首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nucleotide binding domain and leucine-rich repeat (NLR)-containing family proteins function as intracellular immune sensors in both plants and animals. In plants, the downstream components activated by NLR family proteins and the immune response mechanisms induced by these downstream molecules are largely unknown. We have previously found that the small GTPase OsRac1, which acts as a molecular switch in rice immunity, is activated by Pit, an NLR-type resistance (R) protein to rice blast fungus, and this activation plays critical roles in Pit-mediated immunity. However, the sites and mechanisms of activation of Pit in vivo remain unknown. To clarify the mechanisms involved in the localization of Pit, we searched for consensus sequences in Pit that specify membrane localization and found a pair of potential palmitoylation sites in the N-terminal coiled-coil region. Although wild-type Pit was localized mainly to the plasma membrane, this membrane localization was compromised in a palmitoylation-deficient mutant of Pit. The palmitoylation-deficient Pit displayed significantly lower affinity for OsRac1 on the plasma membrane, thereby resulting in failures of the Pit-mediated cell death, the production of reactive oxygen species, and disease resistance to rice blast fungus. These results indicate that palmitoylation-dependent membrane localization of Pit is required for the interaction with and the activation of OsRac1 and that OsRac1 activation by Pit is vital for Pit-mediated disease resistance to rice blast fungus.  相似文献   

2.
3.
The ubiquitin proteasome system in plants plays important roles in plant-microbe interactions and in immune responses to pathogens. We previously demonstrated that the rice U-box E3 ligase SPL11 and its Arabidopsis ortholog PUB13 negatively regulate programmed cell death (PCD) and defense response. However, the components involved in the SPL11/PUB13-mediated PCD and immune signaling pathway remain unknown. In this study, we report that SPL11-interacting Protein 6 (SPIN6) is a Rho GTPase-activating protein (RhoGAP) that interacts with SPL11 in vitro and in vivo. SPL11 ubiquitinates SPIN6 in vitro and degrades SPIN6 in vivo via the 26S proteasome-dependent pathway. Both RNAi silencing in transgenic rice and knockout of Spin6 in a T-DNA insertion mutant lead to PCD and increased resistance to the rice blast pathogen Magnaporthe oryzae and the bacterial blight pathogen Xanthomonas oryzae pv. oryzae. The levels of reactive oxygen species and defense-related gene expression are significantly elevated in both the Spin6 RNAi and mutant plants. Strikingly, SPIN6 interacts with the small GTPase OsRac1, catalyze the GTP-bound OsRac1 into the GDP-bound state in vitro and has GAP activity towards OsRac1 in rice cells. Together, our results demonstrate that the RhoGAP SPIN6 acts as a linkage between a U-box E3 ligase-mediated ubiquitination pathway and a small GTPase-associated defensome system for plant immunity.  相似文献   

4.
Arms race co-evolution drives rapid adaptive changes in pathogens and in the immune systems of their hosts. Plant intracellular NLR immune receptors detect effectors delivered by pathogens to promote susceptibility, activating an immune response that halts colonization. As a consequence, pathogen effectors evolve to escape immune recognition and are highly variable. In turn, NLR receptors are one of the most diverse protein families in plants, and this variability underpins differential recognition of effector variants. The molecular mechanisms underlying natural variation in effector recognition by NLRs are starting to be elucidated. The rice NLR pair Pik-1/Pik-2 recognizes AVR-Pik effectors from the blast fungus Magnaporthe oryzae, triggering immune responses that limit rice blast infection. Allelic variation in a heavy metal associated (HMA) domain integrated in the receptor Pik-1 confers differential binding to AVR-Pik variants, determining resistance specificity. Previous mechanistic studies uncovered how a Pik allele, Pikm, has extended recognition to effector variants through a specialized HMA/AVR-Pik binding interface. Here, we reveal the mechanistic basis of extended recognition specificity conferred by another Pik allele, Pikh. A single residue in Pikh-HMA increases binding to AVR-Pik variants, leading to an extended effector response in planta. The crystal structure of Pikh-HMA in complex with an AVR-Pik variant confirmed that Pikh and Pikm use a similar molecular mechanism to extend their pathogen recognition profile. This study shows how different NLR receptor alleles functionally converge to extend recognition specificity to pathogen effectors.  相似文献   

5.
Plant intracellular immune receptors known as NLR (nucleotide-binding leucine-rich repeat) proteins confer immunity and cause cell death. Plant NLR proteins that directly or indirectly recognize pathogen effector proteins to initiate immune signalling are regarded as sensor NLRs. Some NLR protein families function downstream of sensor NLRs to transduce immune signalling and are known as helper NLRs. Recent breakthrough studies on plant NLR protein structures and biochemical functions greatly advanced our understanding of NLR biology. Comprehensive and detailed knowledge on NLR biology requires future efforts to solve more NLR protein structures and investigate the signalling events between sensor and helper NLRs, and downstream of helper NLRs.  相似文献   

