首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The catalytically active form (Ea) of pyruvate formate-lyase in Escherichia coli cells is generated from an inactive form of the enzyme (Ei) through a post-translational process that requires a distinct activating enzyme and is linked to the cleavage of adenosylmethionine to methionine and 5′-deoxyadenosine. Ei and the activating enzyme were purified to homogeneity and structurally characterized. Ei has an α2 oligomeric structure (2 × 85 kDa) and contains no cofactor. The amino acid composition has been determined. Out of a total of six cysteinyl residues per subunit, one shows an unusually fast reaction with iodoacetate (k2 = 7 (m? s?) at pH 6.8, 30 °C), which is accompanied by loss of the activatability of the enzyme. The 1500-fold purified activating enzyme is a monomeric protein of 30 kDa. It contains a covalently bound, as yet unidentified chromophoric factor which has an optical absorption peak at 388 nm. Further studies of the in situ state of pyruvate formate-lyase detected a reversible backconversion of the active form Ea into Ei when anaerobic cells become nutrient-depleted.  相似文献   

2.
NMR spectroscopy is by far the most versatile and information rich technique to study intrinsically disordered proteins (IDPs). While NMR is able to offer residue level information on structure and dynamics, assignment of chemical shift resonances in IDPs is not a straightforward process. Consequently, numerous pulse sequences and assignment protocols have been developed during past several years, targeted especially for the assignment of IDPs, including experiments that employ HN, Hα or 13C detection combined with two to six indirectly detected dimensions. Here we propose two new HN-detection based pulse sequences, (HCA)CON(CAN)H and (HCA)N(CA)CO(N)H, that provide correlations with 1HN(i ? 1), 13C′(i ? 1) and 15N(i), and 1HN(i + 1), 13C′(i) and 15N(i) frequencies, respectively. Most importantly, they offer sequential links across the proline bridges and enable filling the single proline gaps during the assignment. We show that the novel experiments can efficiently complement the information available from existing HNCO and intraresidual i(HCA)CO(CA)NH pulse sequences and their concomitant usage enabled >95 % assignment of backbone resonances in cytoplasmic tail of adenosine receptor A2A in comparison to 73 % complete assignment using the HNCO/i(HCA)CO(CA)NH data alone.  相似文献   

3.
Resonance assignment in intrinsically disordered proteins poses a great challenge because of poor chemical shift dispersion in most of the nuclei that are commonly monitored. Reduced dimensionality (RD) experiments where more than one nuclei are co-evolved simultaneously along one of the time axes of a multi-dimensional NMR experiment help to resolve this problem partially, and one can conceive of different combinations of nuclei for co-evolution depending upon the magnetization transfer pathways and the desired information content in the spectrum. Here, we present a RD experiment, (4,3)D-hNCOCAnH, which uses a combination of CO and CA chemical shifts along one of the axes of the 3-dimensional spectrum, to improve spectral dispersion on one hand, and provide information on four backbone atoms of every residue—HN, N, CA and CO chemical shifts—from a single experiment, on the other. The experiment provides multiple unidirectional sequential (i → i ? 1) amide 1H correlations along different planes of the spectrum enabling easy assignment of most nuclei along the protein backbone. Occasional ambiguities that may arise due to degeneracy of amide proton chemical shifts are proposed to be resolved using the HNN experiment described previously (Panchal et al. in J Biomol NMR 20:135–147, 2001). Applications of the experiment and the assignment protocol have been demonstrated using intrinsically disordered α-synuclein (140 aa) protein.  相似文献   

