首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An improved high-performance liquid chromatographic assay for the cytostatic drug mitomycin C in plasma is presented. The principal steps are precipitation of plasma proteins with acetonitrile, lyophilization of the supernatant and reversed-phase chromatography on a Hypersil ODS 5 μm column with 0.01 M NaH2PO4 buffer (pH 6.5)-methanol (70:30, v/v) in isocratic mode. At a flow-rate of 1.3 ml/min a column pressure of 180–220 bar resulted. Porfiromycin served as internal standard. UV detection was performed at 365 nm. Quantitation limit based on a coefficient of variation <10% in intra- and inter-day assay was 5 μg/l mitomycin C, detection limit based on a signal-to-noise ratio of 3 was 1 μg/l. Recovery was 100% and linearity was shown for the whole range of concentration (1–500 μg/l). None of the five drugs used during chemoembolisation interfered with the assay in vitro. The assay meets the requirements for pharmacokinetic studies of mitomycin C in patients as regards sensitivity and ease of use.  相似文献   

2.
A simple and practical high-performance liquid chromatographic analysis has been developed for measuring teniposide (VM26) in human plasma. The present analytical method has improved extraction efficiency from human plasma, therefore allowing determination of VM26 in a clinical setting using ultraviolet detection alone. Furthermore, sample preparation was simplified and shortened through use of a one-step extraction procedure. VM26 and internal standard (ibuprofen) were extracted from human plasma (0.5 ml) with ethyl acetate. A phenyl μBondapak column eluted with a mobile phase, consisting of acetonitrile–distilled water–acetic acid (30:68:2, v/v/v) was used for separation, and quantitation was achieved with a UV monitor set at 240 nm. Average extraction efficiency was 96.8±6.6% for VM26 between 1 and 25 μg/ml, and 91.4±4.3% for internal standard, with both intra- and inter-day coefficients of variation being less than 10%. The detection limit with a 100-μl injection was estimated at 0.2 μg/ml with a signal-to-noise ratio of 3 for VM26 in human plasma. The stability data of VM26 in plasma, standard and stock solutions were also obtained. The present method was found to be an alternative to the previously reported method with an electrochemical detection, and can be easily applied to routine clinical pharmacokinetic studies of VM26.  相似文献   

3.
A simple, sensitive and reproducible high-performance liquid chromatography (HPLC) method was developed for the determination of terazosin in human plasma. The method involves a one-step single solvent extraction procedure using dichloromethane with a 0.25 ml plasma sample. Recovery values were all greater than 90% over the concentration range 0.25–100 ng/ml. Terazosin was found to adsorb to glass or plastic tubes, but this could be circumvented by using disposable plastic tubes. Also, rinsing the injector port with methanol after each injection helped to prevent any carry-over effect. The internal standard, prazosin, did not exhibit this problem. The method has a quantification limit of 0.25 ng/ml. The within- and between-day coefficient of variation and accuracy values were all less than 7% over the concentration range 0.25–100 ng/ml and hence the method is suitable for use in pharmacokinetic studies of terazosin.  相似文献   

4.
High-performance liquid chromatographic methods that use direct injection of plasma include column-switching procedures, modified mobile phases and small-pore modified stationary phases. By using a large-pore (300 Å) Selectosil C18 column, developed for the analysis of macromolecules, we have shown that quinidine in plasma and protein solutions can be assayed accurately and rapidly by directly injecting 2 μl plasma or protein solution onto the column. Column life is not reduced, and the limit of quantitation is 0.01 μM.  相似文献   

5.
We report a reversed-phase high-performance liquid chromatography method which resolves 13 identified carotenoids and nine unknown carotenoids from human plasma. A Nucleosil C18 column and a Vydac C18 column in series are used with an isocratic solvent system of acetonitrile–methanol containing 50 mM acetate ammonium–dichloromethane–water (70:15:10:5, v/v/v/v) as mobile phase at a flow-rate of 2 ml/min. The intra-day (4.5–8.3%) and inter-day (1.3–12.7%) coefficients of variation are suitable for routine clinical determinations.  相似文献   

6.
Recent studies have stressed the need for individual adjustment of 5-fluorouracil (5-FU) dosage. Most of the techniques previously reported are not well adapted to routine application. We describe a sensitive, selective and simple HPLC technique under isocratic conditions for the quantitation of 5-FU and other halogenopyrimidines. The proportion of reagents and internal standard were optimised to allow the use of minitubes, particularly adapted to large series of plasma assays. High extraction yield, 75% for 5-FU and 90% for 5-bromouracil and 5-chlorouracil, was obtained using 1.2 ml isopropanol–ethyl acetate (15:85, v/v) following precipitation of plasma proteins with 300 mg ammonium sulfate. The mobile phase was 0.01 M phosphate buffer (pH 3.0). Uracil and 5-fluorouracil were fully resolved with Spherisorb ODS2 column. The limits of quantitation and detection in human plasma were 6 ng ml−1 and 3 ng ml−1, respectively, for all compounds studied. The total analysis time required for each run was 25 min. Final results could be given within 90 min of blood sampling. At least 50 plasma samples could be analysed per day. This method has been successfully used for monitoring 5-FU-based treatments.  相似文献   

