首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The preferential hydroxylation of (S)-mephenytoin to 4′-hydroxymephenytoin (4′-OH-M) displays a genetic polymorphism of drug metabolism in humans. Thus the excreted 4′-OH-M is considered to be an important marker for the hepatic (S)-mephenytoin 4′-hydroxylase. Accordingly, a mixture of urine containing total 4′-OH-M after enzymatic deconjugation and phenobarbital as internal standard (I.S.) was extracted with absolute diethyl ether. The residue remaining after evaporation was dissolved in 50 μl of eluate and 20 μl were injected into the chromatographic system. All components were separated isocratically on a reversed-phase column using acetonitrile-water (24:76, v/v) as the mobile phase at a flow-rate of 1.2 ml/min. The effluent was monitored at 204 nm. The retention times for 4′-OH-M and the I.S. were within 6 min. The absolute recovery was in the range 84–89% for 4′-OH-M and that of the I.S. was 75.9 ± 4.2%. Quantification was performed by measuring the peak-height ratio compared with the ratio of the amount of 4′-OH-M divided by that of the I.S. The intra- and inter-day variations were less than 8% and 10%, respectively. The proposed method is simpler and more convenient than those reported previously. Its practical applicability was assessed by phenotyping the efficient and deficient hydroxylators among the Chinese minorities and Han Chinese populations.  相似文献   

2.
A high-performance liquid chromatographic method for the determination of a new fluoroquinolone antimicrobial agent, (S)-10-[(S)-(8-amino-6-azaspiro[3,4]octan-6-yl)]-9-fluoro-2,3-dihydro-3-methyl-7-oxo-7H-pyrido [1,2,3-de][1,4]benzoxazine-6-carboxylic acid hemihydrate (DV-7751a, I) in human serum and urine has been developed. Compound I and the internal standard were extracted from serum and urine by means of Bond Elut C8 LRC column. The extracts were chromatographed on a reversed-phase Inertsil ODS-2 column using tetrahydrofuran-50 mM KH2PO4 (pH 2)-1 M ammonium acetate (19:81:1, v/v) as the mobile phase at a flow-rate of 1.0 ml/min. Fluorescence detection at an excitation wavelength of 305 nm and an emission wavelength of 530 nm resulted in a limit of quantitation of 0.0098 μg/ml for serum and 0.098 μg/ml for urine. The method showed satisfactory sensitivity, precision, accuracy, recovery and selectivity. Stability studies showed that I was stable in serum and urine for at least 1 month at −20°C and for at least 48 h at room temperature.  相似文献   

3.
A simple, accurate and precise high-performance liquid chromatographic method was developed and validated for the determination of trovafloxacin, a new quinolone antibiotic, in serum and urine. Following solid-phase extraction, chromatographic separation was accomplished using a C18 column with a mobile phase consisting of 0.04 M H3PO4-acetonitrile-tetrabutylammonium hydroxide-0.005 M dibutyl amine phosphate (D-4) reagent (83:16.85:0.05:0.1, v/v), pH 3. Trovafloxacin and the internal standard (a methyl derivative of trovafloxacin) were detected by ultraviolet absorbance at 275 nm. The lower limit of quantification for trovafloxacin was 0.1 μg/ml and the calibration curves were linear over a concentration range of 0.1 to 20..0 μg/ml (r2 = 0.9997). The average recoveries were greater than 70% for both trovafloxacin and internal standard. The intra-day and inter-day coefficients of variation were generally less than 5% in urine and serum over the concentration range of 0.1 to 20.0 μg/ml. Human serum samples could be stored for up to 12 months at −20°C and urine samples could be stored up to 18 months at −80°C.  相似文献   

4.
A liquid chromatographic method with photometric detection for the determination of cilazapril and its active metabolite and degradation product cilazaprilat in urine and pharmaceuticals has been developed. The chromatographic method consisted of a μBondapak C18 column maintained at 30±0.2°C, using a mixture of methanol-10 mM phosphoric acid (50:50 v/v) as mobile phase at a flow-rate of 1.0 ml/min. Enalapril maleate was used as internal standard. The detection was performed at a wavelength of 206 nm. A study of the retention of cilazapril and cilazaprilat using solid–liquid extraction has been carried out in order to optimise the clean-up procedure for urine samples, which consisted of a solid–liquid extraction using C8 cartridges. Recoveries greater than 85% are obtained for both compounds. The method was sensitive, precise and accurate enough to be applied to the determination of urine samples obtained from three hypertensive patients up to 24 h after intake of a therapeutic dose (detection limit of 70 ng/ml for cilazapril and cilazaprilat in urine). A comparison of the method developed using photometric and amperometric detection has been carried out.  相似文献   

