首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The association between Rhizobium and legumes and that between arbuscular mycorrhizal (AM) fungi and most land plants display a remarkable degree of similarity. Both events involve the recognition of, entrance into, and coexistence within the plant root, with the development of a specialized interface that always separates the two partners and at which nutrient exchange occurs. Molecules produced by rhizobia during the early stages of the symbiosis are related to fungal chitin, and the plant responds to both microbes with an increase in the production of flavonoids, which may assist in recognition and development of the symbioses. Many of the same plant genes are up-regulated in the two symbiotic pathways, and notably plants that are Nod are often defective in the AM association as well. However, there are a number of differences between the associations, and these are important for understanding the relationship between the two symbioses. The Rhizobium and AM symbioses will be compared and the question of whether the nitrogen-fixing association evolved from the much more ancient AM symbiosis will be discussed.  相似文献   

2.
The association between Rhizobium and legumes and that between arbuscular mycorrhizal (AM) fungi and most land plants display a remarkable degree of similarity. Both events involve the recognition of, entrance into, and coexistence within the plant root, with the development of a specialized interface that always separates the two partners and at which nutrient exchange occurs. Molecules produced by rhizobia during the early stages of the symbiosis are related to fungal chitin, and the plant responds to both microbes with an increase in the production of flavonoids, which may assist in recognition and development of the symbioses. Many of the same plant genes are up-regulated in the two symbiotic pathways, and notably plants that are Nod? are often defective in the AM association as well. However, there are a number of differences between the associations, and these are important for understanding the relationship between the two symbioses. The Rhizobium and AM symbioses will be compared and the question of whether the nitrogen-fixing association evolved from the much more ancient AM symbiosis will be discussed.  相似文献   

3.

Background  

Like other species of the Phaseoleae tribe, common bean (Phaseolus vulgaris L.) has the potential to establish symbiosis with rhizobia and to fix the atmospheric dinitrogen (N2) for its N nutrition. Common bean has also the potential to establish symbiosis with arbuscular mycorrhizal fungi (AMF) that improves the uptake of low mobile nutrients such as phosphorus, from the soil. Both rhizobial and mycorrhizal symbioses can act synergistically in benefits on plant.  相似文献   

4.
Almost all land plants have developed a symbiosis with arbuscular mycorrhizal fungi. Establishment of the association is accompanied by structural changes in the plant root. During arbuscule formation fungal hyphae penetrate the root apoplast and install highly specialized interfaces for solute transport between plant and fungus. The periarbuscular membrane which is part of the plant plasma membrane surrounding arbuscular structures was shown to harbour a high density of different transport systems. Among these also expression of aquaporins was described, which potentially can act as a low affinity transport system for ammonia or ammonium. The present study provides data for expression, localization and function of plant aquaporins in the periarbuscular membrane of mycorrhizal Medicago truncatula plants.  相似文献   

5.
Plant–mycorrhizal fungal interactions are ubiquitous in forest ecosystems. While ectomycorrhizal plants and their fungi generally dominate temperate forests, arbuscular mycorrhizal symbiosis is common in the tropics. In subtropical regions, however, ectomycorrhizal and arbuscular mycorrhizal plants co-occur at comparable abundances in single forests, presumably generating complex community structures of root-associated fungi. To reveal root-associated fungal community structure in a mixed forest of ectomycorrhizal and arbuscular mycorrhizal plants, we conducted a massively-parallel pyrosequencing analysis, targeting fungi in the roots of 36 plant species that co-occur in a subtropical forest. In total, 580 fungal operational taxonomic units were detected, of which 132 and 58 were probably ectomycorrhizal and arbuscular mycorrhizal, respectively. As expected, the composition of fungal symbionts differed between fagaceous (ectomycorrhizal) and non-fagaceous (possibly arbuscular mycorrhizal) plants. However, non-fagaceous plants were associated with not only arbuscular mycorrhizal fungi but also several clades of ectomycorrhizal (e.g., Russula) and root-endophytic ascomycete fungi. Many of the ectomycorrhizal and root-endophytic fungi were detected from both fagaceous and non-fagaceous plants in the community. Interestingly, ectomycorrhizal and arbuscular mycorrhizal fungi were concurrently detected from tiny root fragments of non-fagaceous plants. The plant–fungal associations in the forest were spatially structured, and non-fagaceous plant roots hosted ectomycorrhizal fungi more often in the proximity of ectomycorrhizal plant roots. Overall, this study suggests that belowground plant–fungal symbiosis in subtropical forests is complex in that it includes “non-typical” plant–fungal combinations (e.g., ectomycorrhizal fungi on possibly arbuscular mycorrhizal plants) that do not fall within the conventional classification of mycorrhizal symbioses, and in that associations with multiple functional (or phylogenetic) groups of fungi are ubiquitous among plants. Moreover, ectomycorrhizal fungal symbionts of fagaceous plants may “invade” the roots of neighboring non-fagaceous plants, potentially influencing the interactions between non-fagaceous plants and their arbuscular-mycorrhizal fungal symbionts at a fine spatial scale.  相似文献   

