首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondrial DNA (mtDNA) encodes for proteins required for oxidative phosphorylation, and mutations affecting the genome have been linked to a number of diseases as well as the natural ageing process in mammals. Human mtDNA is replicated by a molecular machinery that is distinct from the nuclear replisome, but there is still no consensus on the exact mode of mtDNA replication. We here demonstrate that the mitochondrial single-stranded DNA binding protein (mtSSB) directs origin specific initiation of mtDNA replication. MtSSB covers the parental heavy strand, which is displaced during mtDNA replication. MtSSB blocks primer synthesis on the displaced strand and restricts initiation of light-strand mtDNA synthesis to the specific origin of light-strand DNA synthesis (OriL). The in vivo occupancy profile of mtSSB displays a distinct pattern, with the highest levels of mtSSB close to the mitochondrial control region and with a gradual decline towards OriL. The pattern correlates with the replication products expected for the strand displacement mode of mtDNA synthesis, lending strong in vivo support for this debated model for mitochondrial DNA replication.  相似文献   

2.
3.
HARP (SMARCAL1, MARCAL1) is an annealing helicase that functions in the repair and restart of damaged DNA replication forks through its DNA branch migration and replication fork regression activities. HARP is conserved among metazoans. HARP from invertebrates differs by the absence of one of the two HARP-specific domain repeats found in vertebrates. The annealing helicase and branch migration activity of invertebrate HARP has not been documented. We found that HARP from Drosophila melanogaster retains the annealing helicase activity of human HARP, the ability to disrupt D-loops and to branch migrate Holliday junctions, but fails to regress model DNA replication fork structures. A comparison of human and Drosophila HARP on additional substrates revealed that both HARPs are competent in branch migrating a bidirectional replication bubble composed of either DNA:DNA or RNA:DNA hybrid. Human, but not Drosophila, HARP is also capable of regressing a replication fork structure containing a highly stable poly rG:dC hybrid. Persistent RNA:DNA hybrids in vivo can lead to replication fork arrest and genome instability. The ability of HARP to strand transfer hybrids may signify a hybrid removal function for this enzyme, in vivo.  相似文献   

4.
The mechanisms of mitochondrial DNA replication have been hotly debated for a decade. The strand‐displacement model states that lagging‐strand DNA synthesis is initiated from the origin of light‐strand DNA replication (OriL), whereas the strand‐coupled model implies that OriL is dispensable. Mammalian mitochondria cannot be transfected and the requirements of OriL in vivo have therefore not been addressed. We here use in vivo saturation mutagenesis to demonstrate that OriL is essential for mtDNA maintenance in the mouse. Biochemical and bioinformatic analyses show that OriL is functionally conserved in vertebrates. Our findings strongly support the strand‐displacement model for mtDNA replication.  相似文献   

5.
Mitochondrial topoisomerase I (Top1mt) is a type IB topoisomerase present in vertebrates and exclusively targeted to mitochondria. Top1mt relaxes mitochondrial DNA (mtDNA) supercoiling by introducing transient cleavage complexes wherein the broken DNA strand swivels around the intact strand. Top1mt cleavage complexes (Top1mtcc) can be stabilized in vitro by camptothecin (CPT). However, CPT does not trap Top1mtcc efficiently in cells and is highly cytotoxic due to nuclear Top1 targeting. To map Top1mtcc on mtDNA in vivo and to overcome the limitations of CPT, we designed two substitutions (T546A and N550H) in Top1mt to stabilize Top1mtcc. We refer to the double-mutant enzyme as Top1mt*. Using retroviral transduction and ChIP-on-chip assays with Top1mt* in Top1mt knock-out murine embryonic fibroblasts, we demonstrate that Top1mt* forms high levels of cleavage complexes preferentially in the noncoding regulatory region of mtDNA, accumulating especially at the heavy strand replication origin OH, in the ribosomal genes (12S and 16S) and at the light strand replication origin OL. Expression of Top1mt* also caused rapid mtDNA depletion without affecting mitochondria mass, suggesting the existence of specific mitochondrial pathways for the removal of damaged mtDNA.  相似文献   

