首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rab GTPases serve as multifaceted organizers during vesicle trafficking. Rab7, a member of the Rab GTPase family, has been shown to perform various essential functions in endosome trafficking and in endosome-to-lysosome trafficking in mammalian systems. The Arabidopsis thaliana genome encodes eight putative Rab7 homologs; however, the detailed function and activation mechanism of Rab7 in plants remain unknown. Here, we demonstrate that Arabidopsis RABG3f, a member of the plant Rab7 small GTPase family, localizes to prevacuolar compartments (PVCs) and the tonoplast. The proper activation of Rab7 is essential for both PVC-to-vacuole trafficking and vacuole biogenesis. Expression of a dominant-negative Rab7 mutant (RABG3fT22N) induces the formation of enlarged PVCs and affects vacuole morphology in plant cells. We also identify Arabidopsis MON1 (MONENSIN SENSITIVITY1) and CCZ1 (CALCIUM CAFFEINE ZINC SENSITIVITY1) proteins as a dimeric complex that functions as the Rab7 guanine nucleotide exchange factor. The MON1-CCZ1 complex also serves as the Rab5 effector to mediate Rab5-to-Rab7 conversion on PVCs. Loss of functional MON1 causes the formation of enlarged Rab5-positive PVCs that are separated from Rab7-positive endosomes. Similar to the dominant-negative Rab7 mutant, the mon1 mutants show pleiotropic growth defects, fragmented vacuoles, and altered vacuolar trafficking. Thus, Rab7 activation by the MON1-CCZ1 complex is critical for vacuolar trafficking, vacuole biogenesis, and plant growth.  相似文献   

2.
Dense vesicles (DVs) are Golgi-derived plant-specific carriers that mediate post-Golgi transport of seed storage proteins in angiosperms. How this process is regulated remains elusive. Here, we report a rice (Oryza sativa) mutant, named glutelin precursor accumulation8 (gpa8) that abnormally accumulates 57-kDa proglutelins in the mature endosperm. Cytological analyses of the gpa8 mutant revealed that proglutelin-containing DVs were mistargeted to the apoplast forming electron-dense aggregates and paramural bodies in developing endosperm cells. Differing from previously reported gpa mutants with post-Golgi trafficking defects, the gpa8 mutant showed bent Golgi bodies, defective trans-Golgi network (TGN), and enlarged DVs, suggesting a specific role of GPA8 in DV biogenesis. We demonstrated that GPA8 encodes a subunit E isoform 1 of vacuolar H+-ATPase (OsVHA-E1) that mainly localizes to TGN and the tonoplast. Further analysis revealed that the luminal pH of the TGN and vacuole is dramatically increased in the gpa8 mutant. Moreover, the colocalization of GPA1 and GPA3 with TGN marker protein in gpa8 protoplasts was obviously decreased. Our data indicated that OsVHA-E1 is involved in endomembrane luminal pH homeostasis, as well as maintenance of Golgi morphology and TGN required for DV biogenesis and subsequent protein trafficking in rice endosperm cells.

A subunit of the vacuolar H+-ATPase regulating endomembrane luminal pH homeostasis plays a fundamental role in post-Golgi trafficking of rice seed storage proteins.  相似文献   

3.
In seed plants, a major pathway for sorting of storage proteins to the protein storage vacuole (PSV) depends on the Golgi-derived dense vesicles (DVs). However, the molecular mechanisms regulating the directional trafficking of DVs to PSVs remain largely elusive. Here, we report the functional characterization of the rice (Oryza sativa) glutelin precursor accumulation3 (gpa3) mutant, which exhibits a floury endosperm phenotype and accumulates excess proglutelins in dry seeds. Cytological and immunocytochemistry studies revealed that in the gpa3 mutant, numerous proglutelin-containing DVs are misrouted to the plasma membrane and, via membrane fusion, release their contents into the apoplast to form a new structure named the paramural body. Positional cloning of GPA3 revealed that it encodes a plant-specific kelch-repeat protein that is localized to the trans-Golgi networks, DVs, and PSVs in the developing endosperm. In vitro and in vivo experiments verified that GPA3 directly interacts with the rice Rab5a-guanine exchange factor VPS9a and forms a regulatory complex with Rab5a via VPS9a. Furthermore, our genetic data support the notion that GPA3 acts synergistically with Rab5a and VPS9a to regulate DV-mediated post-Golgi traffic in rice. Our findings provide insights into the molecular mechanisms regulating the plant-specific PSV pathway and expand our knowledge of vesicular trafficking in eukaryotes.  相似文献   

