首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A common arginine to proline polymorphism is harboured at codon 72 of the human p53 gene. In this investigation, we found that fibroblasts and lymphocytes isolated from arginine allele homozygote centenarians and sexagenarians (Arg+) undergo an oxidative-stress-induced apoptosis at a higher extent than cells obtained from proline allele carriers (Pro+). At variance, the difference in apoptosis susceptibility between Arg+ and Pro+ is not significant when cells from 30-year-old people are studied. Further, we found that Arg+ and Pro+ cells from centenarians differ in the constitutive levels of p53 protein and p53/MDM2 complex, as well as in the levels of oxidative stress-induced p53/Bcl-xL complex and mitochondria-localised p53. Consistently, all these differences are less evident in cells from 30-year-old people. Finally, we investigated the in vivo functional relevance of the p53 codon 72 genotype in a group of old patients (66-99 years of age) affected by acute myocardial ischaemia, a clinical condition in which in vivo cell death occurs. We found that Arg+ patients show increased levels of Troponin I and CK-MB, two serum markers that correlate with the extent of the ischaemic damage in comparison to Pro+ patients. In conclusion, these data suggest that p53 codon 72 polymorphism contributes to a genetically determined variability in apoptotic susceptibility among old people, which has a potentially relevant role in the context of an age-related pathologic condition, such as myocardial ischaemia.  相似文献   

2.
A common polymorphism at codon 72 in p53 gene leads to an arginine to proline aminoacidic substitution which affects in an age-dependent manner the susceptibility of cells to undergo apoptosis after oxidative stress. Here we report that dermal fibroblasts from Proline allele carriers (Pro+) display a higher expression of p21WAF1 gene, in both basal conditions and after treatment with doxorubicin and camptothecin. This phenomenon is accompanied by a lower susceptibility of Pro+ cells to undergo apoptosis, a lower capability to over cross G1-S transition and an increased propensity to express markers of cell senescence, with respect to fibroblasts from Arginine homozygotes (Pro-). All these phenomena are particularly evident in cells from centenarians. We conclude that the functional difference between the two p53 codon 72 alleles exerts a broadimpact on the capability of cell from aged people to respond to stressors such as cytotoxic drugs.  相似文献   

3.
Schmitt CA  Fridman JS  Yang M  Lee S  Baranov E  Hoffman RM  Lowe SW 《Cell》2002,109(3):335-346
p53 and INK4a/ARF mutations promote tumorigenesis and drug resistance, in part, by disabling apoptosis. We show that primary murine lymphomas also respond to chemotherapy by engaging a senescence program controlled by p53 and p16(INK4a). Hence, tumors with p53 or INK4a/ARF mutations-but not those lacking ARF alone-respond poorly to cyclophosphamide therapy in vivo. Moreover, tumors harboring a Bcl2-mediated apoptotic block undergo a drug-induced cytostasis involving the accumulation of p53, p16(INK4a), and senescence markers, and typically acquire p53 or INK4a mutations upon progression to a terminal stage. Finally, mice bearing tumors capable of drug-induced senescence have a much better prognosis following chemotherapy than those harboring tumors with senescence defects. Therefore, cellular senescence contributes to treatment outcome in vivo.  相似文献   

4.
The cell cycle regulatory protein p27, an inhibitor of cyclin-dependent kinases (CDK), has been attributed a role in (i) prognosis in breast and colon cancer, (ii) induction of apoptosis in cancer cells, and (iii) resistance to cancer chemotherapy. Here we report that p27 is widely expressed in human malignant gliomas in vivo and in glioma cell lines in vitro. Serum deprivation or confluency promotes p27 protein accumulation in vitro. Neither baseline p27 levels nor p27 levels induced by confluency or serum deprivation correlate with p53 status or drug sensitivity of human glioma cell lines. Expression of antisense p27 mRNA increased the doubling times in T98G glioma cells, whereas sense p27 mRNA had no such effect. There was a density-dependent and drug-specific modulation of chemosensitivity by sense or antisense mRNA expression in T98G cells. Taken together, these data define a strong p27 response to altered growth conditions and suggest a role for p27 in modulating response to chemotherapy in human malignant glioma cells.  相似文献   