6.
7.
Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable cells to respond to pathogen attack. Several NLRs act in the nucleus; however, conserved nuclear targets that support their role in immunity are unknown. Previously, we noted a structural homology between the nucleotide-binding domain of NLRs and DNA replication origin-binding Cdc6/Orc1 proteins. Here we show that the NB-ARC (nucleotide-binding, Apaf-1, R-proteins, and CED-4) domain of the Rx1 NLR of potato binds nucleic acids. Rx1 induces ATP-dependent bending and melting of DNA in vitro, dependent upon a functional P-loop. In situ full-length Rx1 binds nuclear DNA following activation by its cognate pathogen-derived effector protein, the coat protein of potato virus X. In line with its obligatory nucleocytoplasmic distribution, DNA binding was only observed when Rx1 was allowed to freely translocate between both compartments and was activated in the cytoplasm. Immune activation induced by an unrelated NLR-effector pair did not trigger an Rx1-DNA interaction. DNA binding is therefore not merely a consequence of immune activation. These data establish a role for DNA distortion in Rx1 immune signaling and define DNA as a molecular target of an activated NLR.  相似文献   

8.
Because of the frequent breakdown of major resistance (R) genes, identification of new partial R genes against rice blast disease is an important goal of rice breeding. In this study, we used a core collection of the Rice Diversity Panel II (C‐RDP‐II), which contains 584 rice accessions and are genotyped with 700 000 single‐nucleotide polymorphism (SNP) markers. The C‐RDP‐II accessions were inoculated with three blast strains collected from different rice‐growing regions in China. Genome‐wide association study identified 27 loci associated with rice blast resistance (LABRs). Among them, 22 LABRs were not associated with any known blast R genes or QTLs. Interestingly, a nucleotide‐binding site leucine‐rich repeat (NLR) gene cluster exists in the LABR12 region on chromosome 4. One of the NLR genes is highly conserved in multiple partially resistant rice cultivars, and its expression is significantly up‐regulated at the early stages of rice blast infection. Knockout of this gene via CRISPR‐Cas9 in transgenic plants partially reduced blast resistance to four blast strains. The identification of this new non‐strain specific partial R gene, tentatively named rice blast Partial Resistance gene 1 (PiPR1), provides genetic material that will be useful for understanding the partial resistance mechanism and for breeding durably resistant cultivars against blast disease of rice.  相似文献   

9.
While miRs have been extensively studied in the context of malignancy and tumor progression, their functions in regulating T-cell activation are less clear. In initial studies, we found reduced levels of miR-15a/16 at 3 to 18 h post–T-cell receptor (TCR) stimulation, suggesting a role for decreased levels of this miR pair in shaping T-cell activation. To further explore this, we developed an inducible miR15a/16 transgenic mouse model to determine how elevating miR-15a/16 levels during early stages of activation would affect T-cell proliferation and to identify TCR signaling pathways regulated by this miR pair. Doxycycline (DOX)-induced expression of miR-15a/16 from 0 to 18 h post-TCR stimulation decreased ex vivo T-cell proliferation as well as in vivo antigen-specific T-cell proliferation. We also combined bioinformatics and proteomics approaches to identify the mitogen-activated protein kinase kinase 1 (MEK1) (Map2k1) as a target of miR-15a/16. MEK1 targeting by miR-15a/16 was confirmed using miR mimics that decreased Map2k1 mRNA containing the 3′-UTR target nucleotide sequence (UGCUGCUA) but did not decrease Map2k1 containing a mutated control sequence (AAAAAAAA). Phosphorylation of downstream signaling molecules, extracellular signal–regulated protein kinase 1/2 (ERK1/2) and Elk1, was also decreased by DOX-induced miR-15a/16 expression. In addition to MEK1, ERK1 was subsequently found to be targeted by miR-15a/16, with DOX-induced miR-15a/16 reducing total ERK1 levels in T cells. These findings show that TCR stimulation reduces miR-15a/16 levels at early stages of T-cell activation to facilitate increased MEK1 and ERK1, which promotes the sustained MEK1–ERK1/2–Elk1 signaling required for optimal proliferation.  相似文献   

10.
The intracellular nucleotide-binding domain leucine-rich repeat (NLR) class of immune receptors plays an important role in plant viral defence. Plant NLRs recognize viruses through direct or indirect association of viral proteins, triggering a downstream defence response to prevent viral proliferation and movement within the plant. This review focuses on current knowledge of intracellular perception of viral pathogens, activation of NLRs and the downstream signalling components involved in plant viral defence.  相似文献   