4.
Rice glutelins are synthesized at the endoplasmic reticulum (ER) as precursors (pro-glutelins), and are transported to protein storage vacuoles, where they are processed into mature proteins. The molecular basis of this process is largely unknown. Here, we report the isolation of a rice mutant, gpa1, that accumulates 57 kDa pro-glutelins in seeds and whose endosperm has a floury appearance. Transmission electron microscopy analysis showed that the gpa1 endosperm cells have an enlarged ER lumen and a smaller protein body II (PBII), and accumulated three types of newly generated subcellular structures. Moreover, a proportion of glutelins in the gpa1 endosperm cells were not delivered to PBII, and instead were mis-targeted to two of the newly generated structures or secreted. The gene corresponding to the gpa1 mutation was found to be OsRab5a, which encodes a small GTPase. In Arabidopsis protoplasts, OsRab5a protein was found to co-localize predominantly with AtVSR2, a molecular marker for the pre-vacuolar compartments (PVC). We conclude that OsRab5a plays an essential role in trafficking of storage protein to PBII, possibly as part of its function in organizing the endomembrane system in developing endosperm cells of rice.  相似文献   

5.
VPS9 domains can act as guanosine nucleotide exchange factors (GEFs) against small G proteins of the Rab5 family. Saccharomyces cerevisiae vps9Δ mutants have trafficking defects considerably less severe than multiple deletions of the three cognate Rab5 paralogs (Vps21, Ypt52, and Ypt53). Here, we show that Muk1, which also contains a VPS9 domain, acts as a second GEF against Vps21, Ypt52, and Ypt53. Muk1 is partially redundant with Vps9 in vivo, with vps9Δ muk1Δ double mutant cells displaying hypersensitivity to temperature and ionic stress, as well as profound impairments in endocytic and Golgi endosome trafficking, including defects in sorting through the multivesicular body. Cells lacking both Vps9 and Muk1 closely phenocopy double and triple knock-out strains lacking Rab5 paralogs. Microscopy and overexpression experiments demonstrate that Vps9 and Muk1 have distinct localization determinants. These experiments establish Muk1 as the second Rab5 GEF in budding yeast.  相似文献   

6.
Rice ( Oryza sativa L.) accumulates prolamines and glutelins as its major storage proteins. Glutelins are synthesized on rough endoplasmic reticulum as 57-kDa precursors; they are then sorted into protein storage vacuoles where they are processed into acidic and basic subunits. We report a novel rice glutelin mutant, W379 , which accumulates higher levels of the 57-kDa glutelin precursor. Genetic analysis revealed that the W379 phenotype is controlled by a single recessive nuclear gene. Using a map-based cloning strategy, we identified this gene, OsVPE1 , which is a homolog of the Arabidopsis βVPE gene. OsVPE1 encodes a 497-amino-acid polypeptide. Nucleotide sequence analysis revealed a missense mutation in W379 that changes Cys269 to Gly. Like the wild-type protein, the mutant protein is sorted into vacuoles; however, the enzymatic activity of the mutant OsVPE1 is almost completely eliminated. Further, we show that OsVPE1 is incorrectly cleaved, resulting in a mature protein that is smaller than the wild-type mature protein. Taken together, these results demonstrate that OsVPE1 is a cysteine protease that plays a crucial role in the maturation of rice glutelins. Further, OsVPE1 Cys269 is a key residue for maintaining the Asn-specific cleavage activity of OsVPE1.  相似文献   

7.
Plant vacuoles are essential multifunctional organelles largely distinct from similar organelles in other eukaryotes. Embryo protein storage vacuoles and the lytic vacuoles that perform a general degradation function are the best characterized, but little is known about the biogenesis and transition between these vacuolar types. Here, we designed a fluorescent marker–based forward genetic screen in Arabidopsis thaliana and identified a protein affected trafficking2 (pat2) mutant, whose lytic vacuoles display altered morphology and accumulation of proteins. Unlike other mutants affecting the vacuole, pat2 is specifically defective in the biogenesis, identity, and function of lytic vacuoles but shows normal sorting of proteins to storage vacuoles. PAT2 encodes a putative β-subunit of adaptor protein complex 3 (AP-3) that can partially complement the corresponding yeast mutant. Manipulations of the putative AP-3 β adaptin functions suggest a plant-specific role for the evolutionarily conserved AP-3 β in mediating lytic vacuole performance and transition of storage into the lytic vacuoles independently of the main prevacuolar compartment-based trafficking route.  相似文献   