4.
During the steady state reaction progress in the scooting mode with highly processive turnover, Bacillus cereus sphingomyelinase (SMase) remains tightly bound to sphingomyelin (SM) vesicles (Yu et al., Biochim. Biophys. Acta 1583, 121-131, 2002). In this paper, we analyze the kinetics of SMase-catalyzed hydrolysis of SM dispersed in diheptanoylphosphatidyl-choline (DC7PC) micelles. Results show that the resulting decrease in the turnover processivity induces the stationary phase in the reaction progress. The exchange of the bound enzyme (E*) between the vesicle during such reaction progress is mediated via the premicellar complexes (Ei#) of SMase with DC7PC. Biophysical studies indicate that in Ei# monodisperse DC7PC is bound to the interface binding surface (i-face) of SMase that is also involved in its binding to micelles or vesicles. In the presence of magnesium, required for the catalytic turnover, three different complexes of SMase with monodisperse DC7PC (Ei# with i = 1, 2, 3) are sequentially formed with Hill coefficients of 3, 4 and 8, respectively. As a result, during the stationary phase reaction progress, the initial rate is linear for an extended period and all the substrate in the reaction mixture is hydrolyzed at the end of the reaction progress. At low mole fraction (X) of total added SM, exchange is rapid and the processive turnover is limited by the steps of the interfacial turnover cycle without becoming microscopically limited by local substrate depletion or enzyme exchange. At high X, less DC7PC will be monodisperse, Ei# does not form and the turnover becomes limited by slow enzyme exchange. Transferred NOESY enhancement results show that monomeric DC7PC in solution is in a rapid exchange with that bound to Ei# at a rate comparable to that in micelles. Significance of the exchange and equilibrium properties of the Ei# complexes for the interpretation of the stationary phase reaction progress is discussed.  相似文献   

5.
Microplusin, a Rhipicephalus (Boophilus) microplus anti-microbial peptide (AMP) is the first member of a new family of cysteine-rich AMPs with histidine-rich regions at the N- and C-termini, which is being fully characterized by biophysical and biochemical methods. Here we report the NMR resonance assignments for 1H, 15N, and 13C nuclei in the backbone and side chains of the microplusin as basis for further studies of structure, backbone dynamics and interactions mapping.  相似文献   

6.
Cisproline(i?1)-aromatic(i) interactions have been detected in several short peptides in aqueous solution by analysis of anomalous chemical shifts measured by 1H-NMR spectroscopy. This formation of local structure is of importance for protein folding and binding properties. To obtain an atomic-detail characterisation of the cisproline(i?1)-aromatic(i) interaction in terms of structure, energetics and dynamics, we studied the minimal peptide unit, blocked Ala-cisPro-Tyr, using computational and experimental techniques. Structural database analyses and a systematic search revealed two groups of conformations displaying a cisproline(i?1)-aromatic(i) interaction. These conformations were taken as seeds for molecular dynamics simulations in explicit solvent at 278 K. During a total of 33.6 ns of simulation, all the `folded' conformations and some `unfolded' states were sampled. 1H- and 13C-chemical shifts and 3J-coupling constants were measured for the Ala-Pro-Tyr peptide. Excellent agreement was found between all the measured and computed NMR properties, showing the good quality of the force field. We find that under the experimental and simulation conditions, the Ala-cisPro-Tyr peptide is folded 90% of the time and displays two types of folded conformation which we denote `a' and `b'. The type a conformations are twice as populated as the type b conformations. The former have the tyrosine ring interacting with the alanine α proton and are enthalpically stabilised. The latter have the aromatic ring interacting with the proline side chain and are entropically stabilised. The combined and complementary use of computational and experimental techniques permitted derivation of a detailed scenario of the `folding' of this peptide.  相似文献   

7.
Short range side chain‐backbone hydrogen bonded motifs involving Asn and Gln residues have been identified from a data set of 1370 protein crystal structures (resolution ≤ 1.5 Å). Hydrogen bonds involving residues i ? 5 to i + 5 have been considered. Out of 12,901 Asn residues, 3403 residues (26.4%) participate in such interactions, while out of 10,934 Gln residues, 1780 Gln residues (16.3%) are involved in these motifs. Hydrogen bonded ring sizes (Cn, where n is the number of atoms involved), directionality and internal torsion angles are used to classify motifs. The occurrence of the various motifs in the contexts of protein structure is illustrated. Distinct differences are established between the nature of motifs formed by Asn and Gln residues. For Asn, the most highly populated motifs are the C10 (COδi …NHi + 2), C13 (COδi …NHi + 3) and C17 (NδHi …COi ? 4) structures. In contrast, Gln predominantly forms C16 (COεi …NHi ? 3), C12 (NεHi …COi ? 2), C15 (NεHi …COi ? 3) and C18 (NεHi …COi ? 4) motifs, with only the C18motif being analogous to the Asn C17structure. Specific conformational types are established for the Asn containing motifs, which mimic backbone β‐turns and α‐turns. Histidine residues are shown to serve as a mimic for Asn residues in side chain‐backbone hydrogen bonded ring motifs. Illustrative examples from protein structures are considered. Proteins 2012; © 2011 Wiley Periodicals, Inc.  相似文献   