6.
  1. Plants typically interact with multiple above‐ and below‐ground organisms simultaneously, with their symbiotic relationships spanning a continuum ranging from mutualism, such as with arbuscular mycorrhizal fungi (AMF), to parasitism, including symbioses with plant‐parasitic nematodes (PPN).
  2. Although research is revealing the patterns of plant resource allocation to mutualistic AMF partners under different host and environmental constraints, the root ecosystem, with multiple competing symbionts, is often ignored. Such competition is likely to heavily influence resource allocation to symbionts.
  3. Here, we outline and discuss the competition between AMF and PPN for the finite supply of host plant resources, highlighting the need for a more holistic understanding of the influence of below‐ground interactions on plant resource allocation. Based on recent developments in our understanding of other symbiotic systems such as legume–rhizobia and AMF‐aphid‐plant, we propose hypotheses for the distribution of plant resources between contrasting below‐ground symbionts and how such competition may affect the host.
  4. We identify relevant knowledge gaps at the physiological and molecular scales which, if resolved, will improve our understanding of the true ecological significance and potential future exploitation of AMF‐PPN‐plant interactions in order to optimize plant growth. To resolve these outstanding knowledge gaps, we propose the application of well‐established methods in isotope tracing and nutrient budgeting to monitor the movement of nutrients between symbionts. By combining these approaches with novel time of arrival experiments and experimental systems involving multiple plant hosts interlinked by common mycelial networks, it may be possible to reveal the impact of multiple, simultaneous colonizations by competing symbionts on carbon and nutrient flows across ecologically important scales.
  相似文献   

7.
Legume plants are able to establish root nodule symbioses with nitrogen-fixing bacteria, called rhizobia. Recent studies revealed that the root nodule symbiosis has co-opted the signaling pathway that mediates the ancestral mycorrhizal symbiosis that occurs in most land plants. Despite being unable to induce nodulation, rhizobia have been shown to be able to infect and colonize the roots of non-legumes such as rice. One fascinating question is whether establishment of such associations requires the common symbiosis (Sym) genes that are essential for infection of plant cells by mycorrhizal fungi and rhizobia in legumes. Here, we demonstrated that the common Sym genes are not required for endophytic colonization of rice roots by nitrogen-fixing rhizobia.  相似文献   

8.
Symbiotic phosphate transport in arbuscular mycorrhizas   总被引:9,自引:0,他引:9  
Arbuscular mycorrhizal fungi colonize the root systems of most land plants and modulate plant growth by enhancing the availability of nutrients, mainly phosphorus, for plant nutrition. Recently identified genes encoding mycorrhiza-specific plant phosphate transporters have enabled fundamental problems in arbuscular mycorrhizal symbiosis research to be addressed. Because phosphate transport is a key feature of this symbiosis, the study of phosphate transport mechanisms and their gene regulation will further our understanding of the intimate interaction between the two symbiotic partners.  相似文献   

