首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study we show for the first time the intracellular distribution of a K39 kinesin homologue in Leishmania donovani, a medically important parasite of humans. Further, we demonstrated that this motor protein is expressed in both the insect and mammalian developmental forms (i.e. promastigote and amastigotes) of this organism. Moreover, in both of these parasite developmental stages, immunofluorescence indicated that the LdK39 kinesin accumulated at anterior and posterior cell poles and that it displayed a peripheral localization consistent with the cortical cytoskeleton. Using a molecular approach, we identified, cloned and characterized the first complete open reading frame for the gene (LdK39) encoding this large (> 358 kDa) motor protein in L. donovani. Based on these observations, we subsequently used a homologous episomal expression system to dissect and express the functional domains that constitute the native molecule. Cell fractionation experiments demonstrated that LdK39 was soluble and that it bound to detergent-extracted cytoskeletons of these parasites in an ATP-dependent manner. The cumulative results of these experiments are consistent with LdK39 functioning as an ATP-dependent kinesin which binds to and travels along the cortical cytoskeleton of this important human pathogen.  相似文献   

2.
The periplasmic flagella of many spirochetes contain multiple proteins. In this study, two-dimensional electrophoresis, Western blotting (immunoblotting), immunoperoxidase staining, and N-terminal amino acid sequence analysis were used to characterize the individual periplasmic flagellar proteins of Treponema pallidum subsp. pallidum (Nichols strain) and T. phagedenis Kazan 5. Purified T. pallidum periplasmic flagella contained six proteins (Mrs = 37,000, 34,500, 33,000, 30,000, 29,000, and 27,000), whereas T. phagedenis periplasmic flagella contained a major 39,000-Mr protein and a group of two major and two minor 33,000- to 34,000-Mr polypeptide species; 37,000- and 30,000-Mr proteins were also present in some T. phagedenis preparations. Immunoblotting with monospecific antisera and monoclonal antibodies and N-terminal sequence analysis indicated that the major periplasmic flagellar proteins were divided into two distinct classes, designated class A and class B. Class A proteins consisted of the 37-kilodalton (kDa) protein of T. pallidum and the 39-kDa polypeptide of T. phagedenis; class B included the T. pallidum 34.5-, 33-, and 30-kDa proteins and the four 33- and 34-kDa polypeptide species of T. phagedenis. The proteins within each class were immunologically cross-reactive and possessed similar N-terminal sequences (67 to 95% homology); no cross-reactivity or sequence homology was evident between the two classes. Anti-class A or anti-class B antibodies did not react with the 29- or 27-kDa polypeptides of T. pallidum or the 37- and 30-kDa T. phagedenis proteins, indicating that these proteins are antigenically unrelated to the class A and class B proteins. The lack of complete N-terminal sequence homology among the major periplasmic flagellar proteins of each organism indicates that they are most likely encoded by separate structural genes. Furthermore, the N-terminal sequences of T. phagedenis and T. pallidum periplasmic flagellar proteins are highly conserved, despite the genetic dissimilarity of these two species.  相似文献   

3.
Trypanosomatid parasites express a number of mono- and diacylated proteins that are targeted to distinct regions of the plasma membrane including the cell body, the flagellum and the flagellar pocket. The extent to which the acylation status and other protein motifs regulate the targeting and/or retention of these proteins to the distinct membrane domains is poorly defined. We have previously described a family of small myristoylated proteins (SMPs) that are either monoacylated (myristoylated) or diacylated (myristoylated and palmitoylated) and targeted to distinct plasma membrane domains. Diacylated SMP-1 is a major constituent of the flagellar membrane, whereas monoacylated SMP-2 resides in the flagellar pocket in Leishmania major. Here, we show that a third SMP family member, monoacylated SMP-4, localizes predominantly to the pellicular membrane. Density gradient centrifugation of detergent-insoluble membranes indicated that SMP-4 was associated with detergent-insoluble domains but was not tightly associated with the subpellicular cytoskeleton. Based on the localisation of truncated SMP proteins, we conclude that the flagellum targeting of SMP-1 is primarily dependent on the dual-acylation motif. In contrast, the localisation of SMP-4 to the cell body membrane is dependent on N-terminal myristoylation and a C-terminal peptide subdomain with a predicted α-helical structure. Strikingly, a SMP-1 chimera containing the SMP-4 C-terminal extension was selectively trafficked to the distal tip of the flagellum and failed to complement the loss of native SMP-1 in a Δsmp1/2 double knockout strain. Collectively, these results suggest that dual acylation is sufficient to target some SMP proteins to the flagellum, while the unique C-terminal extensions of these proteins may confer additional membrane targeting signals that are important for both localisation and SMP function.  相似文献   