7.
High-performance liquid chromatographic methods were developed for the separation of the enantiomers of 12 beta-lactams. Direct separations were performed on chiral stationary phases (CSPs) containing cellulose-tris-3,5-dimethylphenyl carbamate (Chiralcel OD-RH and OD-H columns), the macrocyclic glycopeptide antibiotic teicoplanin (Chirobiotic T column), or teicoplanin aglycone (Chirobiotic TAG column) as the chiral selector. It was clearly established that, with teicoplanin-based columns, the teicoplanin aglycone was most often responsible for the enantioseparation of the beta-lactams. The difference in enantioselective free energy between the aglycone CSP and the teicoplanin CSP was in the range between 0.02 and 0.97 kJ mol(-1) for these beta-lactam stereoisomer separations. The separations were carried out with high selectivity and resolution, and the method was therefore suitable for monitoring of the enantiomeric excess after chiral synthesis. The Chirobiotic and Chiralcel columns appear to be highly complementary to one another. The best separation of this class of beta-lactam compound could be obtained using the Chirobiotic TAG in the polar-organic mode plus the Chiralcel OD-H in the normal-phase mode. The elution sequence was also determined.  相似文献   

8.
A highly sensitive and simple isocratic high-performance liquid chromatography method was developed for determination of 3-nitrotyrosine in human plasma with precolumn derivatization with 4-fluoro-7-nitrobenzo-2-oxa-1,3-diazole. The precision of the method was satisfactory (coefficient of variation 4.8%), and the detection limit was established at 0.1 pmol of 3-nitrotyrosine allowing the determination at the level of 6 pmol/ml in human plasma. The recoveries of 3-nitrotyrosine and α-methyltyrosine, an internal standard, were 89.3 +-7.1 and 85.7±7.6%, respectively. The 3-nitrotyrosine level was 31±6 pmol/ml (mean±S.D., n=9) in plasma from healthy volunteers. Since 3-nitrotyrosine is a stable product of peroxynitrite, an oxidant formed by a reaction of nitric oxide and superoxide radicals, the measurement of its plasma concentration may be useful as a marker of nitric oxide-dependent oxidative damage.  相似文献   

9.
A sensitive isocratic high-performance liquid chromatographic (HPLC) method for the measurement of melphalan in plasma is presented. It requires an extraction step using columns of XAD-2 resin before injecting the clarified methanol eluate directly into the HPLC system. The HPLC system uses an isocratic mobile phase containing an ion-pair reagent, and a sensitive fixed-wavelength (254 nm) monitor with a noise specification of <2-10−5 absorbance units peak to peak.The concentration of melphalan was followed in a patient with multiple myeloma on day 1 and day 4 of a four-day course of the drug. Little difference was detected between the two curves with terminal half-lives of 71 and 68 min respectively and areas under the curve of 1.08 and 1.15 min-μg/ml·(mg dose)−1.  相似文献   

10.
A simple and rapid high performance liquid chromatographic method for the determination of plasma amino acids was developed. The method uses minimal sample volume and automated online precolumn derivitization of amino acids with o-phthalaldehyde and fluorescent detection. Amino acids are separated by a simplified gradient without column heating. The assay is linear from 5 to 1000 micromol/L for all amino acids. Recovery of amino acids was between 91 and 108%, intra-assay coefficient of variation (CV) was 1-7%, and inter-assay CV was 2-12%. The simple sample preparation and minimal sample volume make the method useful for the quantitation of amino acids in both patient and experimental animal samples.  相似文献   

11.
Choline was isolated from deproteinized plasma by cation-exchange chromatography. Isolated choline was directly converted to the 3,5-dinitrobenzoate derivative and was analyzed by paired-ion high-performance liquid chromatography with UV detection at 254 nm. An internal standard, 3-hydroxy-N,N,N-trimethylpropanaminium iodide was used for quantitation of plasma choline.Linearity was achieved from 1–500 nmole/ml with a reproducibility of ± 6%. Plasma choline concentrations below 1 nmole/ml could not be accurately measured while plasma choline concentrations in the μmole/ml range deviated from linearity.  相似文献   

12.
13.
A rapid simple and robust reversed-phase HPLC method was developed for rapid screening in bioavailability studies or comparative bioequivalence studies. The method is specific for vancomycin as no interference from acetylsalicylic acid, paracetamol and caffeine was observed. The mean intra-day precision was from 11.7% (low concentration) to 0.3% (high concentration) and the within-day precision from 15.0 to 0.3%, determined on spiked samples. The accuracy of the method was 106.4–99.8% (intra-day) and 103.5–100.2% (inter-day).  相似文献   