8.
Rab GTPases play an important role in regulating intracellular vesicular trafficking in eukaryotic cells. Previously, we found that Oryza sativa rice Rab11 (OsRab11) is required for the regulation of vesicular trafficking from the trans- Golgi network (TGN) to the plasma membrane (PM) and/or vacuoles. To further elucidate the relationship between vesicular trafficking and abiotic and biotic stresses, we determined OsRab11 expression levels under several environmental stress conditions. OsRab11 expression was induced by pathogens, jasmonic acid (JA), and high salt treatment. Under high salt conditions, dominant negative OsRab11(S28N) mutant plants exhibited a hypersensitive phenotype similar to that of sos1-1, whereas overexpressed-OsRab11 plants showed resistance to high salt stress. When the expression of vacuolar and PM Na+/H+ antiporter genes such as AtNHX1, AtNHX2, and AtSOS1 was examined, there was no significant difference between the wild-type and OsRab11(S28N) mutant plants. However, PM trafficking of AtSOS1-green fluorescent protein (GFP) in 35S::AtSOS1-GFP sos1-1 plants was severely impaired by T7-OsRab11(S28N) expression. Similarly, vacuolar trafficking of AtNHX2-GFP was inhibited by T7-OsRab11 (S28N) expression. These results indicate that trafficking of PM and vacuolar antiporter proteins by OsRab11 is important for high salt stress resistance.  相似文献   

9.
Several protein vacuolar sorting determinants (VSDs) have been identified in higher plants. Glutelin as a major storage protein in rice endosperm cells is transported to a protein storage vacuole (PSV). How glutelin sort to PSV and the mechanism of the intracellular trafficking has remained unknown. Here, a sequence-specific vacuolar sorting determinant (ssVSD) is identified by serial deletions of rice glutelin and its role in the protein-sorting process analyzed by transgenic approaches and transient assays. The ssVSD consists of six residues (QRLKHN) within the β-subunit of glutelin is sufficient to direct the glutelin to the protein body II in the rice endosperm cells. We found that protein-sorting via the ssVSD takes place by a ~680-kDa sorting complex containing the receptor Oryza sativa receptor-like membrane Ring-H2 3 (OsRMR3). Further study indicated that OsRMR3 and the ssVSD are essential for glutelin trafficking. Furthermore, site-directed mutagenesis showed that the leucine residues in the ssVSD are critical for protein sorting.  相似文献   

10.
As early endosomes mature, the SAND-1/CCZ-1 complex acts as a guanine nucleotide exchange factor (GEF) for RAB-7 to promote the activity of its effector, HOPS, which facilitates late endosome–lysosome fusion and the consumption of AP-3–containing vesicles. We show that CCZ-1 and the HOPS complex are essential for the biogenesis of gut granules, cell type–specific, lysosome-related organelles (LROs) that coexist with conventional lysosomes in Caenorhabditis elegans intestinal cells. The HOPS subunit VPS-18 promotes the trafficking of gut granule proteins away from lysosomes and functions downstream of or in parallel to the AP-3 adaptor. CCZ-1 also acts independently of AP-3, and ccz-1 mutants mistraffic gut granule proteins. Our results indicate that SAND-1 does not participate in the formation of gut granules. In the absence of RAB-7 activity, gut granules are generated; however, their size and protein composition are subtly altered. These observations suggest that CCZ-1 acts in partnership with a protein other than SAND-1 as a GEF for an alternate Rab to promote gut granule biogenesis. Point mutations in GLO-1, a Rab32/38-related protein, predicted to increase spontaneous guanine nucleotide exchange, specifically suppress the loss of gut granules by ccz-1 and glo-3 mutants. GLO-3 is known to be required for gut granule formation and has homology to SAND-1/Mon1–related proteins, suggesting that CCZ-1 functions with GLO-3 upstream of the GLO-1 Rab, possibly as a GLO-1 GEF. These results support LRO formation occurring via processes similar to conventional lysosome biogenesis, albeit with key molecular differences.  相似文献   