4.
Increasing evidence indicates that the Trypanosoma brucei flagellum (synonymous with cilium) plays important roles in host-parasite interactions. Several studies have identified virulence factors and signaling proteins in the flagellar membrane of bloodstream-stage T. brucei, but less is known about flagellar membrane proteins in procyclic, insect-stage parasites. Here we report on the identification of several receptor-type flagellar adenylate cyclases (ACs) that are specifically upregulated in procyclic T. brucei parasites. Identification of insect stage-specific ACs is novel, as previously studied ACs were constitutively expressed or confined to bloodstream-stage parasites. We show that procyclic stage-specific ACs are glycosylated, surface-exposed proteins that dimerize and possess catalytic activity. We used gene-specific tags to examine the distribution of individual AC isoforms. All ACs examined localized to the flagellum. Notably, however, while some ACs were distributed along the length of the flagellum, others specifically localized to the flagellum tip. These are the first transmembrane domain proteins to be localized specifically at the flagellum tip in T. brucei, emphasizing that the flagellum membrane is organized into specific subdomains. Deletion analysis reveals that C-terminal sequences are critical for targeting ACs to the flagellum, and sequence comparisons suggest that differential subflagellar localization might be specified by isoform-specific C termini. Our combined results suggest insect stage-specific roles for a subset of flagellar adenylate cyclases and support a microdomain model for flagellar cyclic AMP (cAMP) signaling in T. brucei. In this model, cAMP production is compartmentalized through differential localization of individual ACs, thereby allowing diverse cellular responses to be controlled by a common signaling molecule.  相似文献   

5.
Motile swarmer cells of Hyphomicrobium strain W1-1B displayed positive chemotactic responses toward methylamine, dimethylamine, and trimethylamine but did not display significant chemotactic responses towards methanol and arginine. Electron micrographs of negatively stained intact flagellar filaments indicated a novel striated surface pattern. The flagella were composed of two proteins of 39 and 41 kDa. Neither protein was a glycoprotein as determined by Schiff’s staining and by enzyme immunoassay. Protein fingerprints visualized from silver-stained polyacrylamide gels and Western blots of protease-digested samples indicated that the two proteins were similar but not identical. Monoclonal antibodies prepared to the complex flagella of Rhizobium meliloti cross-reacted with the striated flagella of Hyphomicrobium strain W1-1B; however, these antibodies did not cross-react with smooth-surface flagella. These results suggest that complex and striated flagella possess homologous epitope regions.  相似文献   

6.
Flagellar-mediated motility is an indispensable function for cell types as evolutionarily distant as mammalian sperm and kinetoplastid parasites, a large group of flagellated protozoa that includes several important human pathogens. Despite the obvious importance of flagellar motility, little is known about the signalling processes that direct the frequency and wave shape of the flagellar beat, or those that provide the motile cell with the necessary environmental cues that enable it to aim its movement. Similarly, the energetics of the flagellar beat and the problem of a sufficient ATP supply along the entire length of the beating flagellum remain to be explored. Recent proteome projects studying the flagella of mammalian sperm and kinetoplastid parasites have provided important information and have indicated a surprising degree of similarities between the flagella of these two cell types.  相似文献   

7.
Williamson SM  Silva DA  Richey E  Qin H 《Protoplasma》2012,249(3):851-856
Mediating the transport of flagellar precursors and removal of turnover products, intraflagellar transport (IFT) is required for flagella assembly and maintenance. The IFT apparatus is composed of the anterograde IFT motor kinesin II, the retrograde IFT motor IFT-dynein, and IFT particles containing two complexes, A and B. In order to have a balanced two-way transportation, IFT-dynein has to be carried into flagella and transported to the flagellar tip by kinesin II, where it is activated to drive the retrograde IFT back to the flagellar base. In this study, we investigated the role of complex A and complex B in the flagellar entry and exit of IFT-dynein. We showed that regardless of the amount of complex A, IFT-dynein accumulated proportionally to the amount of complex B in the flagella of fla15/ift144 and fla17-1/ift139, two complex A temperature-sensitive mutants. Complex A was depleted from both cellular and flagellar compartments in fla15/ift144 mutant. However, in fla17-1/ift139 mutant, the flagellar level of complex A was at the wild-type level, which was in radical contrast to the significantly reduced cellular amount of complex A. These results support that complex A is not required for the flagellar entry of IFT-dynein, but might be essential for the lagellar exit of IFT-dynein. Additionally, we confirmed the essential role of IFT172, a complex B subunit, in the flagellar entry of IFT-dynein. These results indicate that complexes A and B play complementary but distinct roles for IFT-dynein, with complex B carrying IFT-dynein into the flagella while complex A mediates the flagellar exit of IFT-dynein.  相似文献   