8.
The potato tuber lipoxygenase preparations convert α-linolenic acid not only to 9(S)-HPOTE, but also to some more polar metabolites. Two of these polar products, I and II, with ultraviolet absorbance maxima at 267 nm were purified by HPLC. It was found that metabolites I and II have, respectively, one and two hydroperoxy groups. Products of NaBH4 reduction of both I and II were identified by their chemical ionization and electron impact mass spectra and by 1H-NMR spectra as 9,16-dihydroxy-10(E), 12(Z), 14(E)-octadecatrienoic acid. The obtained results suggest that compound II is 9,16-dihydroperoxy-10(E), 12(Z), 14(E)-octadecatrienoic acid and product I is a mixture of two positional isomers, 9-hydroxy-16-hydroperoxy-10(E),12(Z),14(E)-octadecatrienoic and 9-hydroperoxy-16-hydroxy-10(E),12(Z), 14(E)-octadecatrienoic acids. Lipoxygenase converts efficiently [14C]9-HOTE into product I. Also, both metabolites I and II are the products of double dioxygenation. The second oxygenation at C-16 position as well as the first one at C-9 is controlled by lipoxygenase.  相似文献   

9.
Chen  C. R.  Condron  L. M.  Sinaj  S.  Davis  M. R.  Sherlock  R. R.  Frossard  E. 《Plant and Soil》2003,256(1):115-130
Vegetative conversion from grass to forest may influence soil nutrient dynamics and availability. A short-term (40 weeks) glasshouse experiment was carried out to investigate the impacts of ryegrass (Lolium perenne) and radiata pine (Pinus radiata) on soil phosphorus (P) availability in 15 grassland soils collected across New Zealand using 33P isotopic exchange kinetics (IEK) and chemical extraction methods. Results from this study showed that radiata pine took up more P (4.5–33.5 mg P pot–1) than ryegrass (1.1–15.6 mg pot–1) from the soil except in the Temuka soil in which the level of available P (e.g., E 1min Pi, bicarbonate extractable Pi) was very high. Radiata pine tended to be better able to access different forms of soil P, compared with ryegrass. There were no significant differences in the level of water soluble P (Cp, intensity factor) between soils under ryegrass and radiata pine, but the levels of Cp were generally lower compared with original soils due to plant uptake. The growth of both ryegrass and radiata pine resulted in the redistribution of soil P from the slowly exchangeable Pi pool (E > 10m Pi, reduced by 31.8% on the average) to the rapidly exchangeable Pi (E 1min-1d Pi, E 1d-10m Pi) pools in most soils. The values of R/r 1 (the capacity factor) were also generally greater in most soils under radiata pine compared with ryegrass. Specific P mineralisation rates were significantly greater for soils under radiata pine (8.4–21.9%) compared with ryegrass (0.5–10.8%), indicating that the growth of radiata pine enhanced mineralisation of soil organic P. This may partly be ascribed to greater root phosphatase activity for radiata pine than for ryegrass. Plant species × soil type interactions for most soil variables measured indicate that the impacts of plant species on soil P dynamics was strongly influenced by soil properties.  相似文献   

