysis of the interaction of activators with substrates indicated that Ca2+ and PS acted to increase the activity of the enzyme without modulating the KM for MgATP; PS and Ca2+ significantly decreased the KM for histone. DAG, on the other hand, did not affect the KM for either MgATP or histone but dramatically enhanced the kcat of the enzyme. These studies allow kinetic distinction between the effects of PS and Ca2+ on the one hand and DAG on the other. The possible interference of the kinetic analysis by histone was also examined by studying the requirements for autophosphorylation of protein kinase C; autophosphorylation showed similar dependencies on PS and DAG. There were no effects of histone on the lipid dependence of protein kinase C autophosphorylation, phorbol dibutyrate binding, and inhibition of autophosphorylation by sphingosine. These studies are discussed in relation to a kinetic model of protein kinase C activation.  相似文献   

15.
Interaction of calcium with bovine plasma protein C   总被引:2,自引:0,他引:2  
The binding of 45Ca2+ to bovine plasma protein C (PC) and to activated bovine plasma protein C (APC) has been examined by equilibrium ultrafiltration at pH 7.4 and 25 degrees C. Under these conditions, PC possesses 16.0 plus or minus 2.0 equivalent Ca2+ binding sites, of average KD (8.7 plus or minus 1.5) x 10(-4) M, and APC contains 9.0 plus or minus 1.0 equivalent Ca2+ binding sites, with an average KD of (4.3 plus or minus 1.1) x 10(-4) M. Both Mn2+ and Sr2+ were capable of ready displacement of Ca2+ from a Ca2+-PC complex, while Mg2+ was less effective in this regard. The alpha-thrombin-catalyzed activation of PC was inhibited by the presence of Ca2+. A kinetic analysis of this effect demonstrated that it was, in large part, due to an increase in the Km of the reaction. Addition of other divalent cations, e.g. Mn2+, Sr2+, and Mg2+, in place of Ca2+ also resulted in inhibition of the alpha-thrombin-catalyzed activation of PC in a manner which paralleled their ability to displace Ca2+ from a Ca2+-PC complex. On the other hand, the activation of PC by the coagulant protein from Russell's Viper venom was augmented by the presence of Ca2+. Other divalent metal ions, such as Sr2+ and Mn2+, in the absence of Ca2+, also weakly stimulated this reaction. Mg2+ was without notable effect.  相似文献   

16.
The Na-K ATPase found in sedimentable fractions of intestinal epithelium of rats hydrolyzed cytidine triphosphate nearly as well as ATP (25% to 50%); was active only in presence of divalent cations, with specificity for Mg (100%), Mn (50%) and Ca (10%); showed a plateau of activation when Mg concentrations were in excess of substrate; and was inhibited by a second divalent cation (Zn > Mn > Ca), and by 3 × 10?4 M ouabain (50%). Parallel assays of rat red cell ghosts showed differences in substrate specificity (CTP was not utilized), in activation kinetics (activation peak with Mg) and in greater specificity to Mg (Mn was a weaker activator and Zn was a weaker inhibitor). Stabilities also differed in the two preparations: Na? K ATPase of intestinal epithelium was activated by sucrose extraction and denatured during cytolysis at room temperature, while that of red cell fragments was denatured during sucrose extraction and preserved by hemolysis at room temperature. Other properties of Na? K ATPase studied in the two tissues included activation by monovalent cations (optimum at 160 mM Na, 15 mM K), specificity to monovalent cations, and sensitivity to lipid solvents and to some drugs. The data were discussed in terms of comparative properties of Na? K ATPases of various cells. Residual ATPase activities of intestinal epithelium and red cell ghosts were shown to differ in substrate specificity, inhibition and activation. “Residual ATPase” from intestinal epithelium was a zinc-activated nucleoside polyphosphate phosphohydrolase, while ghosts contained Mg? ATPase. Only the latter enzyme was specific to ATP and Mg, activated by Ca in presence of Mg, and sensitive to inhibition by PCMB and Zn.  相似文献   