9.
The stabilization of host–symbiont mutualism against the emergence of parasitic individuals is pivotal to the evolution of cooperation. One of the most famous symbioses occurs between legumes and their colonizing rhizobia, in which rhizobia extract nutrients (or benefits) from legume plants while supplying them with nitrogen resources produced by nitrogen fixation (or costs). Natural environments, however, are widely populated by ineffective rhizobia that extract benefits without paying costs and thus proliferate more efficiently than nitrogen-fixing cooperators. How and why this mutualism becomes stabilized and evolutionarily persists has been extensively discussed. To better understand the evolutionary dynamics of this symbiosis system, we construct a simple model based on the continuous snowdrift game with multiple interacting players. We investigate the model using adaptive dynamics and numerical simulations. We find that symbiotic evolution depends on the cost–benefit balance, and that cheaters widely emerge when the cost and benefit are similar in strength. In this scenario, the persistence of the symbiotic system is compatible with the presence of cheaters. This result suggests that the symbiotic relationship is robust to the emergence of cheaters, and may explain the prevalence of cheating rhizobia in nature. In addition, various stabilizing mechanisms, such as partner fidelity feedback, partner choice, and host sanction, can reinforce the symbiotic relationship by affecting the fitness of symbionts in various ways. This result suggests that the symbiotic relationship is cooperatively stabilized by various mechanisms. In addition, mixed nodule populations are thought to encourage cheater emergence, but our model predicts that, in certain situations, cheaters can disappear from such populations. These findings provide a theoretical basis of the evolutionary dynamics of legume–rhizobia symbioses, which is extendable to other single-host, multiple-colonizer systems.  相似文献   

10.
Legumes enter nodule symbioses with nitrogen-fixing bacteria (rhizobia), whereas most flowering plants establish symbiotic associations with arbuscular mycorrhizal (AM) fungi. Once first steps of symbiosis are initiated, nodule formation and mycorrhization in legumes is negatively controlled by a shoot-derived inhibitor (SDI), a phenomenon termed autoregulation. According to current views, autoregulation of nodulation and mycorrhization in legumes is regulated in a similar way. CLE peptides induced in response to rhizobial nodulation signals (Nod factors) have been proposed to represent the ascending long-distance signals to the shoot. Although not proven yet, these CLE peptides are likely perceived by leucine-rich repeat (LRR) autoregulation receptor kinases in the shoot. Autoregulation of mycorrhization in non-legumes is reminiscent to the phenomenon of “systemic acquired resistance” in plant-pathogen interactions.Key words: arbuscular mycorrhiza, autoregulation, CLE peptides, mutant, nodulation, split-root systemUnder natural conditions, growth of plants is often limited by the availability of nutrients such as nitrogen and phosphorous. Plants have therefore developed strategies to acquire nutrients with the help of soil microorganisms. Most land plants enter mutualistic root symbioses with arbuscular mycorrhizal (AM) fungi, whereas legumes form special root nodules containing nitrogen-fixing bacteria, so-called rhizobia.14 Establishment and maintenance of symbiosis requires plant resources, such as photosynthetically assimilated carbon. To minimize these costs, host plants are able to control the degree of their symbiotic interactions. Above a critical threshold level further establishment of symbiosis is restricted—a feedback phenomenon termed autoregulation of symbiosis. Autoregulation can be experimentally demonstrated in split-root systems. When legume roots are already infected by rhizobia on one side of a split-root, further nodule development is “systemically” inhibited on the other side. Similarly, prior colonization of split-roots by AM fungi on one half suppresses later fungal root colonization on the other half. Hence, important elements of the symbiotic autoregulation circuit are not only localized in roots, but also in aerial parts of the plant, implicating transport of signals in vascular bundles (Fig. 1). Whereas autoregulation of nodulation in legumes has been studied for many decades,59 the first publications clearly stating a shoot-controlled autoregulation of mycorrhization in split-root systems appeared in 2000 for the non-legume barley (Hordeum vulgare) and thereafter for alfalfa (Medicago sativa) and soybean (Glycine max).1013 The data from these split-root experiments are supported by the findings that supernodulating (or hypernodulating) loss-of-autoregulation mutants displayed either an increased degree of AM colonization and/or a higher abundance of arbuscules.1416Open in a separate windowFigure 1Proposed model of shoot-controlled autoregulation of symbiosis in a split-root system. Prior infection of root A by rhizobia or AM fungi systemically suppresses later establishment of symbiosis in root B. Expression of specific CLE peptides (and/or other peptide hormones) is induced in response to rhizobial nodulation signals (Nod factors) and perhaps also in response to colonization by AM fungi (stage 1). The CLE peptides (and/or other signals) are then presumed to be transported in the xylem to the shoot, where they are perceived by leucine-rich repeat (LRR) autoregulation receptor kinases (stage 2). As a result of autoregulation signaling in the shoot, an unknown shoot-derived inhibitor (SDI) is produced (stage 3) and transported as a phloem-mobile signal to the root. Perception and action of the SDI signal in roots would then inhibit nodulation and root colonization by AM fungi (stage 4).  相似文献   