8.
The MotA/MotB proteins serve as the motor that drives bacterial flagellar rotation in response to the proton motive force (pmf). They have been shown to comprise a transmembrane proton pathway. The ExbB/ExbD/TonB protein complex serves to energize transport of iron siderophores and vitamin B12 across the outer membrane of the Gram-negative bacterial cell using the pmf. These two protein complexes have the same topology and are homologous. Based on molecular data for the MotA/MotB proteins, we propose simple three-dimensional channel structures for both MotA/MotB and ExbB/ExbD/TonB using modeling methods. Features of the derived channels are discussed, and two possible proton transfer pathways for the ExbBD/TonB system are proposed. These analyses provide a guide for molecular studies aimed at elucidating the mechanism by which chemiosmotic energy can be transferred either between two adjacent membranes to energize outer membrane transport or to the bacterial flagellum to generate torque.  相似文献   

9.
LC8 functions as a dimer crucial for a variety of molecular motors and non-motor complexes. Emerging models, founded on structural studies, suggest that the LC8 dimer promotes the stability and refolding of dimeric target proteins in molecular complexes, and its interactions with selective target proteins, including dynein subunits, is regulated by LC8 phosphorylation, which is proposed to prevent LC8 dimerization. To test these hypotheses in vivo, we determine the impacts of two new LC8 mutations on the assembly and stability of defined LC8-containing complexes in Chlamydomonas flagella. The three types of dyneins and the radial spoke are disparately affected by dimeric LC8 with a C-terminal extension. The defects include the absence of specific subunits, complex instability, and reduced incorporation into the axonemal super complex. Surprisingly, a phosphomimetic LC8 mutation, which is largely monomeric in vitro, is still dimeric in vivo and does not significantly change flagellar generation and motility. The differential defects in these flagellar complexes support the structural model and indicate that modulation of target proteins by LC8 leads to the proper assembly of complexes and ultimately higher level complexes. Furthermore, the ability of flagellar complexes to incorporate the phosphomimetic LC8 protein and the modest defects observed in the phosphomimetic LC8 mutant suggest that LC8 phosphorylation is not an effective mechanism for regulating molecular complexes.  相似文献   

10.
Presentation of antigenic peptides to CTLs at the cell surface first requires assembly of MHC class I with peptide and beta 2-microglobulin in the endoplasmic reticulum. This process involves an assembly complex of several proteins, including TAP, tapasin, and calreticulin, all of which associate specifically with the beta 2-microglobulin-assembled, open form of the class I heavy chain. To better comprehend at a molecular level the regulation of class I assembly, we have assessed the influence of multiple individual amino acid substitutions in the MHC class I alpha 2 domain on interaction with TAP, tapasin, and calreticulin. In this report, we present evidence indicating that many residues surrounding position 134 in H-2Ld influence interaction with assembly complex components. Most mutations decreased association, but one (LdK131D) strongly increased it. The Ld mutants, with the exception of LdK131D, exhibited characteristics suggesting suboptimal intracellular peptide loading, similar to the phenotype of Ld expressed in a tapasin-deficient cell line. Notably, K131D was less peptide inducible than wild-type Ld, which is consistent with its unusually strong association with the endoplasmic reticulum assembly complex.  相似文献   

11.
The flhB and flhA genes constitute an operon called flhB operon on the Salmonella typhimurium chromosome. Their gene products are required for formation of the rod structure of flagellar apparatus. Furthermore, several lines of evidence suggest that they, together with FliI and FliH, may constitute the export apparatus of flagellin, the component protein of flagellar filament. In this study, we determined the nucleotide sequence of the entire flhB operon from S. typhimurium. It was shown that the flhB and flhA genes encode highly hydrophobic polypeptides with calculated molecular masses of 42,322 and 74,848 Da, respectively. Both proteins have several potential membrane-spanning segments, suggesting that they may be integral membrane proteins. The flhB operon was found to contain an additional open reading frame capable of encoding a polypeptide with a calculated molecular mass of 14,073 Da. We designated this open reading frame flhE. The N-terminal 16 amino acids of FlhE displays a feature of a typical signal sequence. A maxicell labeling experiment enabled us to identify the precursor and mature forms of the flhE gene products. Insertion of a kanamycin-resistant gene cartridge into the chromosomal flhE gene did not affect the motility of the cells, indicating that the flhE gene is not essential for flagellar formation and function. We have overproduced and purified N-terminally truncated FlhB and FlhA proteins and raised antibodies against them. By use of these antibodies, localization of the FlhB and FlhA proteins was analyzed by Western blotting (immunoblotting) with the fractionated cell extracts. The results obtained indicated that both proteins are localized in the cytoplasmic membrane.  相似文献   