5.
A high-performance liquid chromatographic method was developed for the determination of a new non-narcotic analgesic, DA-5018 (I), in rat plasma, urine and bile samples, using propranolol for plasma samples and protriptyline for urine and bile samples as internal standards. The method involved extraction followed by injection of 100 μl of the aqueous layer onto a C18 reversed-phase column. The mobile phases were 5 mM methanesulfonic acid with 10 mM NaH2PO4 (pH 2.5)-acetonitrile, 70:30 (v/v) for plasma samples and 75:25 (v/v) for urine and bile samples. The flow-rates were 1.0 ml/min for plasma samples and 1.2 ml/min for urine and bile samples. The column effluent was monitored by a fluorescence detector with an excitation wavelength of 270 nm and an emission wavelength of 330 nm. The retention time for I was 4.8 min in plasma samples and 10.0 min in urine and bile samples. The detection limits for I in rat plasma, urine and bile were 20, 100 and 100 ng/ml, respectively. There was no interference from endogenous substances.  相似文献   

6.
A high-performance liquid chromatographic method was developed for the simultaneous determination of phenylbutazone and its metabolites, oxyphenbutazone and γ-hydroxyphenylbutazone, in plasma and urine. Samples were acidified with hydrochloric acid and extracted with benzene—cyclohexane (1:1, v/v). The extract was redissolved in methanol and chromatographed on a μBondapak C15 column using a mobile phase of methanol—0.01 M sodium acetate buffer (pH 4.0) in a linear gradient (50 to 100% methanol at 5%/min; flow-rate 2.0 ml/min) in a high-performance liquid chromatograph equipped with an ultra-violet absorbance detector (254 nm). The detection limit for phenylbutazone, oxyphenbutazone and for γ-hydroxyphenylbutazone was 0.05 μg/ml.A precise and sensitive assay for the determination of phenylbutazone and its metabolites was established.  相似文献   

7.
The present describes a new high-performance liquid chromatographic method with fluorescence detection for the analysis of levodropropizine [S-(−)-3-(4-phenylpiperazin-1-yl)-propane-1,2-diol] (Levotuss), an anti-tussive drug, in human serum and plasma. A reversed-phase separation of levodropropizine was coupled with detection of the native fluorescence of the molecule, using excitation and emission wavelengths of 240 nm and 350 nm respectively. The analytical column was packed with spherical 5 μm poly(styrene-divinylbenzene) particles and the mobile phase was 0.1 M NaH2PO4 pH 3-methanol (70:30, v/v), containing 0.5% (v/v) tetrahydrofuran. For quantitation, p-methoxylevodropropizine was used as the internal standard. Samples of 200 μl of either serum or plasma were mixed with 200 μl of 0.1 M Na2HPO4 pH 8.9 and extracted with 5 ml of chloroform-2-propanol (9:1, v/v). The dried residue from the organic extract was redissolved with distilled water and directly injected into the chromatograph. The limit of detection for levodropropizine, in biological matrix, was about 1–2 ng/ml, at a signal-to-noise ratio of 3. The linearity was satisfactory over a range of concentrations from 3 to 1000 ng/ml (r2 = 0.99910); within-day precision tested in the range 5–100 ng/ml as well as day-to-day reproducibility proved acceptable, with relative standard deviations better than 1% in most cases. Interferences from as many as 91 therapeutic or illicit drugs were excluded.  相似文献   