11.
丛枝菌根真菌-豆科植物-根瘤菌共生体系的研究进展   总被引:8,自引:0,他引:8  
丛枝菌根真菌(Arbuscular Mycorrhizal Fungi,AMF)-豆科植物-根瘤菌(Rhizobia)三者形成的共生体。是植物与微生物共生中的一种特殊类型。本文对这种共生体中微生物与植物之间的营养关系;AMF和根瘤菌双接种豆科植物的效应以及影响双接种效应的因素;AMF和根瘤菌在与豆科植物形成共生过程中的分子互作机制等进行了综述。同时对这种共生体还需进一步研究的问题及其在基础研究和实践应用方面的前景进行了讨论。  相似文献   

12.
Phenolic acids act as signaling molecules in plant-microbe symbioses   总被引:3,自引:0,他引:3  
Phenolic acids are the main polyphenols made by plants. These compounds have diverse functions and are immensely important in plant-microbe interactions/symbiosis. Phenolic compounds act as signaling molecules in the initiation of legumerhizobia symbioses, establishment of arbuscular mycorrhizal symbioses and can act as agents in plant defense. Flavonoids are a diverse class of polyphenolic compounds that have received considerable attention as signaling molecules involved in plant-microbe interactions compared to the more widely distributed, simple phenolic acids; hydroxybenzoic and hydroxycinnamic acids, which are both derived from the general phenylpropanoid pathway. This review describes the well-known roles attributed to phenolic compounds as nod gene inducers of legume-rhizobia symbioses, their roles in induction of the GmGin1 gene in fungus for establishment of arbuscular mycorrhizal symbiosis, their roles in inducing vir gene expression in Agrobacterium, and their roles as defense molecules operating against soil borne pathogens that could have great implications for rhizospheric microbial ecology. Amongst plant phenolics we have a lack of knowledge concerning the roles of phenolic acids as signaling molecules beyond the relatively well-defined roles of flavonoids. This may be addressed through the use of plant mutants defective in phenolic acids biosynthesis or knock down target genes in future investigations.Key words: Agrobacterium sp., flavonoids, legume-rhizobium symbioses, phenolic acids, plant defense, vesicular arbuscular mycorrhiza  相似文献   

13.
Roots of legumes establish symbiosis with arbuscular mycorrhizal fungi (AMF) and nodule-inducing rhizobia. The existing nodules systemically suppress subsequent nodule formation in other parts of the root, a phenomenon termed autoregulation. Similarly, mycorrhizal roots reduce further AMF colonization on other parts of the root system. In this work, split- root systems of alfalfa (Medicago sativa) were used to study the autoregulation of symbiosis with Sinorhizobium meliloti and the mycorrhizal fungus Glomus mosseae. It is shown that nodulation systemically influences AMF root colonization and vice versa. Nodules on one half of the split-root system suppressed subsequent AMF colonization on the other half. Conversely, root systems pre-colonized on one side by AMF exhibited reduced nodule formation on the other side. An inhibition effect was also observed with Nod factors (lipo-chito-oligosaccharides). NodSm-IV(C16:2, S) purified from S. meliloti systemically suppressed both nodule formation and AMF colonization. The application of Nod factors, however, did not influence the allocation of (14)C within the split-root system, excluding competition for carbohydrates as the regulatory mechanism. These results indicate a systemic regulatory mechanism in the rhizobial and the arbuscular mycorrhizal association, which is similar in both symbioses.  相似文献   