6.
The mode of replication of mitochondrial DNA in Paramecium aurelia was studied using 5-bromouracil incorporation. Density gradient analysis showed that 5-BrUra-substituted mitochondrial DNA had a density of 1.702 g/cm3, corresponding to 4% substitution in the duplex. Analysis of monomer length molecules revealed that these consisted of a mixture of normal density and 5-BrUra-substituted DNA, whereas dimer length molecules consisted of only 5-BrUra-substituted DNA. Analysis of denatured, 5-BrUra-substituted DNA indicated that the 5-BrUra was contained in just one strand, while the other strand had the density expected of normal mitochondrial DNA. It was concluded that the linear molecules from mitochondrial DNA of P. aurelia replicate via a semi-conservative mode of replication.  相似文献   

7.
Chromosomal DNA replication intermediates, revealed in ligase-deficient conditions in vivo, are of low molecular weight (LMW) independently of the organism, suggesting discontinuous replication of both the leading and the lagging DNA strands. Yet, in vitro experiments with purified enzymes replicating sigma-structured substrates show continuous synthesis of the leading DNA strand in complete absence of ligase, supporting the textbook model of semi-discontinuous DNA replication. The discrepancy between the in vivo and in vitro results is rationalized by proposing that various excision repair events nick continuously synthesized leading strands after synthesis, producing the observed LMW intermediates. Here, we show that, in an Escherichia coli ligase-deficient strain with all known excision repair pathways inactivated, new DNA is still synthesized discontinuously. Furthermore, hybridization to strand-specific targets demonstrates that the LMW replication intermediates come from both the lagging and the leading strands. These results support the model of discontinuous leading strand synthesis in E. coli.  相似文献   

8.
9.
G-quadruplex (G4) DNA structures have emerged as important regulatory elements during DNA metabolic transactions. While many in vitro studies have focused on the kinetics of G4 formation within DNA single-strands, G4 are found in vivo in double-stranded DNA regions, where their formation is challenged by the complementary strand. Since the energy of hybridization of Watson-Crick structures dominates the energy of G4 folding, this competition should play a critical role on G4 persistence. To address this, we designed a single-molecule assay allowing to measure G4 folding and persistence times in the presence of the complementary strand. We quantified both folding and unfolding rates of biologically relevant G4 sequences, such as the cMYC and cKIT oncogene promoters, human telomeres and an avian replication origin. We confirmed that G4s are found much more stable in tested replication origin and promoters than in human telomere repeats. In addition, we characterized how G4 dynamics was affected by G4 ligands and showed that both folding rate and persistence time increased. Our assay opens new perspectives for the measurement of G4 dynamics in double-stranded DNA mimicking a replication fork, which is important to understand their role in DNA replication and gene regulation at a mechanistic level.  相似文献   

10.
Polymerase δ is widely accepted as the lagging strand replicative DNA polymerase in eukaryotic cells. It forms a replication complex in the presence of replication factor C and proliferating cell nuclear antigen to perform efficient DNA synthesis in vivo. In this study, the human lagging strand holoenzyme was reconstituted in vitro. The rate of DNA synthesis of this holoenzyme, measured with a singly primed ssM13 DNA substrate, is 4.0 ± 0.4 nucleotides. Results from adenosine 5′-(3-thiotriphosphate) tetralithium salt (ATPγS) inhibition experiments revealed the nonprocessive characteristic of the human DNA polymerase (Pol δ) holoenzyme (150 bp for one binding event), consistent with data from chase experiments with catalytically inactive mutant Pol δAA. The ATPase activity of replication factor C was characterized and found to be stimulated ∼10-fold in the presence of both proliferating cell nuclear antigen and DNA, but the activity was not shut down by Pol δ in accord with rapid association/dissociation of the holoenzyme to/from DNA. It is noted that high concentrations of ATP inhibit the holoenzyme DNA synthesis activity, most likely due to its inhibition of the clamp loading process.  相似文献   