5.
6.
To clarify effective chemotherapeutic regimens against cancer, we examined the effects of glycerol on apoptosis induced by CDDP treatment using cultured human cancer cells (in vitro) and transplanted tumor in mice (in vivo). Human tongue cell carcinoma (SAS) cells transfected with mutated p53 gene (SAS/m p53) showed CDDP-resistance compared with the cells with neo control gene (SAS/ neo). When those cultured cells were pre-treated with glycerol, CDDP-induced apoptosis was enhanced by glycerol in SAS/m p53 cells but not in SAS/ neo cells.In tumor-transplanted mice, the glycerol treatment to tumors enhanced growth delay induced by CDDP in mp53 tumors transplanted with SAS/m p53 cells, but not in wtp53 tumors transplanted with SAS/ neo cells. When transplanted tumors were treated with CDDP alone, the cells positive for active caspase-3, 85 kDa PARP and apoptosis were observed by immunohistochemical staining in wtp53 tumors but not in mp53 tumors. When the tumors were treated with CDDP combined with glycerol, positive cells were observed not only in wtp53 tumors but also in mp53 tumors. These results showed that the CDDP-induced growth inhibition of the tumors is p53 -dependent and that the enhanced growth delay by glycerol may be due to the increased apoptosis. Glycerol might be available for cancer chemotherapy in patients with mp53 tumors.  相似文献   

7.
Testicular germ cell tumours: the paradigm of chemo-sensitive solid tumours   总被引:2,自引:0,他引:2  
Testicular germ cell tumours (TGCTs) are the most frequent solid malignant tumour in men 20–40 years of age and the most frequent cause of death from solid tumours in this age group. Up to 50% of the patients suffer from metastatic disease at diagnosis. The majority of metastatic testicular cancer patients, in contrast to most other metastatic solid tumours, can be cured with highly effective cisplatin-based chemotherapy. From a genetic point of view, almost all TGCTs in contrast to solid tumours are characterised by the presence of wild type p53. High p53 expression levels are associated with elevated Mdm2 levels and a loss of p21Waf1/Cip1 expression suggesting a changed functionality of p53. Expression levels of other proteins involved in the regulation of cell cycle progression indicate a deregulated G1–S phase checkpoint in TGCTs. After cisplatin-induced DNA damage, the increasing levels of p53 lead to the trans-activation of a number of genes but not of p21Waf1/Cip1, preferentially directing TGCT cells into apoptosis or programmed cell death, both via the mitochondrial and the death receptor apoptosis pathways. The sensitivity of TGCTs to chemotherapeutic drugs may lay in the susceptibility of germ cells to apoptosis. Taken together, this provides TGCT as a tumour type model to investigate and understand the molecular determinants of chemotherapy sensitivity of solid tumours. This review aims to summarise the current knowledge on the biological basis of cisplatin-induced apoptosis and response to chemotherapy in TGCTs.  相似文献   

8.
Disseminating malignant melanoma is a lethal disease highly resistant to radio- and chemotherapy. Therefore, the development of new treatment strategies is strongly needed. Tumor suppressor p53-mediated apoptosis is essential for the response to radio- and chemotherapy. Although p53 is not frequently mutated in melanoma, it is inactivated by integrin αv-mediated signaling, as we previously demonstrated 1, which may account, at least partially, for increased apoptosis resistance of malignant melanoma. In this study we addressed the question whether functional restoration of p53 by APR-246 (PRIMA-1Met), which can reactivate mutant p53 and induce massive apoptosis in cancer cells, is able to restore the function of inactive p53 in melanoma. Using a three-dimensional collagen gel (3D-collagen) to culture melanoma cells carrying wild-type p53, we found that APR-246 treatment resulted in activation of p53, leading to increased expression of p53 pro-apoptotic targets Apaf1 and PUMA and activation of caspase- 9 and -3. Moreover, APR-246 triggered melanoma cell apoptosis that was mediated by p53 and caspase 9. Importantly, APR-246 treatment also suppressed human melanoma xenograft tumors in vivo in a p53-dependent manner. Thus, wild-type p53 reactivation may provide a novel approach for malignant melanoma treatment, with APR-246 as a candidate drug for such a development.  相似文献   