10.
The rationale for using small molecule inhibitors of oncogenic proteins as cancer therapies depends, at least in part, on the assumption that metastatic tumors are primarily clonal with respect to mutant oncogene. With the emergence of BRAFV600E as a therapeutic target, we investigated intra- and inter-tumor heterogeneity in melanoma using detection of the BRAFV600E mutation as a marker of clonality. BRAF mutant-specific PCR (MS-PCR) and conventional sequencing were performed on 112 tumors from 73 patients, including patients with matched primary and metastatic specimens (n = 18). Nineteen patients had tissues available from multiple metastatic sites. Mutations were detected in 36/112 (32%) melanomas using conventional sequencing, and 85/112 (76%) using MS-PCR. The better sensitivity of the MS-PCR to detect the mutant BRAFV600E allele was not due to the presence of contaminating normal tissue, suggesting that the tumor was comprised of subclones of differing BRAF genotypes. To determine if tumor subclones were present in individual primary melanomas, we performed laser microdissection and mutation detection via sequencing and BRAFV600E-specific SNaPshot analysis in 9 cases. Six of these cases demonstrated differing proportions of BRAFV600Eand BRAFwild-type cells in distinct microdissected regions within individual tumors. Additional analyses of multiple metastatic samples from individual patients using the highly sensitive MS-PCR without microdissection revealed that 5/19 (26%) patients had metastases that were discordant for the BRAFV600E mutation. In conclusion, we used highly sensitive BRAF mutation detection methods and observed substantial evidence for heterogeneity of the BRAFV600E mutation within individual melanoma tumor specimens, and among multiple specimens from individual patients. Given the varied clinical responses of patients to BRAF inhibitor therapy, these data suggest that additional studies to determine possible associations between clinical outcomes and intra- and inter-tumor heterogeneity could prove fruitful.  相似文献   

11.
The conformational properties of the pentapeptide Ser-Phe-Leu-Leu-Arg (P5), a human thrombin receptor-derived sequence forming part of a tethered ligand which activates the thrombin receptor, and its more active amide derivative Ser-Phe-Leu-Leu-Arg-NH2 (P5-NH2), have been studied by proton NMR spectroscopy in dimethylsulfoxide. Measurements of nuclear Overhauser effects, performed using two-dimensional rotating frame nuclear Overhauser (ROESY) and one-dimensional nuclear Overhauser enhancement (NOE) spectroscopy, revealed that P5 exists mainly in an extended conformation. However, proton–proton 1D-NOEs between Phe CαH and Ser CαH, Leu3 CαH and Leu3 NH, and Leu4 CαH and Leu4 NH, as well as between the Ser and Arg sidechains, also implicated a minor conformer for P5 having a curved backbone and a near-cyclic structure. In contrast to P5, measurements of NOEs and ROEs for P5-NH2 revealed a more stabilized cyclic structure which may account for its higher biological potency. Thus strong interresidue sequential NH (i)–NH (i + 1) interactions, as well as C-terminal carboxamide to N-terminal side-chain interactions, i.e., Arg CONH2 to Phe ring and Arg CONH2 to Ser $C_\alpha /C_{\beta \beta '} $ , observed at lower levels of the ROESY spectrum, supported a curved backbone structure for SFLLR-NH2. Since the higher potaency P5-NH2 analogue adopts predominantly a cyclic structure, a cyclic bioactive conformation for thrombin receptor agonist peptides is suggested.  相似文献   

12.
The transmembrane domains (TMDs) of membrane-fusogenic proteins contain an overabundance of β-branched residues. In a previous effort to systematically study the relation among valine content, fusogenicity, and helix dynamics, we developed model TMDs that we termed LV-peptides. The content and position of valine in LV-peptides determine their fusogenicity and backbone dynamics, as shown experimentally. Here, we analyze their conformational dynamics and the underlying molecular forces using molecular-dynamics simulations. Our study reveals that backbone dynamics is correlated with the efficiency of side-chain to side-chain van der Waals packing between consecutive turns of the helix. Leu side chains rapidly interconvert between two rotameric states, thus favoring contacts to its i±3 and i±4 neighbors. Stereochemical restraints acting on valine side chains in the α-helix force both β-substituents into an orientation where i,i±3 interactions are less favorable than i,i±4 interactions, thus inducing a local packing deficiency at VV3 motifs. We provide a quantitative molecular model to explain the relationship among chain connectivity, side-chain mobility, and backbone flexibility. We expect that this mechanism also defines the backbone flexibility of natural TMDs.  相似文献   

13.
The ionic bases of the "positive" afterpotential (ap) have been examined in the so-called DInhi neurons of the central nervous system of Cryptomphallus aspersa. In these cells EK has been determined and its value compared with the equilibrium, potential of the ap (Eap). It has been found that in half of the studied cells the EK value is very close to Eap whereas in another half, the difference (EK - Eap) is large and amounts to circa -10 mv. The effects of changes in the concentration gradients of K+, Cl-, and Na+ were assayed in both groups of cells. When the [Ki/[K]o ratio is reduced in both groups of neurons, the ap amplitude and the Eap diminished. In cells displaying a large (EK - Eap), Cl-free Ringer's solution diminished the ap amplitude and Eap, but produced no effect in the neurons with a reduced (EK - Eap). A similar effect was observed if [Cl], was increased by intracellular injection of NaCl. Changes in both [Na]o and [Na]i were ineffective. It is concluded that K+ is the only ion involved in the origin of the ap in the groups of cells with a low value for (EK - Eap). On the contrary, the ap of the neurons presenting large (EK - Eap) is produced by a simultaneous increase in the fluxes of both K+ and Cl-.  相似文献   