8.
A rapid, highly sensitive method for the determination of morphine and its metabolites morphine-3-glucuronide (M3G), morphine-6-glucuronide (M6G) and normorphine has been developed using high-performance liquid chromatography–electrospray mass spectrometry, with the deuterated analogues as internal standards. The analytes were extracted automatically using end-capped C2 solid-phase extraction cartridges. Baseline separation of morphine, M3G and M6G was achieved on a LiChrospher 100 RP-18 end-capped analytical column (125×3 mm I.D., 5 μm particle size) with water–acetonitrile–tetrahydrofuran–formic acid (100:1:1:0.1, v/v) as the mobile phase. Morphine and normorphine coeluate and were separated mass spectrometrically. The mass spectrometer was operated in the selected-ion monitoring mode using m/z 272 for normorphine, m/z 286 for morphine, m/z 462 for morphine-6-glucuronide. Due to an interfering peak, M3G was measured by tandem mass spectrometry in the daughter-ion mode. The limits of quantitation achieved with this method were 1.3 pmol/ml for morphine, 1.5 pmol/ml for normorphine, 1.0 pmol/ml for M6G and 5.4 pmol/ml for M3G in serum or cerebrospinal fluid. The limits of quantitation achieved in urine were 10 pmol/ml for morphine, 20 pmol/ml for normorphine and M6G and 50 pmol/ml for M3G using a sample size of 100 μl. The method described was successfully applied to the determination of morphine and its metabolites in human serum, cerebrospinal fluid and urine in pharmacokinetic and drug interaction studies.  相似文献   

9.
A new high-performance liquid chromatographic method for simultaneous determination of primidone (PRM) and of its three major metabolites, phenobarbital (PB), p-hydroxyphenobarbital (p-HO-PB) and phenylethylmalonamide (PEMA), in rat urine, was developed. After acid hydrolysis, these compounds were extracted from urine by means of a Bond Elut Certify LRC column with good clean-up. The extracts were chromatographed on a C18 reversed-phase column using isocratic elution at 40°C, with UV detection at 227 nm. The limit of detection was 0.5 mg/ml for the four compounds. Good linearity (r2>0.99) was observed within the calibration ranges studied: 37.4–299.3 μg/ml for PRM, 26.4–211.2 μg/ml for PB, 12.5–100.2 μg/ml for p-HO-PB and 12.1–97.0 μg/ml for PEMA. Repeatability was in the range 3.1–6.8%. This method constitutes a useful tool for studies on the influence of various parameters on primidone metabolism.  相似文献   

10.
A rapid and simple high-performance liquid chromatographic method with amperometric detection has been developed for the quantitation of cilazapril and its active metabolite and degradation product cilazaprilat in urine and tablets. The chromatographic system consisted of a μBondapak C18 column, using a mixture of methanol–5 mM phosphoric acid (50:50, v/v) as mobile phase, which was pumped at a flow-rate of 1.0 ml/min. The column was kept at a constant temperature of (40±0.2)°C. Detection was performed using a glassy carbon electrode at a potential of 1350 mV. Sample preparation for urine consisted of a solid-phase extraction using C8 cartridges. This procedure allowed recoveries greater than 85% for both compounds. The method proved to be accurate, precise and sensitive enough to be applied to pharmacokinetic studies and it has been applied to urine samples obtained from four hypertensive patients (detection limit of 50 ng/ml for cilazapril and 40 ng/ml for cilazaprilat in urine). Results were in good agreement with pharmacokinetic data.  相似文献   

11.
A HPLC–UV determination of clobazam and N-desmethylclobazam in human serum and urine is presented. After simple liquid–liquid extraction with dichloromethane the compounds and an internal standard diazepam were separated on a Supelcosil LC-8-DB column at ambient temperature under isocratic conditions using the mobile phase: CH3CN–water–0.5 M KH2PO4–H3PO4 (440:540:20:0.4, v/v and 360:580:60:0.4, v/v for serum and urine, respectively). The detection was performed at 228 nm with limits of quantification of 2 ng/ml for serum and 1 ng/ml for urine. Relative standard deviations for intra- and inter-assay precision were found below 8% for both compounds for all the tested concentrations. The described procedure may be easily adapted for several 1,4-benzodiazepines.  相似文献   