14.
Plants are solar-powered sugar factories that feed a multitude of other organisms. Many of these organisms associate directly with host plants to gain access to the plant's photosynthates. Such symbioses encompass a wide collection of styles ranging from mutualistic to commensal and parasitic. Among these, the mutualistic arbuscular mycorrhizal (AM) symbiosis is one of the evolutionarily oldest symbioses of plants, relying on the formation of an intimate relationship between fungi of the Glomeromycota and roots of the majority of vascular flowering plants. In this symbiosis, the fungus intracellularly colonizes living root cells, implying the existence of an extreme form of compatibility. Interestingly, molecular events that happen in the plant in response to mycorrhizal colonization also occur in other beneficial and, as recently shown, even antagonistic plant symbioses. Thus, basic 'compatibility modules' appear to be partially conserved between mutualism and parasitism.  相似文献   

15.
The nitrogen-fixing symbiosis between Rhizobiaceae and legumes is one of the best-studied interactions established between prokaryotes and eukaryotes. The plant develops root nodules in which the bacteria are housed, and atmospheric nitrogen is fixed into ammonia by the rhizobia and made available to the plant in exchange for carbon compounds. It has been hypothesized that this symbiosis evolved from the more ancient arbuscular mycorrhizal (AM) symbiosis, in which the fungus associates with roots and aids the plant in the absorption of mineral nutrients, particularly phosphate. Support comes from several fronts: 1) legume mutants where Nod(-) and Myc(-) co-segregate, and 2) the fact that various early nodulin (ENOD) genes are expressed in legume AM. Both strongly argue for the idea that the signal transduction pathways between the two symbioses are conserved. We have analyzed the responses of four classes of non-nodulating Melilotus alba (white sweetclover) mutants to Glomus intraradices (the mycorrhizal symbiont) to investigate how Nod(-) mutations affect the establishment of this symbiosis. We also re-examined the root hair responses of the non-nodulating mutants to Sinorhizobium meliloti (the nitrogen-fixing symbiont). Of the four classes, several sweetclover sym mutants are both Nod(-) and Myc(-). In an attempt to decipher the relationship between nodulation and mycorrhiza formation, we also performed co-inoculation experiments with mutant rhizobia and Glomus intraradices on Medicago sativa, a close relative of M. alba. Even though sulfated Nod factor was supplied by some of the bacterial mutants, the fungus did not complement symbiotically defective rhizobia for nodulation.  相似文献   

16.
Recent data on the plant control of early stages of mutually beneficial (mutualistic) symbioses of legumes, the mechanisms of perception and transmission of the microsymbiont’s molecular signals in the macrosymbiont’s cells, and induction of the genetic programs of the development of symbiotic compartments and organs of the plant are summarized. It is demonstrated that the genetic system of the plant controlling the development of nitrogen-fixing symbiosis of legumes (symbiotic root nodules), which emerged 70–80 Ma ago, has undoubtedly evolved on the basis of the genetic system controlling the development of the symbiosis with arbuscular mycorrhizal fungi (which emerged 400–500 Ma ago). Interactions between genes and between gene products, as well as exchange of molecular signals, form the basis of mutually beneficial (mutualistic) plant-bacterium interactions. Even in the case of a highly specific nitrogen-fixing symbiosis of legumes (symbiotic nodules), the receptors perceiving the signal from root-nodule bacteria may function in different ways. The development of arbuscular mycorrhiza and nitrogen-fixing symbiosis in legumes is a multistep process involving hundreds of genes of both the macro- and microsymbionts. For the symbioses to develop successfully, these genes should act in a coordinated way in the newly formed superorganismal system. Further studies are necessary to shed light onto the complexity of the plant genetic control of the development of mutualistic symbioses in legumes and provide information required for improving their functions in adaptive plant-breeding systems.  相似文献   