17.
Thrombin is a Na(+)-activated enzyme.   总被引:7,自引:0,他引:7  
C M Wells  E Di Cera 《Biochemistry》1992,31(47):11721-11730
The amidase activity of human alpha-thrombin has been studied at steady state as a function of the concentration of several chloride salts, at a constant ionic strength I = 0.2 M. All kinetic steps of the catalytic mechanism of the enzyme have been solved by studies conducted as a function of relative viscosity of the solution. Among all monovalent cations, Na+ is the most effective in activating thrombin catalysis. This effect is observed with different amide substrates and also with gamma-thrombin, a proteolytic derivative of the native enzyme which has little clotting activity but retains amidase activity toward small synthetic substrates. The specific effects observed as a function of Na+ concentration are indicative of a binding interaction of this monovalent cation with the enzyme. The basis of this interaction has been explored by measurements of substrate hydrolysis collected in a three-dimensional matrix of substrate concentration, relative viscosity, and Na+ concentration, keeping the ionic strength constant with an inert cation such as choline or tetraethylammonium. The data have globally been analyzed in terms of a kinetic linkage scheme where Na+ plays the role of an allosteric effector. The properties of the enzyme change drastically upon binding of Na+, with substrate binding and dissociation, as well as deacylation, occurring on a time scale which is 1 order of magnitude faster. The apparent association constants for Na+ binding to the various intermediate forms of the enzyme have all been resolved from analysis of experimental data and are in the range of 50-100 M-1 at 25 degrees C. Studies conducted at different temperatures, in the range 15-35 degrees C, have revealed the enthalpic and entropic components of Na+ binding to the enzyme. The results obtained from steady-state measurements are supported by independent measurements of the intrinsic fluorescence of the enzyme as a function of Na+ concentration at a constant ionic strength I = 0.2 M, over the temperature range 15-35 degrees C. These measurements are indicative of a drastic conformational change of the enzyme upon Na+ binding to a single site. The energetics of Na+ binding derived from analysis of fluorescence measurements agree very well with those derived independently from steady-state determinations. It is proposed that thrombin exists in two conformations, slow and fast, and that the slow-->fast transition is triggered by binding of a monovalent cation. The high specificity in thrombin activation found in the case of Na+ is the result of its higher affinity compared to all other monovalent cations.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Multivalent cations have been known to be important components of activated sludge floc structure due to their bridging ability of the negatively charged sites on the biopolymer network. Recently in batch systems it was found that excess concentration of monovalent cations led to the deterioration in settleability, dewaterability of sludges and effluent quality of the system. In this study, effect of influent monovalent cations (potassium and sodium) on activated sludge floc structure was investigated in semi-continuous reactors. Results revealed that the increase in concentration of both ions correlated to the general increase in total EPS concentration. The zeta potential values were affected by the cation type and dose in such a way that sludge from sodium reactors had always higher zeta potential values (higher negative charge) than the sludges from potassium reactors. Flocs from sodium reactors were more fragile and weak and the capillary suction time values of these sludges were higher compared to those from potassium reactors. The findings of this research conclude that the floc structure is significantly weakened with the increase of monovalent cations. Even though EPS is produced, it is unable to bind the floc components together. With this, the physical properties of sludge deteriorate for both cations.  相似文献   

19.
The serine protease domain of activated protein C (APC) contains a Na+ and a Ca2+ site. However, the number and identity of the APC residues that coordinate to Na+ is not precisely known. Further, the functional link between the Na+ and the Ca2+ site is insufficiently defined, and their linkage to the substrate S1 site has not been studied. Here, we systematically investigate the functional significance of these two cation sites and their thermodynamic links to the S1 site. Kinetic data reveal that Na+ binds to the substrate-occupied APC with K(d) values of approximately 24 mm in the absence and approximately 6 mm in the presence of Ca2+. Sodium-occupied APC has approximately 100-fold increased catalytic efficiency ( approximately 4-fold decrease in K(m) and approximately 25-fold increase in k(cat)) in hydrolyzing S-2288 (H-d-Ile-Pro-Arg-p-nitroanilide) and Ca2+ further increases this k(cat) slightly ( approximately 1.2-fold). Ca2+ binds to the protease domain of APC with K(d) values of approximately 438 microm in the absence and approximately 105 microm in the presence of Na+. Ca2+ binding to the protease domain of APC does not affect K(m) but increases the k(cat) approximately 10-fold, and Na+ further increases this k(cat) approximately 3-fold and decreases the K(m) value approximately 3.7-fold. In agreement with the K(m) data, sodium-occupied APC has approximately 4-fold increased affinity in binding to p-aminobenzamidine (S1 probe). Crystallographically, the Ca2+ site in APC is similar to that in trypsin, and the Na+ site is similar to that in factor Xa but not thrombin. Collectively, the Na+ site is thermodynamically linked to the S1 site as well as to the protease domain Ca2+ site, whereas the Ca2+ site is only linked to the Na+ site. The significance of these findings is that under physiologic conditions, most of the APC will exist in Na2+-APC-Ca2+ form, which has 110-fold increased proteolytic activity.  相似文献   

20.
Human urine contains a hitherto unrecognized heparin-dependent inhibitor of activated protein C (APC) (Mr approximately 50,000) that coelutes from heparin-Sepharose together with the only observed peak of urokinase inhibitory activity at a position (0.35 M NaCl) similar to that of plasma protein C (PC) inhibitor. Based on functional assays and immunoblot studies, urokinase and APC compete for this crude inhibitor in the absence or presence of heparin. These results suggest that the same heparin-dependent urinary inhibitor that is immunologically different from several known protease inhibitors is responsible for the observed inhibition of APC and urokinase. In the absence of heparin this inhibitor inhibits APC and urokinase with similar rates, and heparin enhances its inhibitory activity toward both enzymes with more pronounced stimulation of its PC inhibitory activity than its urokinase inhibitory activity. Half-maximal stimulation of inhibition of APC occurs at about 2 mU/ml and maximal stimulation (approximately 10-fold increase of the pseudo-first-order rate constant) at greater than or equal to 50 mU/ml of heparin. This is the first demonstration of competition between APC and urokinase for a heparin-dependent inhibitor. These results may therefore represent a new link between the two major antithrombotic pathways, the PC pathway and the fibrinolytic system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号