14.
Two new 3D HN-based experiments are proposed for backbone assignment of large disordered proteins. The spectra obtained with the new pulse schemes are free of redundant diagonal peaks (HiNi–Ni) and provide sequential correlations (HiNi–Ni+1 and HiNi–Ni?1) not only between adjacent non-proline residues but also between non-proline and proline residues. The experiments have been demonstrated on an intrinsically disordered protein with 306 amino acids including 64 proline residues. Using the two experiments, we obtained nearly complete assignments of backbone amides and proline 15N spins except for 4 proline and 4 non-proline residues.  相似文献   

15.
16.
《Aquatic Botany》1987,27(3):217-227
Evapotranspiration (E) by Eichhornia crassipes (Mart.) Solms and Typha latifolia L. growing in 5.77-m2 tanks and evaporation (E0) from control tanks were measured over a 6-month period at Auburn, Alabama (32.5° N latitude). The E/E0 ratios for E. crassipes and T. latifolia were 1.31–2.52 (mean = 1.75) and 1.05–2.50 (mean = 1.62), respectively. Evidence is presented which demonstrates that E/E0 values were similar to those which occur in natural populations of the two species. Both plant characteristics and meteorological variables influenced evapotranspiration. Equations for estimating evapotranspiration were EEc = (4.19 + (7.32 × 10−8) S2 + (0.00035 × 10−3)H2)D R2 = 0.92ETl = (1.43 + (2.79 × 10−15)S4 + 1.44L)D R2 = 0.93 where EEc and ETl are monthly water loss in mm/month for E. crassipes and T. latifolia, respectively; S is the average daily solar radiation in W m−2 integrated over 24 h for the month; H is plant height in m; L is leaf area index (dimensionless); and D is the number of days in the month.  相似文献   

17.
Prion diseases are fatal neurodegenerative disorders, which are characterized by the accumulation of misfolded prion protein (PrPSc) converted from a normal host cellular prion protein (PrPC). Experimental studies suggest that PrPC is enriched with α-helical structure, whereas PrPSc contains a high proportion of β-sheet. In this study, we report the impact of N-glycosylation and the membrane on the secondary structure stability utilizing extensive microsecond molecular dynamics simulations. Our results reveal that the HB (residues 173 to 194) C-terminal fragment undergoes conformational changes and helix unfolding in the absence of membrane environments because of the competition between protein backbone intramolecular and protein-water intermolecular hydrogen bonds as well as its intrinsic instability originated from the amino acid sequence. This initiation of the unfolding process of PrPC leads to a subsequent increase in the length of the HB-HC loop (residues 195 to 199) that may trigger larger rigid body motions or further unfolding around this region. Continuous interactions between prion protein and the membrane not only constrain the protein conformation but also decrease the solvent accessibility of the backbone atoms, thereby stabilizing the secondary structure, which is enhanced by N-glycosylation via additional interactions between the N-glycans and the membrane surface.  相似文献   

18.
Internal chloride activity, ai Cl, and membrane potential, Em, were measured simultaneously in 120 R2 giant neurons of Aplysia californica. ai Cl was 37.0 ± 0.8 mM, Em was -49.3 ± 0.4 mv, and E Cl calculated using the Nernst equation was -56.2 ± 0.5 mv. Such values were maintained for as long as 6 hr of continuous recording in untreated neurons. Cooling to 1°–4°C caused ai Cl to increase at such a rate that 30–80 min after cooling began, E Cl equalled Em. The two then remained equal for as long as 6 hr. Rewarming to 20°C caused ai Cl to decline, and E Cl became more negative than Em once again. Exposure to 100 mM K+-artificial seawater caused a rapid increase of ai Cl. Upon return to control seawater, ai Cl declined despite an unfavorable electrochemical gradient and returned to its control values. Therefore, we conclude that chloride is actively transported out of this neuron. The effects of ouabain and 2,4-dinitrophenol were consistent with a partial inhibitory effect. Chloride permeability calculated from net chloride flux using the constant field equation ranged from 4.0 to 36 x 10-8 cm/sec.  相似文献   