11.
We have characterized a soluble enzyme system from adenovirus-infected cells that is capable of replicating exogenously added adenovirus DNA in vitro. Maximal DNA synthesis is observed when DNA-protein complex, isolated from purified adenovirus virions, is added as template. Under these conditions DNA replication starts at or near either end of the template. Daughter strand synthesis then proceeds in the 5′ to 3′ direction displacing the parental strand of the same polarity. Thus, the r daughter strand is synthesized from right to left on the conventional map of the adenovirus genome, and the l daughter strand is synthesized from left to right. This course of events is the same as that which occurs during adenovirus DNA replication in vivo. In contrast, when deproteinized adenovirus DNA is added to the in vitro system, the limited DNA synthesis that is observed appears to be due to a repair-like reaction. In particular, synthesis can begin at many sites within the template, and the synthetic product consists largely of short DNA chains that are covalently linked to template DNA strands.  相似文献   

12.
13.
Homologous recombination (HR) is a key pathway that repairs DNA double‐strand breaks (DSBs) and helps to restart stalled or collapsed replication forks. How HR supports replication upon genotoxic stress is not understood. Using in vivo and in vitro approaches, we show that the MMS22L–TONSL heterodimer localizes to replication forks under unperturbed conditions and its recruitment is increased during replication stress in human cells. MMS22L–TONSL associates with replication protein A (RPA)‐coated ssDNA, and the MMS22L subunit directly interacts with the strand exchange protein RAD51. MMS22L is required for proper RAD51 assembly at DNA damage sites in vivo, and HR‐mediated repair of stalled forks is abrogated in cells expressing a MMS22L mutant deficient in RAD51 interaction. Similar to the recombination mediator BRCA2, recombinant MMS22L–TONSL limits the assembly of RAD51 on dsDNA, which stimulates RAD51‐ssDNA nucleoprotein filament formation and RAD51‐dependent strand exchange activity in vitro. Thus, by specifically regulating RAD51 activity at uncoupled replication forks, MMS22L–TONSL stabilizes perturbed replication forks by promoting replication fork reversal and stimulating their HR‐mediated restart in vivo.  相似文献   

14.
Structure of F-actin needles from extracts of sea urchin oocytes   总被引:12,自引:0,他引:12  
The mouse L-cell line LD maintains its mitochondrial DNA genome in the form of a head-to-tail unicircular dimer of the monomeric 16,000 base-pair species. This situation permits a comparison of the mechanism of replication of this dimeric molecule with our previous studies of replication of monomeric mouse L-cell mitochondrial DNA. Whereas monomeric mitochondrial DNA requires about one hour for a round of replication, the dimeric molecule requires almost three hours. Denaturing agarose gel electrophoretic analyses of replicative intermediates reveals several discrete size classes of partially replicated daughter strands of dimeric mitochondrial DNA. This suggests that replication occurs with specific discontinuities in the rate of daughter strand synthesis. The strand specificity of these daughter strands was determined by hybridization with 32P-labeled DNA representing either the heavy or light strand mitochondrial DNA sequence. The sizes and strand specificities of these discrete daughter strands indicate that the same set of control sequences is functional in both dimer and monomer mitochondrial DNA replication.Immediately following a round of replication, the majority of dimeric mitochondrial DNA molecules contain displacement loops, as assessed by their sensitivity to nicking within the displaced DNA strand by single-strand DNA specific S1 nuclease under conditions which leave supercoiled DNA intact. This result is in contrast with the conformation of newly replicated monomeric mitochondrial DNA molecules, which lack both superhelical turns and displacement loops. This indicates that dimeric mitochondrial DNA proceeds through a different series of post-replicative processing steps than does monomeric mitochondrial DNA. We postulate that intermediates at late stages of dimeric mitochondrial DNA replication contain displacement loops which remain intact following closure of the full-length daughter strands.  相似文献   