17.
We studied the biochemical properties of a plant receptor-like kinase to gain insights into the regulatory mechanism of this largest class of plant kinases. SYMRK (symbiosis receptor kinase) is required for early signal transduction leading to plant root symbioses with nitrogen-fixing rhizobia and phosphate-acquiring arbuscular mycorrhizal fungi. Amino acid substitutions in positions critical for activity of other related kinases cause a nonsymbiotic plant phenotype, suggesting that SYMRK kinase activity is required for symbiosis. SYMRK is capable of intermolecular autophosphorylation. Nonphosphorylated SYMRK is less active than the phosphorylated version, suggesting the phosphorylation status of SYMRK determines its activity. Three Ser/Thr residues were identified as residues required for full kinase activation through targeted mutagenesis. Using quadrupole time-of-flight mass spectrometry analysis, two of these were confirmed to be phosphorylated in vitro. These crucial phosphorylation sites are conserved among various plant receptor-like kinases as well as animal Pelle/interleukin-1 receptor associated kinase. Despite the distinct domain architecture of receptor-like kinases versus Pelle/interleukin-1 receptor associated kinase, our results suggest the existence of conserved activation mechanisms.  相似文献   

18.
The Roles of Auxins and Cytokinins in Mycorrhizal Symbioses   总被引:14,自引:0,他引:14  
Abstract Most land plant species that have been examined exist naturally with a higher fungus living in and around their roots in a symbiotic partnership called a mycorrhiza. Several types of mycorrhizal symbiosis exist, defined by the host/partner combination and the morphology of the symbiotic structures. The arbuscular mycorrhiza (AM) is ancient and may have co-evolved with land plants. Emerging results from gene expression studies have suggested that subsets of AM genes were co-opted during the evolution of other biotrophic symbioses. Here we compare the roles of phytohormones in AM symbiosis and ectomycorrhizas (EC), a more recent symbiosis. To date, there is little evidence of physiologic overlap between the two symbioses with respect to phytohormone involvement. Research on AM has shown that cytokinin (CK) accumulation is specifically enhanced by symbiosis throughout the plant. We propose a pathway of events linking enhanced CK to development of the AM. Additional and proposed involvement of other phytohormones are also described. The role of auxin in EC symbiosis and recent research advances on the topic are reviewed. We have reflected the literature bias in reporting individual growth regulator effects. However, we consider that gradients and ratios of these molecules are more likely to be the causal agents of morphologic changes resulting from fungal associations. We expect that once the individual roles of these compounds are explained, the subtleties of their function will be more clearly addressed.  相似文献   

19.
Legumes develop different mutually beneficial symbioses with soil microbes, such as arbuscular mycorrhizal (AM) fungi, nodule bacteria and plant growth promoting bacteria. Symbioses supply the plants with nutrients (predominantly with nitrogen and phosphorus), protect them from pathogens and abiotic stresses and improve soil microbial biodiversity and fertility. The synergistic activity of beneficial soil microbes (BSM) on the plants has great importance for the use of multi-component symbiotic systems in low-input sustainable environmentally-friendly agrotechnologies. However, the complex nature of the AM symbiosis when in a multi-component symbiosis (plant-fungus-bacteria) creates complications for the fungus to produce AM fungal propagules and poses questions (a) about the effectiveness of the fungus per se in interactions with the plants, without associates, and (b) about the necessity of using sterile/axenic conditions for the production of the AM fungi based inoculants because of any mixing and competition by microbes from the inoculants with the local soil microbial consortia. The legume genes controlling interactions with BSM (including genes responsible for effectiveness of such interactions) should be considered as a united genetic system. The plant genome is more stable than that of microbes and therefore crop plants should select beneficial microbes and control the effectiveness of the whole plant-microbe system in the field for the benefit of the crop and therefore of human beings. There is clearly a need to breed legume crops with improved performance under sustainable conditions involving interactions with BSM and optimising the use of agrochemicals.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号