12.
An improved, more efficient method for the determination of metoprolol and its two metabolites in human urine is reported. The simultaneous analysis of the zwitterionic metoprolol acidic metabolite (III, H117/04) with the basic metabolites α-hydroxymetoprolol (II, H119/66), metoprolol (I) and guanoxan (IV, internal standard) was achieved employing solid-phase extraction and isocratic reversed-phase HPLC. The analytes were extracted from urine (100 μl) using C18 solid-phase extraction cartridges (100 mg), and eluted with aqueous acetic acid (0.1%, v/v)–methanol mixture (40:60, v/v, 1.2 ml). The eluents were concentrated (250 μl) under vacuum, and aliquots (100 μl) were analysed by HPLC with fluorescence detection at 229 nm (excitation) and 309 nm (emission) using simple isocratic reversed-phase HPLC (Novapak C18 radial compression cartridge, 4 μm, 100×5 mm I.D.). Acetonitrile–methanol–TEA/phosphate buffer pH 3.0 (9:1:90, v/v) was employed as the eluent (1.4 ml/min). All components were fully resolved within 18 min, and the calibration curves for the individual analytes were linear (r2≥0.996) within the concentration range of 0.25–40.0 mg/ml. Recoveries for all four analytes were greater than 76% (n=4). The assay method was validated with intra-day and inter-day variations less than 2.5%.  相似文献   

13.
A rapid high-performance liquid chromatographic method has been developed to determine piromidic acid in trout muscle tissue and in urine, in the presence of nalidixic, 7-hydroxymethylnalidixic, oxolinic and pipemidic acids and cinoxacin. A Nova-Pak C18 column was used with acetonitrile–4·10−4 M oxalic acid (40:60, v/v) as the mobile phase. A post-column change of pH was made with NaOH. Fluorimetric detection at 456 nm (λex 275 nm) was used. The instrumental detection limit was 5.91 ng/ml, based on height of peak. Pretreatment of the urine samples was not necessary and fish samples were extracted with sodium hydroxide solutions and cleaned by means of an extraction with chloroform. Detection limit was 147 ng/ml for urine and 5.91 ng/g for trout muscle. Good separation without interference from any other components was obtained. Recovery was better than 87% in urine and better than 72% in trout muscle tissue.  相似文献   

14.
A rapid method is described for the identification and determination of amphetamine and methamphetamine in human urine samples by liquid chromatography with UV-Vis detection. The samples were transferred onto a C18 solid-phase extraction column and chromatographed on a Hypersil ODS RP C18, 5 μm (250 × 4 mm I.D.) with an acetonitrile-water elution gradient containing propylamine. Under these conditions, the amines are eluted with a short retention time. The procedure has been applied to the determination of amphetamine and methamphetamine in the range 0.3–4.0 μg/ml in spiked urine samples. The detection limits at 280 nm were 4 and 2 ng/ml for amphetamine and methamphetamine, respectively. The intra-day and inter-day precision and accuracy of the method were studied.  相似文献   

15.
A new sensitive high-performance liquid chromatographic (HPLC) method with fluorescence detection was developed for the determination of 2-phenylethylamine (PEA) in human urine. The analytical procedure involved a simple extraction of the analyte from urine, followed by precolumn derivatisation of the sample with o-phthalaldehyde. The HPLC separation was performed under isocratic conditions using an Erbasil S C18 (250 × 4.0 mm I.D., particle size 3 μm) reversed-phase column. The limit of quantification was 0.5 ng of PEA/ml of urine. The method showed good linearity, accuracy and precision data in the concentration range 0.5–200 ng/ml of urine. The method was successfully applied to the determination of PEA urinary excretion in Parkinsonian patients after oral administration of the monoamine oxidase B (MAO-B) inhibitor, selegiline.  相似文献   

16.
A simple and rapid (extractionless) high-performance liquid chromatographic method with UV detection, at 330 nm, was developed for the simultaneous determination of piroxicam and its major metabolite, 5′-hydroxypiroxicam, in human plasma and urine. Acidified plasma and alkali-treated urine samples are used and naproxen is added as internal standard. The separation is performed at 40°C on a C18 Spherisorb column with acetonitrile-0.1 M sodium acetate (33:67, v/v, pH 3.3) as mobile phase. The retention time is 2.2 min for 5′-hydroxypiroxicam, 2.6 min for piroxicam and 3.2 min for naproxen. The detection limit is 0.05 μg/ml using a 100-μl loop.  相似文献   