11.
Co-ordination of Rab GTPase function has emerged as a crucial mechanism in the control of intracellular trafficking processes in eukaryotic cells. Here, we show that GRAB/Rab3IL1 [guanine nucleotide exchange factor for Rab3A; RAB3A interacting protein (rabin3)-like 1], a protein that has previously be shown to act as a GEF (guanine nucleotide exchange factor) for Rab3a, Rab8a and Rab8b, is also a binding partner for Rab11a and Rab11b, but not the closely related Rab25 GTPase. We demonstrate that exogenous expression of Rab11a and Rab11b shift GRAB’s distribution from the cytoplasm onto membranes. We find that the Rab11a/Rab11b-binding region of GRAB lies within its carboxy-terminus, a region distinct from its GEF domain and Rab3a-binding region. Finally, we describe a GRAB deletion mutant (GRABΔ223–228) that is deficient in Rab11-binding ability. These data identify GRAB as a dual Rab-binding protein that could potentially link Rab3 and Rab11 and/or Rab8 and Rab11-mediated intracellular trafficking processes.  相似文献   

12.
13.
Rab5, a subfamily of Rab GTPases, regulates a variety of endosomal functions as a molecular switch. Arabidopsis thaliana has two different types of Rab5-member GTPases: conventional type, ARA7 and RHA1, and a plant-specific type, ARA6. We found that only one guanine nucleotide exchange factor (GEF), named VPS9a, can activate all Rab5 members to GTP-bound forms in vitro in spite of their diverged structures. In the vps9a-1 mutant, whose GEF activity is completely lost, embryogenesis was arrested at the torpedo stage. Green fluorescent protein (GFP)-ARA7 and ARA6-GFP were diffused in cytosol like GDP-fixed mutants of Rab5 in vps9a-1, indicating that both types of GTPase are regulated by VPS9a. In the leaky vps9a-2 mutant, elongation of the primary root was severely affected. Overexpression of the GTP-fixed form of ARA7 suppressed the vps9a-2 mutation, but overexpression of ARA6 had no apparent effects. These results indicate that the two types of plant Rab5 members are functionally differentiated, even though they are regulated by the same activator, VPS9a.  相似文献   

14.
The retromer is an endosome-localized complex involved in protein trafficking. To better understand its function and regulation in plants, we recently investigated how Arabidopsis retromer subunits assemble and are targeted to endosomal membranes and highlighted original features compared with mammals. We characterized Arabidopsis vps26 null mutant and showed that it displays severe developmental defaults similar to those observed in vps29 mutant. Here, we go further by describing new phenotypic defects associated with loss of VPS26 function, such as inhibition of lateral root initiation. Recently, we showed that VPS35 subunit plays a crucial role in the recruitment of the plant retromer to endosomes, probably through an interaction with the Rab7 homolog RABG3f. In this work, we now show that contrary to mammals, Arabidopsis Rab5 homologs do not seem to be necessary for the recruitment of the core retromer to endosomal membranes, which highlights a new specificity of the plant retromer.  相似文献   

15.
Chen X  Wang Z 《EMBO reports》2001,2(9):842-849
The involvement of phosphatidylinositol 3-kinase (PI3K) in membrane trafficking in mammalian cells has largely come from experiments with wortmannin. This compound inhibits endosome fusion in vitro, possibly by inhibiting the production of phosphatidylinositol (PtdIns)-3-P, which co-regulates EEA1 with Rab5. However, the results from wortmannin inhibition experiments performed in vivo differ significantly. We have recently shown that wortmannin enlarges endosomes containing the epidermal growth factor receptor (EGFR) and enhances the lysosomal degradation of EGFR. In this report, we demonstrate that addition of the PI3K reaction products does not suppress wortmannin-induced enlargement of EGFR-containing endosomes and enhancement of EGFR degradation. Moreover, the effects of wortmannin on the intracellular trafficking of EGFR mimic those of the permanently activated Rab5 mutant, Rab5 Q79L, which stimulates endosome fusion. We also found that an inactive Rab5 mutant, Rab5 S34N, blocks wortmannin-induced endosome enlargement and that wortmannin stimulates the activation of Rab5. We further showed that wortmannin reduced the membrane association of p120 Ras GTPase-activating protein (GAP) and inhibited the interaction between Rab5 and p120 Ras GAP. We conclude that wortmannin alters intracellular trafficking of EGFR by activating Rab5 rather than by inhibiting PI3K.  相似文献   

