首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An ion chromatographic method for the simultaneous determination of cyanide and thiocyanate in blood has been developed. After extraction by adding water and methanol to blood, cyanide was derivatized with 2,3-naphthalenedialdehyde and taurine to give a fluorescent product of 1-cyanobenz[f]isoindole. This compound was detected with high sensitivity by fluorometry and the underivatized thiocyanate was detected by ultraviolet absorption. The detection limits were 3.8 pmol ml−1 for cyanide and 86 pmol ml−1 for thiocyanate, and the recoveries from blood were ca. 83% and ca. 100%, respectively. The proposed method was successfully applied to the analysis of both anions in blood from smokers, non-smokers and fire victims.  相似文献   

2.
Methanol and its metabolite formic acid have been found extractable from human whole blood and urine by headspace solid-phase microextraction (SPME) with a Carboxen/polydimethylsiloxane fiber. The headspace SPME for formic acid was carried out after derivatization to methyl formate under acidic conditions. The determinations of both compounds were made by using acetonitrile as internal standard (IS) and capillary gas chromatography (GC) with flame ionization detection. The headspace SPME–GC gave sharp peaks for methanol, methyl formate and I.S.; and low background noises for whole blood and urine samples. Extraction efficiencies were 0.25–1.05% of methanol and 0.38–0.84% formic acid for whole blood and urine. The calibration curves for methanol and formic acid showed excellent linearity in the range of 1.56 to 800 and 1.56 to 500 μg/0.5 ml of whole blood or urine, respectively. The detection limits were 0.1–0.5 μg/0.5 ml for methanol and 0.6 μg/0.5 ml for formic acid for both body fluids. The within-day relative standard deviations in terms of extraction efficiency for both compounds in whole blood and urine samples were not greater than 9.8%. By using the established SPME method, methanol and formic acid were successfully separated and determined in rat blood after oral administration of methanol.  相似文献   

3.
We devised a sensitive and simple method for determining nitrate in whole blood, using an extractive alkylation technique. Nitrate in whole blood was reduced to nitrite by hydrazine sulfate in the presence of Cu2+ and Zn2+ as catalysts, and alkylated with pentafluorobenzyl bromide using tetradecyldimethylbenzylammonium chloride as the phase-transfer catalyst. The obtained derivative was analyzed qualitatively by gas chromatography–mass spectrometry and quantitatively by gas chromatography with electron-capture detection. The detection limit of nitrate in whole blood was 0.01 mM. The calibration curve was linear over the concentration range from 0.02 to 1.0 mM for nitrate in whole blood. The accuracy and precision of the method were evaluated and the relative standard deviations were found to be within 10%. Using this method, the blood nitrate levels of two victims who committed suicide by inhaling automobile exhaust gas were determined.  相似文献   

4.
A gas chromatography-mass spectrometric (GC-MS) method was developed for the determination of 2-naphthol (2-NAP) and 1-hydroxypyrene (1-HOP) in human urine. Extraction from urine after the enzyme hydrolysis with β-glucuronidase/arylsulfatase was achieved with a liquid extraction using 5 mL of pentane. After addition of 50 μL of N-methyl-N-(tert-butyldimethylsilyl) trifluoroacetamide (MTBDMSTFA) to prevent the loss of 2-NAP during drying, the extract was completely dried and derivatized with MTBDMSTFA for 30 min at 60 °C. The accuracies were in the range of 96-109% at a concentration of 0.5, 10 and 25 μg/L and their precisions were less than 15%. Method detection limits of 2-NAP and 1-HOP were 0.07 and 0.01 μg/L, respectively. This method was used to analyze twenty urine samples, and they were found in the concentration range <0.07-13.7 μg/L (2-NAP) and <0.01-0.88 μg/L (1-HOP). The concentrations of 2-NAP and 1-HOP were well correlated to those of naphthalene and pyrene in blood, respectively.  相似文献   