9.
In vitro experiments have demonstrated intercellular trafficking of the VP22 tegument protein of herpes simplex virus type 1 from infected cells to neighboring cells, which internalize VP22 and transport it to the nucleus. VP22 also can mediate intercellular transport of fusion proteins, providing a strategy for increasing the distribution of therapeutic proteins in gene therapy. Intercellular trafficking of the p53 tumor suppressor protein was demonstrated in vitro using a plasmid expressing full-length p53 fused in-frame to full-length VP22. The p53-VP22 chimeric protein induced apoptosis both in transfected tumor cells and in neighboring cells, resulting in a widespread cytotoxic effect. To evaluate the anti-tumor activity of p53-VP22 in vivo, we constructed recombinant adenoviruses expressing either wild-type p53 (FTCB) or a p53-VP22 fusion protein (FVCB) and compared their effects in p53-resistant tumor cells. In vitro, treatment of tumor cells with FVCB resulted in enhanced p53-specific apoptosis compared to treatment with equivalent doses of FTCB. However, in normal cells there was no difference in the dose-related cytotoxicity of FVCB compared to that of FTCB. In vivo, treatment of established tumors with FVCB was more effective than equivalent doses of FTCB. The dose-response curve to FVCB was flatter than that to FTCB; maximal antitumor responses could be achieved using FVCB at doses 1 log lower than those obtained with FTCB. Increased antitumor efficacy was correlated with increased distribution of p53 protein in FVCB-treated tumors. This study is the first demonstration that VP22 can enhance the in vivo distribution of therapeutic proteins and improve efficacy in gene therapy.  相似文献   

10.
The effect of ERK, p38, and JNK signaling on p53-dependent apoptosis and cell cycle arrest was investigated using a Friend murine erythroleukemia virus (FVP)-transformed cell line that expresses a temperature-sensitive p53 allele, DP16.1/p53ts. In response to p53 activation at 32 degrees C, DP16.1/p53ts cells undergo p53-dependent G(1) cell cycle arrest and apoptosis. As a result of viral transformation, these cells express the spleen focus forming env-related glycoprotein gp55, which can bind to the erythropoietin receptor (EPO-R) and mimics many aspects of EPO-induced EPO-R signaling. We demonstrate that ERK, p38 and JNK mitogen-activated protein kinases (MAPKs) are constitutively active in DP16.1/p53ts cells. Constitutive MEK activity contributes to p53-dependent apoptosis and phosphorylation of p53 on serine residue 15. The pro-apoptotic effect of this MAPK kinase signal likely reflects an aberrant Ras proliferative signal arising from FVP-induced viral transformation. Inhibition of MEK alters the p53-dependent cellular response of DP16.1/p53ts from apoptosis to G(1) cell cycle arrest, with a concomitant increase in p21(WAF1), suggesting that the Ras/MEK pathway may influence the cellular response to p53 activation. p38 and JNK activity in DP16.1/p53ts cells is anti-apoptotic and capable of limiting p53-dependent apoptosis at 32 degrees C. Moreover, JNK facilitates p53 protein turnover, which could account for the enhanced apoptotic effects of inhibiting this MAPK pathway in DP16.1/p53ts cells. Overall, these data show that intrinsic MAPK signaling pathways, active in transformed cells, can both positively and negatively influence p53-dependent apoptosis, and illustrate their potential to affect cancer therapies aimed at reconstituting or activating p53 function.  相似文献   

11.
12.
13.
The cellular function of p53 is complex. It is well known that p53 plays a key role in cellular response to DNA damage. Moreover, p53 was implicated in cellular senescence, and it was demonstrated that p53 undergoes modification in senescent cells. However, it is not known how these modifications affect the ability of senescent cells to respond to DNA damage. To address this question, we studied the responses of cultured young and old normal diploid human fibroblasts to a variety of genotoxic stresses. Young fibroblasts were able to undergo p53-dependent and p53-independent apoptosis. In contrast, senescent fibroblasts were unable to undergo p53-dependent apoptosis, whereas p53-independent apoptosis was only slightly reduced. Interestingly, instead of undergoing p53-dependent apoptosis, senescent fibroblasts underwent necrosis. Furthermore, we found that old cells were unable to stabilize p53 in response to DNA damage. Exogenous expression or stabilization of p53 with proteasome inhibitors in old fibroblasts restored their ability to undergo apoptosis. Our results suggest that stabilization of p53 in response to DNA damage is impaired in old fibroblasts, resulting in induction of necrosis. The role of this phenomenon in normal aging and anticancer therapy is discussed.  相似文献   