12.
Physical characterization of Caulobacter crescentus flagella.   总被引:23,自引:18,他引:5       下载免费PDF全文
Preparations of intact flagella isolated from Caulobacter crescentus CB13B1a were found to contain two protein species of apparent molecular weights 28,000 and 25,000. Both proteins cross-reacted completely with each other and with purified flagella in Ouchterlony double-immunodiffusion assays. The amino acid compositions of the isolated proteins were similar to one another but precluded any precursor-product relationship. Absence of both the 25,000- and 28,000-molecular-weight proteins from a number of nonmotile mutants and the simultaneous reappearance of these proteins in a motile revertant provide further evidence of the relationship of these two proteins to flagellar structure.  相似文献   

13.
14.
The flagellar protein (flagellin) was isolated and purified from strains of Pseudomonas aeruginosa, Burkholderia cepacia and Stenotrophomonas maltophilia. A significant difference was observed in the molecular weight of different flagellin preparations obtained from these bacterial isolates. Antiserum prepared against S. maltophilia flagellin did not react with flagellin of P. aeruginosa or/and B. cepacia on Immunoblot or in indirect ELISA. In addition the anti-flagellin did not agglutinate P. aeruginosa and B. cepacia. No inhibition of motility of P. aeruginosa and B. cepacia was observed in presence of antiserum; though the latter inhibited the motility of S. maltophilia. The results of the present study prove that no specific relationship existed among all the studied flagellar proteins obtained from closely related bacteria.  相似文献   

15.
Glycosylation of proteins is known to impart novel physical properties and biological roles to proteins from both eukaryotes and prokaryotes. In this study, gel-based glycoproteomics were used to identify glycoproteins of the potential biothreat agent Burkholderia pseudomallei and the closely related but nonpathogenic B. thailandensis. Top-down and bottom-up mass spectrometry (MS) analyses identified that the flagellin proteins of both species were posttranslationally modified by novel glycans. Analysis of proteins from two strains of each species demonstrated that B. pseudomallei flagellin proteins were modified with a glycan with a mass of 291 Da, while B. thailandensis flagellin protein was modified with related glycans with a mass of 300 or 342 Da. Structural characterization of the B. thailandensis carbohydrate moiety suggests that it is an acetylated hexuronic acid. In addition, we have identified through mutagenesis a gene from the lipopolysaccharide (LPS) O-antigen biosynthetic cluster which is involved in flagellar glycosylation, and inactivation of this gene eliminates flagellar glycosylation and motility in B. pseudomallei. This is the first report to conclusively demonstrate the presence of a carbohydrate covalently linked to a protein in B. pseudomallei and B. thailandensis, and it suggests new avenues to explore in order to examine the marked differences in virulence between these two species.  相似文献   

16.
A giant protein with an apparent molecular mass of 2,300-kDa was identified in the Triton X-100 soluble fraction of Crithidia luciliae thermophila. Polyclonal antibody raised against this protein reacted by immunoblot analysis with proteins of similar molecular mass in Crithidia fasciculata and Crithidia oncopelti. In addition, the antibody immunoprecipitates the protein either after in vivo phosphorylation with [32P]orthophosphoric acid or after metabolically labeling with [35S]methionine. Indirect immunofluorescence microscopy analysis performed either with fixed or with live parasites showed a single fluorescent spot at the level of the flagellar pocket region. Immunogold electron microscopy of thin sections of the parasite revealed that the antigen is localized at a restricted area of the spongiome, between the contractile vacuole and the flagellar pocket. Furthermore, Triton X-114 phase separation of whole cell membrane proteins, metabolically labeled with [35S]methionine, demonstrated that the giant protein remains in the aqueous phase. These results indicate that this phosphoprotein behaves as a peripheral membrane protein localized at the spongiome region, suggesting that it might be involved in the osmoregulatory process.  相似文献   