5.
A sensitive method was developed to determine permethrin extracted from phosphate buffer and cattle plasma by potassium cyanide catalyzed transesterification of this insecticide with refluxing ethanol and detection of the resulting ethyl esters by capillary gas chromatography with an electron capture detector. With a reflux time of 2 h and with 3-phenoxybenzyl 2-chlorobenzoate as an internal standard, linear calibration curves from buffer (5–250 ng) and plasma (5–100 ng) were obtained. Precision and accuracy of the method were 15%. The limit of detection was approximately 2.5 ng/ml (cis) and 1 ng/ml (trans) from buffer. In cattle sprayed along the back at 2 mg/kg, the concentration of cis- and trans-permethrin in plasma was below the detection limit (5 ng/ml).  相似文献   

6.
A rapid, sensitive and selective gas chromatographic method with flame ionization detection was developed for the determination of paraldehyde in small blood samples taken from children. Whole blood samples (300 microl) collected in a 3 ml Wheaton glass sample vial were spiked with acetone (internal standard: 15 ng) followed by addition of concentrated hydrochloric acid. The mixture was heated in the sealed airtight sample vial in a water bath (96 Celsius; 5 min) to depolymerize paraldehyde to acetaldehyde. A 2 ml aliquot of the headspace was analyzed by gas chromatography with flame ionization detector using a stainless steel column (3 m x 4 mm i.d.) packed with 10% Carbowax 20 M/ 2% KOH on 80/100 Chromosorb WAW. Calibration curves were linear from 1.0-20 microg (r2>0.99). The limit of detection was 1.5 microg/ml, while relative mean recoveries at 2 and 18 microg were 105.6 +/- 8.4 and 101.2 +/- 5.9%, respectively (n = 10 for each level). Intra- and inter-assay relative standard deviations at 2, 10 and 18 microg were <15%. There was no interference from other drugs concurrently used in children with severe malaria, such as anticonvulsants (diazepam, phenytoin, phenobarbitone), antipyretics/analgesics (paracetamol and salicylate), antibiotics (gentamicin, chloramphenicol, benzyl penicillin) and antimalarials (chloroquine, quinine, proguanil, cycloguanil, pyrimethamine and sulfadoxine). The method was successfully applied for pharmacokinetic studies of paraldehyde in children with convulsions associated with severe malaria.  相似文献   

7.
A selective and sensitive gas chromatographic method for simultaneous determination of sulfinpyrazone and two of its metabolites (the para-hydroxylated metabolite and the sulfone metabolite) in biological fluids using alkali flame ionization detection (AFID), electron capture detection (ECD) and mass fragmentographic detection is described. The compounds are extracted from the samples, methylated and separated on 2% OV-17 or 8% OV-225 columns. Phenylbutazone is used as internal standard. Standard curves are linear. The coefficient of variation at 10 μg/ml of sulfinpyrazone in plasma was shown to be 1.8% (AFID), and the detection limits were 0.1 μg/ml (AIFD) and 10 ng/ml (ECD). Mass spectra of the methylated compounds are shown and serum concentration curves after oral administration of 100 mg sulfinpyrazone to two persons are determined together with the excreted amounts of drug and metabolites.  相似文献   

8.
The cyanide metabolite 2-aminothiazoline-4-carboxylic acid (ATCA) is a promising biomarker for cyanide exposure because of its stability and the limitations of direct determination of cyanide and more abundant cyanide metabolites. A simple, sensitive, and specific method based on derivatization and subsequent gas chromatography-mass spectrometry (GC-MS) analysis was developed for the identification and quantification of ATCA in synthetic urine and swine plasma. The urine and plasma samples were spiked with an internal standard (ATCA-d(2)), diluted, and acidified. The resulting solution was subjected to solid phase extraction on a mixed-mode cation exchange column. After elution and evaporation of the solvent, a silylating agent was used to derivatize the ATCA. Quantification of the derivatized ATCA was accomplished on a gas chromatograph with a mass selective detector. The current method produced a coefficient of variation of less than 6% (intra- and interassay) for two sets of quality control (QC) standards and a detection limit of 25 ng/ml. The applicability of the method was evaluated by determination of elevated levels of ATCA in human urine of smokers in relation to non-smokers for both males and females.  相似文献   