14.
Epstein-Barr virus (EBV) efficiently converts resting human B cells into actively cycling, immortal, lymphoblastoid cell lines (LCLs). Here we show that LCLs expressing the full complement of latent viral genes are very sensitive to DNA-damaging agents such as cisplatin. The response includes a rapid accumulation of the tumour suppressor protein p53 and induction of the cellular genes mdm2 and WAF1/p21. Although the levels of Bcl2 protein and Bax mRNA appear unaltered by the activation of p53, within 24 h the majority of cells undergo apoptosis. Over-expression of wild-type p53 in an LCL also resulted in apoptosis; this was preceded by the dephosphorylation of the retinoblastoma gene product, pRb. Primary resting B cells showed no response to cisplatin and even after drug treatment, p53 remained undetectable. However, after infection with EBV, p53 gene expression was induced to a similar level to that found in mitogen-activated B cells. When the physiologically activated primary B cells were exposed to cisplatin, although p53 accumulated as in LCLs, the outcome was growth-arrest rather than gross cell death. We conclude that, in contrast to the transformation of fibroblasts by adenovirus, SV40 or HPV, when B cells become activated and immortalized by EBV they are sensitized to the p53-mediated damage response. When the resulting LCLs are treated with genotoxic agents such as cisplatin, they are unable to arrest like normal cells because they are driven to proliferate by EBV and consequently undergo apoptosis.  相似文献   

15.
The goal of cancer chemotherapy to induce multi-directional apoptosis as targeting a single pathway is unable to decrease all the downstream effect arises from crosstalk. Present study reports that Withanolide D (WithaD), a steroidal lactone isolated from Withania somnifera, induced cellular apoptosis in which mitochondria and p53 were intricately involved. In MOLT-3 and HCT116p53+/+ cells, WithaD induced crosstalk between intrinsic and extrinsic signaling through Bid, whereas in K562 and HCT116p53-/- cells, only intrinsic pathway was activated where Bid remain unaltered. WithaD showed pronounced activation of p53 in cancer cells. Moreover, lowered apoptogenic effect of HCT116p53-/- over HCT116p53+/+ established a strong correlation between WithaD-mediated apoptosis and p53. WithaD induced Bax and Bak upregulation in HCT116p53+/+, whereas increase only Bak expression in HCT116p53-/- cells, which was coordinated with augmented p53 expression. p53 inhibition substantially reduced Bax level and failed to inhibit Bak upregulation in HCT116p53+/+ cells confirming p53-dependent Bax and p53-independent Bak activation. Additionally, in HCT116p53+/+ cells, combined loss of Bax and Bak (HCT116Bax-Bak-) reduced WithaD-induced apoptosis and completely blocked cytochrome c release whereas single loss of Bax or Bak (HCT116Bax-Bak+/HCT116Bax+Bak-) was only marginally effective after WithaD treatment. In HCT116p53-/- cells, though Bax translocation to mitochondria was abrogated, Bak oligomerization helped the cells to release cytochrome c even before the disruption of mitochondrial membrane potential. WithaD also showed in vitro growth-inhibitory activity against an array of p53 wild type and null cancer cells and K562 xenograft in vivo. Taken together, WithaD elicited apoptosis in malignant cells through Bax/Bak dependent pathway in p53-wild type cells, whereas Bak compensated against loss of Bax in p53-null cells.  相似文献   

16.
17.
p53 dependent apoptosis is a critical regulator of tumorigenesis. In this paper we demonstrate that BALB/c cells transformed with a LT mutant perturbing pRb but not p53 functions (LT-2809) show unrestrained cell division under low serum condition which is actively counterbalanced by apoptosis. BALB/c cells transformed with a LT mutant perturbing p53 but not pRb functions (LT-K1), show similar unrestrained cell division but no evident signs of apoptosis when grown in low serum. Such apoptotic response of LT-2809 cells is characterised by increased expression of Gas2 which becomes proteolytically processed. Similarly Gas3 expression is markedly increased in LT-2809 cells with respect to LT-K1. Since both Gas2 and Gas3 have been previously associated with the apoptotic response at growth arrest, our observations suggest that they could also contribute to the regulation of cellular susceptibility to p53 dependent apoptosis.  相似文献   