17.
The following metabolites of sulfadiazine (S) were isolated from monkey urine by preparative HPLC: 5-hydroxysulfadiazine (5OH), 4-hydroxysulfadiazine (4OH) and the glucuronide (5OHgluc) and sulfate conjugate of 5OH (5OHsulf). The compounds were identified by NMR, mass and infrared spectrometry and hydrolysis by β-glucuronidase. The analysis of S, the hydroxymetabolites (4OH, 5OH) and conjugates N4-acetylsulfadiazine (N4), 5OHgluc and 5OHsulf in human and monkey plasma and urine samples was performed using reversed-phase gradient HPLC with UV detection. In plasma, S and N4 could be detected in high concentrations, whereas the other metabolites were present in only minute concentrations. In urine, S, the metabolites and conjugates were present. The limit of quantification of the compounds in plasma varies between 0.2 and 0.6 μg/ml (S 0.31, N4 0.40, 4OH 0.20, 5OH 0.37, 5OHgluc 0.33 and 5OHsulf 0.57 μg/ml). In urine it varies between 0.6 and 1.1 μg/ml (S 0.75, N4 0.80, 4OH 0.60, 5OH 0.80, 5OHgluc 0.80 and 5OHsulf 1.1 μg/ml). The method was applied to studies with healthy human subjects and Rhesus monkeys. The metabolites 5OH, 5OHgluc and 5OHsulf were present in Rhesus monkey and not in man. Preliminary results of studies of metabolism and pharmacokinetics in Rhesus monkey and man are presented.  相似文献   

18.
A simple and selective ion-pair HPLC method has been developed for the analysis of clarithromycin in aqueous solutions and in gastric juice. A Hypersil ODS 5-μm (150 × 4.6 mm I.D.) column was used with a mobile phase consisting of acetonitrile-aqueous 0.05 M phosphate buffer (pH 4.6) containing 5 mM 1-octanesulphonic acid (50:50, v/v). The column temperature was 50°C and detection was by UV absorption (210 nm). The limits of detection of 50-μl samples were 0.4 μg/ml (aqueous) and 0.78 μg/ml (0.5 ml gastric juice) or better. The assay was linear in the range of 1.56 to 100 μg/ml with r2 values greater than 0.99. The recovery from the gastric juice samples was 98.5±2.9%. The method was applied successfully to determine the stability of clarithromycin in 0.01 M HCl and gastric juice.  相似文献   

19.
A method for the simultaneous direct determination of salicylate (SA), its labile, reactive metabolite, salicyl acyl glucuronide (SAG), and two other major metabolites, salicyluric acid and gentisic acid in plasma and urine is described. Isocratic reversed-phase high performance liquid chromatography (HPLC) employed a 15-cm C18 column using methanol-acetonitrile-25 mM acetic acid as the mobile phase, resulting in HPLC analysis time of less than 20 min. Ultraviolet detection at 310 nm permitted analysis of SAG in plasma, but did not provide sensitivity for measurement of salicyl phenol glucuronide. Plasma or urine samples are stabilized immediately upon collection by adjustment of pH to 3–4 to prevent degradation of the labile acyl glucuronide metabolite. Plasma is then deproteinated with acetonitrile, dried and reconstituted for injection, whereas urine samples are simply diluted prior to injection on HPLC. m-Hydroxybenzoic acid served as the internal standard. Recoveries from plasma were greater than 85% for all four compounds over a range of 0.2–20 μg/ml and linearity was observed from 0.1–200 μg/ml and 5–2000 μg/ml for SA in plasma and urine, respectively. The method was validated to 0.2 μg/ml, thus allowing accurate measurement of SA, and three major metabolites in plasma and urine of subjects and small animals administered salicylates. The method is unique by allowing quantitation of reactive SAG in plasma at levels well below 1% that of the parent compound, SA, as is observed in patients administered salicylates.  相似文献   

20.
A method is reported for the measurement of quercetin in human plasma using reversed-phase high-performance liquid chromatography (HPLC). Quercetin and kaempferol (as internal standard) were spiked into plasma samples and extracted using C18 Sep-Pak Light cartridges (efficiency > 85%). Flavonoids were eluted with aqueous acetone (50% v/v, pH 3.5), dried down and redissolved in aqueous acetone (45% v/v, pH 3.5). The increased osmolarity promoted a phase separation and the water-saturated acetone layer, containing the flavonoids, was analysed by HPLC with aqueous acetone mobile phase (45% v/v acetone in 250 mM sodium dihydrogen sulphate. The mixture was adjusted to pH 3.5 with phosphoric acid and used at a flow-rate of 1.0 ml/min) and μBondapak C18 column (150 × 3.9 mm I.D., 10 μm particle size). The detection limit (A375 nm) for quercetin in plasma was 0.1 μg/ml (300 nM). The method also detects metabolites of quercetin, although these are not yet identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号