14.
15.
A sensitive method for the enantioselective high-performance liquid chromatography (HPLC) determination of nicardipine in human plasma is described. (+)-Nicardipine, (−)-nicardipine and (+)-barnidipine as an internal standard are detected by an ultraviolet detector at 254 nm. Racemic nicardipine in human plasma was extracted by a rapid and simple procedure based on C18 bonded-phase extraction. The extraction samples were purified and concentrated on a pre-column using a C1 stationary phase and the enantiomers of nicardipine are quantitatively separated by HPLC on a Sumichiral OA-4500 column, containing a chemically modified Pirkle-type stationary phase. Determination of (+)- and (−)-nicardipine was possible in a concentration range of 5–100 ng ml−1 and the limit of detection in plasma was 2.5 ng ml−1. The recoveries of (+)- and (−)-nicardipine added to plasma were 91.4–98.4% and 93.3–96.7%, respectively, with coefficients of variation of less than 9.0 and 9.4% respectively. The method was applied to low level monitoring of (+)- and (−)-nicardipine in plasma from healthy volunteers.  相似文献   

16.
17.
Reversed-phase HPLC method by direct plasma injection has been developed for the analysis of major tryptophan metabolites (both metabolites in kynurenine pathways and in indole pathways). Two columns were used: one was a short precolumn of protein-coated octadecylsilane (ODS) for deproteinization and also for trapping of tryptophan metabolites, and the other was an analytical column of the usual ODS. By a column-switching method, the metabolites trapped in the precolumn were allowed to be eluted through the analytical column. The recovery of the spiked metabolites in plasma by the present method was almost quantitative (98-102%) with good reproducibility (CV less than 3%, within-run), and the method is determined to be simple and reproducible for the analysis of total (free + protein-bound) tryptophan metabolites in plasma. The analysis of rabbit plasma showed several peaks corresponding to kynurenine, kynurenic acid, 5-hydroxyindole-3-acetic acid, indole-3-lactic acid, indole-3-acetic acid, indole-3-propionic acid, and 5-hydroxy-tryptamine in addition to tryptophan.  相似文献   

18.
A highly sensitive reversed-phase high-performance liquid chromatographic assay for ethanol and methanol in plasma, using a post-column enzymic reactor with electrochemical detection, has been developed. The alcohols, separated on the column, were converted by immobilized alcohol oxidase into their respective aldehydes with formation of stoichiometric amounts of hydrogen peroxide, detected via oxidation at a platinum electrode. As the chromatographic column, two glass cartridges (150 mm × 3 mm I.D.) in series, packed with 10-μm HEMA-S 1000® packing, were used. Alcohol oxidase from Candida boidinii was immobilized onto HEMA-BIO 1000 VS-L (10 μm), packed in a 30 mm × 3 mm I.D. glass cartridge. The reaction product, hydrogen peroxide, was detected with an amperometric detector with a platinum electrode, operated at +500 mV vs. an Ag/AgCl reference electrode. A 20-μl volume of ten-fold diluted plasma was injected without any pre-treatment. Under the described conditions, methanol and ethanol were well resolved from each other and from the “front” of the chromatogram. The limit of detection was ca. 2.5 nmol for ethanol and 0.6 nmol for methanol in plasma, at a signal-to-noise ratio of 3. Excellent linearity was observed for ethanol, in the range 0.125–4 μg injected (r = 0.9999). In contrast, the response for methanol was markedly non-linear above 500 μg injected, presumably owing to progressive saturation of the reactor. The precision and accuracy of the assay were satisfactory, as was the reactor life (one month).  相似文献   

19.
An isocratic reversed-phase high-performance liquid chromatography (HPLC) method was developed and validated for separation of testosterone and its main metabolites over the nominal range 20 to 40 μg/ml and 280 to 4600 ng/ml, respectively. Mobile phase composition (phosphate buffer–methanol–acetonitrile, 50:38.5:11.5) was optimised by studying the influence of numerous chromatographic parameters. The most critical one was the ratio CH3CN/CH3OH. Good recoveries (around 90% for all compounds) and an improved specificity were assessed by a double ethyl acetate extraction of biological samples. According to the performance criteria tested, the method could be applied to enzymatic inhibition and induction in vitro studies.  相似文献   

20.
A simple micellar liquid chromatographic (MLC) procedure is reported for the determination of several benzodiazepines in serum: bromazepam, diazepam, flunitrazepam, halazepam, medazepam, nitrazepam, oxazepam and tetrazepam. The optimization studies have been made in C(18) and C(8) columns, using solutions containing sodium dodecyl sulphate (SDS) modified with butanol or pentanol as mobile phases. The method proposed for the determination of the benzodiazepines uses a hybrid micellar mobile phase of 0.06 M SDS-5% butanol-0.01 M phosphate buffer (pH 7) at 25 degrees C, and UV detection (230 nm) in a C(18) column. The serum samples were injected directly, without any pretreatment, and eluted in less than 22 min, in accordance with their relative polarities, as indicated by their octanol-water partition coefficients. The limits of detection (ng ml(-1)) were within the ranges of 2-6 and 4-18 for aqueous and serum samples, respectively. Repeatability and intermediate precision were tested for three different concentrations of the drugs, and RSD (%) was below 10 for most of the assays. The MLC results were compared with those obtained from a conventional HPLC method using methanol-water 5:5 (v/v) which requires a previous extraction procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号