16.
The small GTPase Rab7 promotes fusion events between late endosomes and lysosomes. Rab7 activity is regulated by extrinsic signals, most likely via effects on its guanine nucleotide exchange factor (GEF) or GTPase-activating protein (GAP). Based on their homology to the yeast proteins that regulate the Ypt7 GTP binding state, TBC1D15, and mammalian Vps39 (mVps39) have been suggested to function as the Rab7 GAP and GEF, respectively. We developed an effector pull-down assay to test this model. TBC1D15 functioned as a Rab7 GAP in cells, reducing Rab7 binding to its effector protein RILP, fragmenting the lysosome, and conferring resistance to growth factor withdrawal-induced cell death. In a cellular context, TBC1D15 GAP activity was selective for Rab7. TBC1D15 overexpression did not inhibit transferrin internalization or recycling, Rab7-independent processes that require Rab4, Rab5, and Rab11 activation. TBC1D15 was thus renamed Rab7-GAP. Contrary to expectations for a Rab7 GEF, mVps39 induced lysosomal clustering without increasing Rab7 GTP binding. Moreover, a dominant-negative mVps39 mutant fragmented the lysosome and promoted growth factor independence without decreasing Rab7-GTP levels. These findings suggest that a protein other than mVps39 serves as the Rab7 GEF. In summary, although only TBC1D15/Rab7-GAP altered Rab7-GTP levels, both Rab7-GAP and mVps39 regulate lysosomal morphology and play a role in maintaining growth factor dependence.  相似文献   

17.
18.
In autophagy, the double-membrane autophagosome delivers cellular components for their degradation in the lysosome. The conserved Ypt/Rab GTPases regulate all cellular trafficking pathways, including autophagy. These GTPases function in modules that include guanine-nucleotide exchange factor (GEF) activators and downstream effectors. Rab7 and its yeast homologue, Ypt7, in the context of such a module, regulate the fusion of both late endosomes and autophagosomes with the lysosome. In yeast, the Rab5-related Vps21 is known for its role in early- to late-endosome transport. Here we show an additional role for Vps21 in autophagy. First, vps21∆ mutant cells are defective in selective and nonselective autophagy. Second, fluorescence and electron microscopy analyses show that vps21∆ mutant cells accumulate clusters of autophagosomal structures outside the vacuole. Third, cells with mutations in other members of the endocytic Vps21 module, including the GEF Vps9 and factors that function downstream of Vps21, Vac1, CORVET, Pep12, and Vps45, are also defective in autophagy and accumulate clusters of autophagosomes. Finally, Vps21 localizes to PAS. We propose that the endocytic Vps21 module also regulates autophagy. These findings support the idea that the two pathways leading to the lysosome—endocytosis and autophagy—converge through the Vps21 and Ypt7 GTPase modules.  相似文献   

19.
Autophagy, the process for recycling cytoplasm in the lysosome, depends on membrane trafficking. We previously identified Drosophila Sbf as a Rab21 guanine nucleotide exchange factor (GEF) that acts with Rab21 in endosomal trafficking. Here, we show that Sbf/MTMR13 and Rab21 have conserved functions required for starvation‐induced autophagy. Depletion of Sbf/MTMR13 or Rab21 blocked endolysosomal trafficking of VAMP8, a SNARE required for autophagosome–lysosome fusion. We show that starvation induces Sbf/MTMR13 GEF and RAB21 activity, as well as their induced binding to VAMP8 (or closest Drosophila homolog, Vamp7). MTMR13 is required for RAB21 activation, VAMP8 interaction and VAMP8 endolysosomal trafficking, defining a novel GEF‐Rab‐effector pathway. These results identify starvation‐responsive endosomal regulators and trafficking that tunes membrane demands with changing autophagy status.  相似文献   

20.
Orthologues of Saccharomyces cerevisiae CCZ1, MON1 and YPT7 genes in the methylotrophic yeast, Pichia pastoris, have been identified. These genes encode proteins, which act as a complex, being involved in degradation of oleate-induced peroxisomes, Cvt (cytoplasm to vacuole targeting) pathway and non-specific macroautophagy in S. cerevisiae. CCZ1, MON1 and YPT7 gene orthologues are essential for multiple delivery pathways in P. pastoris. Strains with deletion of either of these genes displayed complete deficiency in pexophagy, non-specific macroautophagy and the biosynthetic Cvt pathway. The data suggest that CCZ1, MON1 and YPT7 genes are involved in degradation of both small oleate-induced and large methanol-induced peroxisomes. The data suggest conservative functions of CCZ1, MON1 and YPT7 genes among yeast species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号