15.
16.
Trypanosoma brucei''s mitochondrial genome, kinetoplast DNA (kDNA), is a giant network of catenated DNA rings. The network consists of a few thousand 1 kb minicircles and several dozen 23 kb maxicircles. Here we report that TbPIF5, one of T. brucei''s six mitochondrial proteins related to Saccharomyces cerevisiae mitochondrial DNA helicase ScPIF1, is involved in minicircle lagging strand synthesis. Like its yeast homolog, TbPIF5 is a 5′ to 3′ DNA helicase. Together with other enzymes thought to be involved in Okazaki fragment processing, TbPIF5 localizes in vivo to the antipodal sites flanking the kDNA. Minicircles in wild type cells replicate unidirectionally as theta-structures and are unusual in that Okazaki fragments are not joined until after the progeny minicircles have segregated. We now report that overexpression of TbPIF5 causes premature removal of RNA primers and joining of Okazaki fragments on theta structures. Further elongation of the lagging strand is blocked, but the leading strand is completed and the minicircle progeny, one with a truncated H strand (ranging from 0.1 to 1 kb), are segregated. The minicircles with a truncated H strand electrophorese on an agarose gel as a smear. This replication defect is associated with kinetoplast shrinkage and eventual slowing of cell growth. We propose that TbPIF5 unwinds RNA primers after lagging strand synthesis, thus facilitating processing of Okazaki fragments.  相似文献   

17.

Background

Reduced cell spreading is a prominent feature of aged dermal fibroblasts in human skin in vivo. Mitochondrial DNA (mtDNA) common deletion has been reported to play a role in the human aging process, however the relationship between age-related reduced cell spreading and mtDNA common deletion has not yet been reported.

Results

To examine mtDNA common deletion in the dermis of aged human skin, the epidermis was removed from full-thickness human skin samples using cryostat. mtDNA common deletion was significantly elevated in the dermis of both naturally aged and photoaged human skin in vivo. To examine the relationship between age-related reduced cell spreading and mtDNA common deletion, we modulated the shape of dermal fibroblasts by disrupting the actin cytoskeleton. Reduced cell spreading was associated with a higher level of mtDNA common deletion and was also accompanied by elevated levels of endogenous reactive oxygen species (ROS). Boosting cellular antioxidant capacity by using antioxidants was found to be protective against mtDNA common deletion associated with reduced cell spreading.

Conclusion

mtDNA common deletion is highly prevalent in the dermis of both naturally aged and photoaged human skin in vivo. mtDNA common deletion in response to reduced cell spreading is mediated, at least in part, by elevated oxidative stress in human dermal fibroblasts. These data extend current understanding of the mitochondrial theory of aging by identifying the connection between mtDNA common deletion and age-related reduction of cell spreading.  相似文献   

18.
The role of the human RECQ5β helicase in the maintenance of genomic stability remains elusive. Here we show that RECQ5β promotes strand exchange between arms of synthetic forked DNA structures resembling a stalled replication fork in a reaction dependent on ATP hydrolysis. BLM and WRN can also promote strand exchange on these structures. However, in the presence of human replication protein A (hRPA), the action of these RecQ-type helicases is strongly biased towards unwinding of the parental duplex, an effect not seen with RECQ5β. A domain within the non-conserved portion of RECQ5β is identified as being important for its ability to unwind the lagging-strand arm and to promote strand exchange on hRPA-coated forked structures. We also show that RECQ5β associates with DNA replication factories in S phase nuclei and persists at the sites of stalled replication forks after exposure of cells to UV irradiation. Moreover, RECQ5β is found to physically interact with the polymerase processivity factor proliferating cell nuclear antigen in vitro and in vivo. Collectively, these findings suggest that RECQ5β may promote regression of stalled replication forks to facilitate the bypass of replication-blocking lesions by template-switching. Loss of such activity could explain the elevated level of mitotic crossovers observed in RECQ5β-deficient cells.  相似文献   

19.
20.
In vivo methylation of replicating bacteriophage phi chi174 DNA   总被引:4,自引:0,他引:4  
The pattern of DNA methylation during the infection of Escherichia coli C cells with bacteriophage φX174, has been studied. In vivo methylated DNA was isolated and analyzed using the following techniques: velocity sedimentation through neutral and alkaline sucrose gradients, isopycnic analysis, chromatography on benzoylated DBAE-cellulose columns and specific enzymatic digestion. All these analytical methods indicated that the DNA molecules that are methylated during the process of phage φX DNA replication are the replicating intermediates composed of a circular complementary strand and a viral strand larger than one genome length. It is concluded that methylation occurs on the nascent DNA strand of the replicating intermediates involved in the synthesis of progeny single-stranded DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号