9.
A novel method for fast determination of fluoroacetamide, a kind of organic fluorine pesticide, in blood and urine samples was developed with acetamide as an internal standard using gas chromatography/mass spectrometry (GC/MS) after solid-phase microextraction (SPME) technique. The SPME was performed by immersing a PDMS fiber of 100 microm coating thickness in a sample solution for 25 min at 70 degrees C with (CH(3)CH(2))(4)NBr to improve the extraction efficiency. After a GC sample injection, the extracted fluoroacetamide was desorbed from the fiber for 4 min to perform the GC/MS detection with a HP-PLOT Q capillary column. The analytical conditions were optimized by examining systematically, the effects of experimental parameters on the ratio of characteristic ion peak areas of fluoroacetamide to acetamide. Under optimal conditions, the ratio was proportional to the concentration of fluoroacetamide ranging from 5.0 to 90 microg/ml with a detection limit of 1.0 microg/ml. The average recovery of fluoroacetamide in blood sample was 92.2%. The established method could be used for the fast and convenient measurement of fluoroacetamide in poisoned sample.  相似文献   

10.
The concentrations of three polyphenols ((+)-catechin, quercetin and trans-resveratrol) in blood serum, plasma and urine, as well as whole blood, have been measured after their oral and intragastric administration, respectively, to humans and rats. The method developed for this purpose utilized ethyl acetate extraction of 100 μl samples and their derivatization with bis(trimethylsilyl)trifluoroacetamide (BSTFA) followed by gas-chromatographic analysis on a DB-5 column followed by mass selective detection employing two target ions and one qualifier ion for each compound. Total run time was 17 min with excellent resolution and linearity. The limits of detection (LOD) and quantitation (LOQ) were an order of magnitude less than for any previously published method, being 0.01 μg/l and 0.1 μg/l, respectively, for all compounds. Recovery at 1 μg/l and 10 μg/l was >80% in all instances but one, and was >90% in 50%. Imprecision was acceptable at 0.25 and 1.0 μg/l, concentrations below the LOQ of previous methods. Aglycones released from conjugates after hydrolysis were easily measurable. Optimal conditions for hydrolysis were established. After oral administration of the three polyphenols to humans, their conjugates vastly exceeded the concentrations of the aglycones in both plasma and urine. Concentrations peaked within 0.5–1.0 h in plasma and within 8 h in urine. During the first 24 h, 5.1% of the (+)-catechin and 24.6% of the trans-resveratrol given were recovered in the urine (free plus conjugated). This method can be proposed as the method of choice to assay these polyphenols and their conjugates in biological fluids.  相似文献   

11.
A method is described for the qualiitative and quantitative determination of phenylbutazone and oxyphenbutazone in horse urine and plasma samples viewing antidoping control. A horse was administered intravenously with 3 g of phenylbutazone. For the qualitative determination, a screening by HPLC was performed after acidic extraction of the urine samples and the confirmation process was realized by GC-MS. Using the proposed method it was possible to detect phenylbutazone and oxyphenbutazone in urine for up to 48 and 120 h, respectively. For the quantitation of these drugs the plasma was deproteinized with acetonitrile and 20 gml were injected directly into the HPLC system equipped with a UV detector and LiChrospher RP-18 column. The mobile phase used was 0.01 M acetic acid in methanol (45:55, v/v). The limit of detection was 0.5 μg/ml for phenylbutazone and oxyphenbutazone and the limit of quantitation was 1.0 μg/ml for both drugs. Using the proposed method it was possible to quantify phenylbutazone up to 30 h and oxyphenbutazone up to 39 h after administration.  相似文献   

12.
Thiosulfate is a naturally occurring product of sulfur metabolism. Assays of urinary thiosulfate have been based on the reaction with cyanide to form thiocyanate. However, matrix interferences and background variation in endogenous thiocyanate excretion place constraints on this method for determination of physiological amounts of thiosulfate in urine. We describe a column-switching ion chromatographic separation for urinary thiosulfate that allows for sensitive and accurate detection by ion conductimetry. In 20 adult volunteers, we found a lower urinary thiosulfate (8.50±7.39 μmol/24 h, mean±S.D.) than others have described, although the upward skew of the results (median, 6.90; range, 0.84-32 μmol/ 24 h) was similar. However, we have not observed any of the interfaces and the sensitivityof our technique (<0.2 μmol/24 h) allows for detection of thiosulfate in all control samples. This sort of methodological improvement will be essential for any study of physiological thiosulfate metabolism.  相似文献   