11.
Highlights? Chitin induces rapid activation of the rice small GTPase OsRac1 at the plasma membrane ? OsRacGEF1 interacts with and acts as a guanine nucleotide exchange factor for OsRac1 ? In response to chitin, OsRacGEF1 is activated via phosphorylation by OsCERK1 ? OsRacGEF1 is required for chitin-driven immunity and resistance to rice blast fungus  相似文献   

12.
夏石头 《植物学报》1983,54(3):288-292
NLR蛋白是存在于植物和动物中的一个免疫受体大家族, 具有核苷酸结合域并富含亮氨酸重复序列。植物NLR通过识别病原菌特异效应子开启免疫信号转导。第1个植物NLR抗性蛋白于25年前克隆, 但其激活机制仍不清楚, 至今仍未获得一个完整的NLR蛋白结构。最近, 柴继杰、周俭民和王宏伟实验室合作解析了第一个植物完整NLR ZAR1激活前后的结构, 研究成果以两篇论文形式发表在“科学”杂志上, 填补了NLR介导的免疫信号转导研究领域的空白。该文简要总结了相关研究进展, 讨论了NLR免疫信号转导研究领域尚需解决的问题。  相似文献   

13.
夏石头  李昕 《植物学报》2019,54(3):288-292
NLR蛋白是存在于植物和动物中的一个免疫受体大家族,具有核苷酸结合域并富含亮氨酸重复序列。植物NLR通过识别病原菌特异效应子开启免疫信号转导。第1个植物NLR抗性蛋白于25年前克隆,但其激活机制仍不清楚,至今仍未获得一个完整的NLR蛋白结构。最近,柴继杰、周俭民和王宏伟实验室合作解析了第一个植物完整NLR ZAR1激活前后的结构,研究成果以两篇论文形式发表在"科学"杂志上,填补了NLR介导的免疫信号转导研究领域的空白。该文简要总结了相关研究进展,讨论了NLR免疫信号转导研究领域尚需解决的问题。  相似文献   

14.
The evolution of recognition specificities by the immune system depends on the generation of receptor diversity and on connecting the binding of new antigens with the initiation of downstream signaling. In plant immunity, the innate Nucleotide-Binding Leucine-Rich Repeat (NLR) receptor family enables antigen binding and immune signaling. In this study, we surveyed the NLR complements of 62 ecotypes of Arabidopsis thaliana and 54 lines of Brachypodium distachyon and identified a limited number of NLR subfamilies that show high allelic diversity. We show that the predicted specificity-determining residues cluster on the surfaces of Leucine-Rich Repeat domains, but the locations of the clusters vary among NLR subfamilies. By comparing NLR phylogeny, allelic diversity, and known functions of the Arabidopsis NLRs, we formulate a hypothesis for the emergence of direct and indirect pathogen-sensing receptors and of the autoimmune NLRs. These findings reveal the recurring patterns of evolution of innate immunity and can inform NLR engineering efforts.

NLR immune receptor complements of 62 ecotypes of A. thaliana and 54 lines of B. distachyon help identify highly variable NLR subfamilies responsible for the generation of new receptor specificities.  相似文献   

15.
G protein–coupled receptors (GPCRs) convert external stimuli into cellular signals through heterotrimeric guanine nucleotide-binding proteins (G-proteins) and β-arrestins (βarrs). In a βarr-dependent signaling pathway, βarrs link GPCRs to various downstream signaling partners, such as the Raf–mitogen-activated protein kinase extracellular signal–regulated kinase–extracellular signal-regulated kinase cascade. Agonist-stimulated GPCR–βarr complexes have been shown to interact with C-Raf and are thought to initiate the mitogen-activated protein kinase pathway through simple tethering of these signaling partners. However, recent evidence shows that in addition to canonical scaffolding functions, βarrs can allosterically activate downstream targets, such as the nonreceptor tyrosine kinase Src. Here, we demonstrate the direct allosteric activation of C-Raf by GPCR–βarr1 complexes in vitro. Furthermore, we show that βarr1 in complex with a synthetic phosphopeptide mimicking the human V2 vasopressin receptor tail that binds and functionally activates βarrs also allosterically activates C-Raf. We reveal that the interaction between the phosphorylated GPCR C terminus and βarr1 is necessary and sufficient for C-Raf activation. Interestingly, the interaction between βarr1 and C-Raf was considerably reduced in the presence of excess activated H-Ras, a small GTPase known to activate C-Raf, suggesting that H-Ras and βarr1 bind to the same region on C-Raf. Furthermore, we found that βarr1 interacts with the Ras-binding domain of C-Raf. Taken together, these data suggest that in addition to canonical scaffolding functions, GPCR–βarr complexes directly allosterically activate C-Raf by binding to its amino terminus. This work provides novel insights into how βarrs regulate effector molecules to activate downstream signaling pathways.  相似文献   