18.
The p53 tumor suppressor gene is thought to be required for the induction of programmed cell death (apoptosis) initiated by DNA damage. We show here, however, that the human promyelocytic leukemia cell line HL-60, which is known to be deficient in p53 because of large deletions in the p53 gene, can be induced to undergo apoptosis following X-irradiation. We demonstrate that the decision to undergo apoptosis in this cell line appears to be made at a G2 checkpoint. In addition, we characterize an HL-60 variant, HCW-2, which is radioresistant. HCW-2 cells display DNA damage induction and repair capabilities identical to those of the parental HL-60 cell line. Thus, the difference between the two cell lines appears to be that X-irradiation induces apoptosis in HL-60, but not in HCW-2, cells. Paradoxically, HCW-2 cells display high levels of expression of bax, which enhances apoptosis, and no longer express bcl-2, which blocks apoptosis. HCW-2 cells' resistance to apoptosis may be due to the acquisition of expression of bcl-XL, a bcl-2-related inhibitor of apoptosis. In summary, apoptosis can be induced in X-irradiated HL-60 cells by a p53-independent mechanism at a G2 checkpoint, despite the presence of endogenous bcl-2. The resistance shown by HCW-2 cells suggests that bcl-XL can block this process.  相似文献   

19.
A combination of 8-methoxypsoralen (8-MOP) and ultraviolet-A (UVA) radiation (320-400 nm) (PUVA) is widely used in the treatment of psoriasis and other skin diseases. PUVA is highly effective in eliminating hyperproliferative cells in the epidermis, but its mechanism of action has not been fully elucidated. In this study, we used immortalized JB6 mouse epidermal cells, p53(-/-), and Fas ligand deficient (gld) mice to investigate the molecular mechanism by which PUVA induces cell death. The results indicate that PUVA treatment induces apoptosis in JB6 cells. In addition, PUVA treatment of JB6 cells results in p53 stabilization, phosphorylation, and nuclear localization as well as induction of p21(Waf/Cip1) and caspase-3 activity. In vivo studies reveal that PUVA treatment induces significantly less apoptosis in the epidermis of p53(-/-) mice compared to p53(+/+) mice. Furthermore, FasL-deficient (gld) mice are completely resistant to PUVA-induced apoptosis compared to wild-type mice. These results indicate that PUVA treatment induces apoptosis in mouse epidermal cells in vitro and in vivo and that p53 and Fas/Fas ligand interactions are required for this process, at least in vivo. This implies that similar mechanisms may be involved in the elimination of psoriatic keratinocytes from human skin following PUVA therapy.  相似文献   

20.
p21(WAF1) appears to be a major determinant of the cell fate in response to anticancer therapy. It was shown previously that HCT116 human colon cancer cells growing in vitro enter a stable arrest upon DNA damage, whereas cells with a defective p21(WAF1) response undergo apoptosis. Here we report that the enhanced sensitivity of HCT116/p21(-/-) cells to chemotherapeutic drug-induced apoptosis correlates with an increased expression of p53 and a modification of their Bax/Bcl-2 ratio in favor of the pro-apoptotic protein Bax. Treatment of HCT116/p21(-/-) cells with daunomycin resulted in a reduction of the mitochondrial membrane potential and in activation of caspase-9, whereas no such changes were observed in HCT116/p21(+/+) cells, providing evidence that p21(WAF1) exerts an antagonistic effect on the mitochondrial pathway of apoptosis. Moreover, the role of p53 in activation of this pathway was demonstrated by the fact that inhibition of p53 activity by pifithrin-alpha reduced the sensitivity of HCT116/p21(-/-) cells to daunomycin-induced apoptosis and restored a Bax/Bcl-2 ratio similar to that observed in HCT116p21(+/+) cells. Enhancement of p53 expression after disruption of p21(WAF1) resulted from a stabilization of p53, which correlated with an increased expression of the tumor suppressor p14(ARF), an inhibitor of the ubiquitin ligase activity of Mdm2. In accordance with the role of p14(ARF) in p53 stabilization, overexpression of p14(ARF) in HCT116/p21(+/+) cells resulted in a strong increase in p53 activity. Our results identify a novel mechanism for the anti-apoptotic effect of p21(WAF1) consisting in maintenance of mitochondrial homeostasis that occurs in consequence of a negative control of p14(ARF) expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号