13.
We devised a sensitive and simple method to simultaneously determine bromvalerylurea and allylisopropylacetylurea in human blood and urine by gas chromatography-mass spectrometry. Bromvalerylurea and allylisopropylacetylurea were extracted using an Extrelut column with an internal standard, 2-bromohexanoylurea, followed by derivatization with heptafluorobutyric anhydride. The derivatized extract was submitted to GC-MS analysis of EI-SIM mode. The calibration curves of both compounds were linear in the concentration range from 0.01 to 10 microg/ml in both blood and urine samples. The lower limits of detection of bromvalerylurea and allylisopropylacetylurea were 0.005 and 0.005 microg/ml, respectively. This method proved most useful in accurately identifying these drugs in blood and urine from an autopsied individual.  相似文献   

14.
Solid-phase microextraction (SPME) is a unique extraction and sampling technique, and it has been used for separation of volatile organics from water or other simple matrices. In this study, we have used SPME to separate dinitroaniline herbicides from complicated matrices of human urine and blood in order to broaden its application to biomedical analysis. The SPME conditions were optimized for water, urine and blood samples, in terms of pH, salt additives, extraction temperature, and fiber exposure time. Urine or water (1.0 ml) spiked with herbicides and 0.28 g of anhydrous sodium sulfate was preheated at 70°C for 10 min, and a polydimethylsiloxane-coated fiber for SPME was exposed to the headspace at 70°C for another 30 min; while spiked blood (0.5 ml) diluted with water (0.5 ml) was treated at 90°C in the same way. The herbicides were extractable under these conditions, and could be determined by gas chromatography–electron capture detector (GC–ECD). The recoveries of the herbicides, measured at the concentrations of 0.50 and 1.0 ng/ml urine or water, or 6.0 and 20 ng/0.5 ml blood, ranged from 35 to 64% for different herbicides from water or urine, and from 3.2 to 7.2% from blood. The headspace SPME yielded clean extracts of dinitroaniline herbicides from urine, blood or water, which could be directly analyzed by GC–ECD without further purification. The peak areas of the extracted herbicides were proportional to their concentrations in the range 0.1–10 ng/ml in water or urine, or 1–60 ng/0.5 ml in blood. The lowest detectable concentration of the herbicides lay in 0.1 ng/ml water or urine, or in 0.5 ng/0.5 ml blood. The intra- and inter-day coefficients of variation were within 14% for most of the analytes. Although the recoveries of the herbicides were rather low, the linearity of calibration curve and the precision were good. The developed method is more sensitive and much simpler in sample preparation than previously reported ones. With the established SPME method, a dosed herbicide was successfully separated and determined in rats' blood.  相似文献   

15.
In order to measure changes in physiological CO concentrations in blood with good accuracy, a method was developed using gas chromatography with flame ionisation detection (250 degrees C). A nickel catalyst system was fitted to convert CO to methane at 375 degrees C after separation with a molecular sieve column at 35 degrees C. Helium was used as carrier at 30 ml/min. Porcine or human blood (400 microl) was sampled in gastight tubes and treated with sulfuric acid and saponin (800 microl). Accuracy was 1.4% and 1.5% (RSD), respectively. Precision was 2.8% (porcine blood). Limit of detection was 0.01 nmol/ml gas and limit of quantification 12 nmol/ml blood. Calibration was made in the interval 12-514 nmol/ml blood (corresponding to 0.1-6% COHb). Samples were stable for at least a month at +4 degrees C. This paper describes a method with high sensitivity and good accuracy, suitable for analysis of low CO concentrations.  相似文献   

16.
Omega-3 index is a relatively new concept, defined as the sum of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) expressed as a percentage of the total fatty acids in red blood cell membranes. This index reflects medium to long-term intake of omega-3 polyunsaturated fatty acids and could be a useful tool in epidemiological studies. The standard technique used for fatty acid analysis and quantification has been gas chromatography (GC) with flame ionization detection. This method is robust and has good precision and sensitivity. However, a major disadvantage is inability to confirm spectrometrically the identity of fatty acids detected, which is important especially in complex biological samples. The current study measures omega-3 index in 12 healthy human volunteers using GC-mass spectrometry (MS). Both the intra-assay and day-to-day variations were well within 5% with linearity of response extending to a concentration of 250 μg/ml (830 μmol/L) of EPA. The limit of detection of EPA was 0.36 μg/ml (1.2 μmol/L). About 25 fatty acids were consistently detected in red blood cells from healthy volunteers including cis and trans isomers. The omega-3 index ranged from 2.4% to 6.2% among the 12 volunteers examined and there was no difference between samples taken in the fasting and postprandial states. EPA and DHA concentrations ranged from 3.53 to 105.89 μg/ml (11.7–350 μmol/L) and 12.19 to 214.42 μg/ml (37.1–652.7 μmol/L), respectively. Thus a GC–MS method has been developed for measuring the omega-3 index. Further studies are required to determine the role of this index as a predictor of disease.  相似文献   