16.
Fungal hydrophobins are secreted proteins that self-assemble at hydrophobic:hydrophilic interfaces. They are essential for a variety of processes in the fungal life cycle, including mediating interactions with surfaces and infection of hosts. The fungus Magnaporthe oryzae, the causative agent of rice blast, relies on the unique properties of hydrophobins to infect cultivated rice as well as over 50 different grass species. The hydrophobin MPG1 is highly expressed during rice blast pathogenesis and has been implicated during host infection. Here we report the backbone and sidechain assignments for the class I hydrophobin MPG1 from the rice blast fungus Magnaporthe oryzae.  相似文献   

17.
18.
Metallothioneins are small, ubiquitous Cys-rich proteins known to be involved in reactive oxygen species (ROS) scavenging and metal homeostasis. We found that the expression of a metallothionein gene (OsMT2b) was synergically down-regulated by OsRac1 and rice (Oryza sativa) blast-derived elicitors. Transgenic plants overexpressing OsMT2b showed increased susceptibility to bacterial blight and blast fungus. OsMT2b-overexpressing cells showed reduced elicitor-induced hydrogen peroxide production. In contrast, homozygous OsMT2b::Tos17-inserted mutant and OsMT2b-RNAi-silenced transgenic cells showed significantly higher elicitor-induced hydrogen peroxide production than the wild-type cells. In vitro assay showed that recombinant OsMT2b protein possessed superoxide- and hydroxyl radical-scavenging activities. Taken together, these results showed that OsMT2b is an ROS scavenger and its expression is down-regulated by OsRac1, thus potentiating ROS, which function as signals in resistance response. The results suggest that OsRac1 plays a dual role as an inducer of ROS production and a suppressor of ROS scavenging.  相似文献   

19.
Gliomas are the most common solid tumors among central nervous system tumors. Most glioma patients succumb to their disease within two years of the initial diagnosis. The median survival of gliomas is only 14.6 months, even after aggressive therapy with surgery, radiation, and chemotherapy. Gliomas are heavily infiltrated with myeloid- derived cells and endothelial cells. Increasing evidence suggests that these myeloid- derived cells interact with tumor cells promoting their growth and migration. NLRs (nucleotide-binding oligomerization domain (NOD)-containing protein like receptors) are a class of pattern recognition receptors that are critical to sensing pathogen and danger associated molecular patterns. Mutations in some NLRs lead to autoinflammatory diseases in humans. Moreover, dysregulated NLR signaling is central to the pathogenesis of several cancers, autoimmune and neurodegenerative diseases. Our review explores the role of angiogenic factors that contribute to upstream or downstream signaling pathways leading to NLRs. Angiogenesis plays a significant role in the pathogenesis of variety of tumors including gliomas. Though NLRs have been detected in several cancers including gliomas and NLR signaling contributes to angiogenesis, the exact role and mechanism of involvement of NLRs in glioma angiogenesis remain largely unexplored. We discuss cellular, molecular and genetic studies of NLR signaling and convergence of NLR signaling pathways with angiogenesis signaling in gliomas. This may lead to re-appropriation of existing anti-angiogenic therapies or development of future strategies for targeted therapeutics in gliomas.  相似文献   

20.
OsRac5 belongs to the rice Rho of plants family, and acts as the molecular switch in the signal pathway which is pivotally involved in the rice fertility control. One of its putative partners, OsMY1, was isolated by yeast two-hybrid screening from rice panicle cDNA library. Bioinformatics analysis shows that OsMY1 contains a coiled-coil domain which generally appeared in the partners of Rho GTPases. By yeast two-hybrid assay, it is confirmed that OsMY1 binds both the wild type (WT) and constitutively active (CA) OsRac5, but does not interact with dominantly negative OsRac5. In addition, the interactions between OsMY1 and WT-OsRac5 or CA-OsRac5 in vivo are demonstrated by bimolecular fluorescence complementation assay. Using PCR-mediated sequence deletion and point mutation of OsMY1, the interaction between OsMY1 and OsRac5 was identified to be mediated by the coiled-coil domain in OsMY1, and their binding was quantified by O-nitro-phenyl-β-d-galactopyranoside assay. Real-time PCR shows that OsMY1 and OsRac5 are coordinately expressed in rice leaves and panicles with similar expression patterns. Our results suggest that OsMY1 is an important target of OsRac5 and that these two genes are involved in the same biological processes in rice growth and development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号