17.
Z Li  F Dumas  D Dubreuil    M Jacques 《Journal of bacteriology》1993,175(24):8000-8007
We have previously reported that a 46-kDa protein present in an outer membrane protein preparation seemed to be a species-specific antigen of Serpulina hyodysenteriae (Z. S. Li, N. S. Jensen, M. Bélanger, M.-C. L'Espérance, and M. Jacques, J. Clin. Microbiol. 30:2941-2947, 1992). The objective of this study was to further characterize this antigen. A Western blot (immunoblot) analysis and immunogold labeling with a monospecific antiserum against this protein confirmed that the protein was present in all S. hyodysenteriae reference strains but not in the nonpathogenic organism Serpulina innocens. The immunogold labeling results also indicated that the protein was associated with the periplasmic flagella of S. hyodysenteriae. N-terminal amino acid sequencing confirmed that the protein was in fact a periplasmic flagellar sheath protein. The molecular mass of this protein, first estimated to be 46 kDa by Western blotting, was determined to be 44 kDa when the protein was evaluated more precisely by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the protein was glycosylated, as determined by glycoprotein staining and also by N-glycosidase F treatment. Five other periplasmic flagellar proteins of S. hyodysenteriae, which may have been the core proteins and had molecular masses of 39, 35, 32, 30, and 29 kDa, were antigenically related and cross-reacted with the periplasmic flagellar proteins of S. innocens. Finally, serum from a pig experimentally infected with S. hyodysenteriae recognized the 44-kDa periplasmic flagellar sheath protein. Our results suggest that the 44-kDa periplasmic flagellar sheath protein of S. hyodysenteriae is a species-specific glycoprotein antigen.  相似文献   

18.

Background

Intraflagellar transport (IFT) is the bidirectional movement of IFT particles between the cell body and the distal tip of a flagellum. Organized into complexes A and B, IFT particles are composed of at least 18 proteins. The function of IFT proteins in flagellar assembly has been extensively investigated. However, much less is known about the molecular mechanism of how IFT is regulated.

Methodology/Principal Findings

We herein report the identification of a novel IFT particle protein, IFT25, in Chlamydomonas. Dephosphorylation assay revealed that IFT25 is a phosphoprotein. Biochemical analysis of temperature sensitive IFT mutants indicated that IFT25 is an IFT complex B subunit. In vitro binding assay confirmed that IFT25 binds to IFT27, a Rab-like small GTPase component of the IFT complex B. Immunofluorescence staining showed that IFT25 has a punctuate flagellar distribution as expected for an IFT protein, but displays a unique distribution pattern at the flagellar base. IFT25 co-localizes with IFT27 at the distal-most portion of basal bodies, probably the transition zones, and concentrates in the basal body region by partially overlapping with other IFT complex B subunits, such as IFT46. Sucrose density gradient centrifugation analysis demonstrated that, in flagella, the majority of IFT27 and IFT25 including both phosphorylated and non-phosphorylated forms are cosedimented with other complex B subunits in the 16S fractions. In contrast, in cell body, only a fraction of IFT25 and IFT27 is integrated into the preassembled complex B, and IFT25 detected in complex B is preferentially phosphorylated.

Conclusion/Significance

IFT25 is a phosphoprotein component of IFT particle complex B. IFT25 directly interacts with IFT27, and these two proteins likely form a subcomplex in vivo. We postulate that the association and disassociation between the subcomplex of IFT25 and IFT27 and complex B might be involved in the regulation of IFT.  相似文献   

19.
20.
Chlamydomonas flagella exhibit force transduction in association with their surface. This flagellar surface motility is probably used both for whole cell gliding movements (flagella-substrate interaction) and for reorientation of flagella during mating (flagella-flagella interaction). The present study seeks to identify flagellar proteins that may function as exposed adhesive sites coupled to a motor responsible for their translocation in the plane of the plasma membrane. The principal components of the flagellar membrane are a pair of glycoproteins (approximately 350,000 mol wt), with similar mobility on SDS polyacrylamide gels. A rabbit IgG preparation has been obtained which is specific for these two glycoproteins; this antibody preparation binds to and agglutinates cells by their flagellar surfaces only. Treatment of cells with 0.1 mg/ml pronase results in a loss of motility-coupled flagellar membrane adhesiveness. This effect is totally reversible, but only in the presence of new protein synthesis. The major flagellar protein modified by this pronase treatment is the faster migrating of the two high molecular weight glycoproteins; the other glycoprotein does not appear to be accessible to external proteolytic digestion. Loss and recovery of flagella surface binding sites for the specific antibody parallels the loss and recovery of the motility-coupled flagellar surface adhesiveness, as measured by the binding and translocation of polystyrene microspheres. These observations suggest, but do not prove, that the faster migrating of the major high molecular weight flagellar membrane glycoproteins may be the component which provides sites for substrate interaction and couples these sites to the cytoskeletal components responsible for force transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号