19.
The roles of Ser72, Glu90, and Lys297 at the luminal ends of transmembrane helices M1, M2, and M4 of sarcoplasmic reticulum Ca2+-ATPase were examined by transient and steady-state kinetic analysis of mutants. The dependence on the luminal Ca2+ concentration of phosphorylation by Pi (“Ca2+ gradient-dependent E2P formation”) showed a reduction of the apparent affinity for luminal Ca2+ in mutants with alanine or leucine replacement of Glu90, whereas arginine replacement of Glu90 or Ser72 allowed E2P formation from Pi even at luminal Ca2+ concentrations much too small to support phosphorylation in wild type. The latter mutants further displayed a blocked dephosphorylation of E2P and an increased rate of conversion of the ADP-sensitive E1P phosphoenzyme intermediate to ADP-insensitive E2P as well as insensitivity of the E2·BeF3 complex to luminal Ca2+. Altogether, these findings, supported by structural modeling, indicate that the E2P intermediate is stabilized in the mutants with arginine replacement of Glu90 or Ser72, because the positive charge of the arginine side chain mimics Ca2+ occupying a luminally exposed low affinity Ca2+ site of E2P, thus identifying an essential locus (a “leaving site”) on the luminal Ca2+ exit pathway. Mutants with alanine or leucine replacement of Glu90 further displayed a marked slowing of the Ca2+ binding transition as well as slowing of the dissociation of Ca2+ from Ca2E1 back toward the cytoplasm, thus demonstrating that Glu90 is also critical for the function of the cytoplasmically exposed Ca2+ sites on the opposite side of the membrane relative to where Glu90 is located.  相似文献   

20.
The solution structure of human salivary histatin 5 (D-S-H-A-K-R-H-H-G-Y-K-R-K-F-H-E-K-H-H-S-H-R-G-Y) was examined in water (pH 3.8) and dimethyl sulfoxide solutions using 500 MHz homo- and heteronuclear two-dimensional (2D) nmr. The resonance assignment of peptide backbone and side-chain protons was accomplished by 2D total correlated spectroscopy and nuclear Overhauser effect (NOE) spectroscopy. The high J values (≥7.4 Hz), absence of any characteristic NH-NH(i, i + 1) or CαH-CβH(i, i + 3) NOE connectivities, high dδ/dT values (≥0.004 ppm K−1) and the fast 1H/2H amide exchange suggest that histatin 5 molecules remain unstructured in aqueous solution at pH 3.8. In contrast, histatin 5 prefers largely α-helical conformation in dimethyl sulfoxide solution as evident from the J values (≤6.4 Hz), slow 1H/2H exchange, low dδ/dT values (≤0.003 ppm K−1) observed for amide resonances of residues 6–24, and the characteristic NH-NH(i, i + 1) and CαH-CβH(i, i +3) NOE connectivities. All backbone amide 15N-1H connectivities fall within 6 ppm on the 15N scale in the 2D heteronuclear single quantum correlated spectrum, and the restrained structure calculations using DIANA suggest the prevalence of α-helical conformations stabilized by 19 (5 → 1) intramolecular backbone amide hydrogen bonds in polar aprotic medium such as dimethyl sulfoxide. The interside-chain hydrogen bonding and salt-bridge type interactions that normally stabilize the helical structure of linear peptides in aqueous solutions are not observed. Histatin 5, unlike other naturally occurring antimicrobial polypeptides such as magainins, defensins, and tachyplesins, does not adopt amphiphilic structure, precluding its insertion into microbial membranes and formation of ion channels across membranes. Electrostatic (ionic type) and hydrogen bonding interactions of the positively charged and polar residues with the head groups of microbial membranes or with a membrane-bound receptor could be the initial step involved in the mechanism of antimicrobial activity of histatins. © 1998 John Wiley & Sons, Inc. Biopoly 45: 51–67, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号