17.
A gas chromatographic–electron capture detection (GC–ECD) method has been developed for determining Guan-Fu Base A (GFA), an experimental anti-arrhythmic, in human plasma. The method was based on one-step liquid–liquid extraction with toluene and chemical derivatization with pentafluoropropionic anhydride followed by GC–ECD. The derivatives of GFA and metoprolol (Met, internal standard) were confirmed by gas chromatography–mass spectrometry (GC–MS) to be dipentafluoropropionyl-GFA and dipentafluoropropionyl-Met. The method was linear over the concentration ranges of 0.1–20.0 and 1.0–30.0 μg/ml with the detection limit of 0.05 μg/ml at S/N=5. The intra- and inter-assay precisions were less than 6 and 10%, and accuracy 99.70±3.30 and 97.60±5.99%, respectively. The absolute recoveries were 81.88, 77.35, 80.79 and 83.85% for GFA at concentrations of 0.5, 1.0, 5.0 and 14.0 μg/ml and 88.24% for Met at 3.0 μg/ml, respectively.  相似文献   

18.
A capillary electrophoresis method with contactless conductivity detection was developed for the quantification of carnitine and six acylcarnitines in plasma and urine samples. The running buffer employed consisted of 500 mmol/L acetic acid, 1.0 mmol/L hydroxypropyl-β-cyclodextrin and 0.05% Tween at a pH of 2.6. Under these conditions, the isomeric valproyl- and octanoyl-carnitines could be distinguished. The linearity was in the range from 5.0 to 200.0 μmol/L with correlation coefficients between 0.9992 and 0.9997. The limits of detection were between 1.0 and 3.2 μmol/L. Intra- and inter-day precisions as %RSD were better than 10%. The method allows for direct determination without derivatisation or extraction processes. The method was applied for the quantification of carnitine and acetylcarnitine in plasma pre- and post-exercise, and to measure valproylcarnitine in plasma and urine of patients undergoing valproate therapy.  相似文献   

19.
A simple and sensitive high-performance liquid chromatographic method involving UV detection was developed for determination of caffeic acid in rabbit plasma. A Lichrosphere CN column (250 mm × 4 mm I.D., 5 μm) was used as the stationary phase and the mobile phase consisted of 2% acetic acid solution at a flow-rate of 1.0 ml/min. The UV absorbance was monitored at 320 nm. The plasma sample was acidified by the addition of 0.01 parts of concentrated phosphoric acid (85%) to maintain caffeic acid stability. After a simple clean-up procedure, the limit of quantitation achieved was 0.1 μg/ml, and the standard curve was found to be linear over the concentration ranges of 0.1–2.0 μg/ml and 0.1–40 μg/ml. The coefficient of variation for within- and between-run precision and accuracy was less than 10%, and the recovery was 82.3%.  相似文献   

20.
An attempt was made to establish a method for the simultaneous determination of urinary concentrations of phenol, o-, p- and m-cresols, 1 and 2-naphthol and xylenol isomers by capillary gas chromatography. Urine samples were extracted after acid hydrolysis of glucuronides and sulfates by solid-phase extraction. The ten substances were separated gas chromatographically using a capillary column (Ultra 2) of cross-linked 5% phenylmethyl silicone. Calibration graphs were linear for 5–100 μg/ml of all the phenols determined. The corresponding detection limits for phenolic compounds varied from 0.1 to 0.2 μg/ml. The relative standard deviations for samples in urine were in the range 2.6–16.6% and the accuracy was in the range 1.4–25%. Recoveries were generally over 80%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号