首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study describes a HPLC method to determine the concentrations of acetylsalicylic acid (ASA) and salicylic acid (SA) in human stratum corneum and in plasma. The stratum corneum layers for ASA/SA analysis were removed from three patients with postherpetic hyperalgesia treated with topical and oral aspirin. Blood samples were also collected from the same patients. Tape strippings were placed in acetonitrile and sonicated for 15 min. After centrifuging, aliquots of the supernatant were injected into the chromatograph. ASA and SA from plasma samples were extracted on Isolute C8 columns. Due to interfering peaks in the tape samples, HPLC conditions were slightly different for tape and plasma samples. ASA and SA were separated on a LiChrospher 100 RP-18 column at 1 ml/min using a water–phosphate buffer (pH 2.5)–acetonitrile mobile phase (35:40:25, v/v/v). A linear response to quantities of ASA from 0.1 to 100 μg/cm2 and of SA from 0.1 to 5 μg/cm2 in tape and to quantities of ASA 0.1 to 2 μg/ml and 1 to 50 μg/ml was obtained and the recovery from tape and plasma samples was over 98%. The method is sensitive (0.1 μg/cm2) and specific enough to allow the determination of the drugs in the skin not only after topical but also after oral administration. A good sensitivity was also obtained in plasma (0.1 μg/ml) allowing study of the kinetics of ASA and SA in plasma after oral administration. Concentrations of ASA after topical administration were 100–200 times higher than after oral administration. Plasma levels of ASA and SA after oral administration were similar to those previously found. No ASA or SA were detected in plasma after topical ASA administration.  相似文献   

2.
A method for the simultaneous direct determination of salicylate (SA), its labile, reactive metabolite, salicyl acyl glucuronide (SAG), and two other major metabolites, salicyluric acid and gentisic acid in plasma and urine is described. Isocratic reversed-phase high performance liquid chromatography (HPLC) employed a 15-cm C18 column using methanol-acetonitrile-25 mM acetic acid as the mobile phase, resulting in HPLC analysis time of less than 20 min. Ultraviolet detection at 310 nm permitted analysis of SAG in plasma, but did not provide sensitivity for measurement of salicyl phenol glucuronide. Plasma or urine samples are stabilized immediately upon collection by adjustment of pH to 3–4 to prevent degradation of the labile acyl glucuronide metabolite. Plasma is then deproteinated with acetonitrile, dried and reconstituted for injection, whereas urine samples are simply diluted prior to injection on HPLC. m-Hydroxybenzoic acid served as the internal standard. Recoveries from plasma were greater than 85% for all four compounds over a range of 0.2–20 μg/ml and linearity was observed from 0.1–200 μg/ml and 5–2000 μg/ml for SA in plasma and urine, respectively. The method was validated to 0.2 μg/ml, thus allowing accurate measurement of SA, and three major metabolites in plasma and urine of subjects and small animals administered salicylates. The method is unique by allowing quantitation of reactive SAG in plasma at levels well below 1% that of the parent compound, SA, as is observed in patients administered salicylates.  相似文献   

3.
A fully validated gas chromatographic–tandem mass spectrometric (GC–MS–MS) method is described for the accurate determination of acetylsalicylic acid (ASA) in human plasma after a single low-dose oral administration of aspirin or guaimesal, an ASA releasing prodrug. ASA and the newly prepared O-[2H3]-acetylsalicylic acid (d3-ASA) used as internal standard were determined in 100-μl aliquots of plasma by extractive pentafluorobenzyl (PFB) esterification using PFB bromide and tetrabutylammoniumhydrogen sulphate as the esterifying and ion-pairing agent, respectively, and by GC–MS–MS analysis in the negative-ion chemical ionization mode. The overall relative standard deviations were below 8% for ASA levels in the range 0–1 μg/ml plasma. Mean accuracy was 3.8% for ASA levels within the range 0–100 ng/ml. The limit of quantitation of the method was determined as 200 pg/ml ASA at an accuracy of 5.5% and a precision of 15.2%. The limit of detection was determined as 546 amol of ASA at a signal-to-noise ratio of 10:1.  相似文献   

4.
A simple, sensitive and reproducible HPLC method is presented for the simultaneous determination of mycophenolic acid (MPA) and its metabolites phenolic MPA-glucuronide (MPAG) and acyl glucuronide (AcMPAG) in human plasma. Sample purification requires protein precipitation with 0.1 M phosphoric acid/acetonitrile in the presence of Epilan D as an internal standard (IS). Separation was performed by reversed-phase HPLC, using a Zorbax SB-C18 column, 32% acetonitrile and a 40 mM phosphoric acid buffer at pH 3.0 as mobile phase; column temperature was 50 degrees C, flow rate 1.4 ml/min, and measurement by UV detection was at 215 nm (run time 12 min). The method requires only 50 microl plasma. Detection limits were 0.1 microg/ml for MPA and AcMPAG, and 2.0 microg/ml for MPAG, respectively. Mean absolute recovery of all three analytes was >95%. This analytical method for the determination of MPA and its metabolites is a reliable and convenient procedure that meets the criteria for application in routine clinical drug monitoring and pharmacokinetic studies.  相似文献   

5.
《Analytical biochemistry》1985,145(1):101-105
An HPLC procedure for the determination of total phenylacetic acid (PAA) in human plasma is described. After precipitation of plasma proteins with 0.4 n HClO4, the supernatant was hydrolyzed with 1.5 n HCl at 100°C for 5 h, and PAA was extracted with benzene. From the organic layer PAA was back-extracted into 0.5 ml of 0.1 n NaOH. After neutralization with HCl the sample was directly injected onto the HPLC column (C18). An ultraviolet detector at 210 nm was used to monitor PAA. The plasma PAA values for a control population (536.18 ± 54.99 ng/ml, N = 10) (X ± SE) obtained by the described method are in agreement with values reported using GC/MS methods. Depressed subjects showed significantly lower values (327.64 ± 45.44 ng/ml, N = 10), supporting the view that PAA may be a marker for depressive disorders.  相似文献   

6.
Indomethacin and mefenamic acid are widely used clinically as non-steroidal anti-inflammatory agents. Both drugs have also been found effective to produce closure of patent ductus arteriosus in premature neonates. A simple, rapid, sensitive and reliable HPLC method is described for the determination of indomethacin and mefenamic acid in human plasma. As these drugs are not applied together, the compounds are alternately used as analyte and internal standard. Plasma was deproteinized with acetonitrile, the supernatant fraction was evaporated to dryness and the resulting residue was reconstituted in the mobile phase and injected into the HPLC system. The chromatographic separation was performed on a C18 column (250 × 4.6 mm I.D.) using 10 mM phosphoric acid—acetonitrile (40:60, v/v) as the mobile phase and both drugs were detected at 280 nm. The calibration graphs were linear with a correlation coefficient (r) of 0.999 or better from 0.1 to 10 μg/ml and the detection limits were 0.06 μg/ml for indomethacin and 0.08 μg/ml for mefenamic acid, for 50μl plasma samples. The method was not interfered with by other plasma components and has been found particularly useful for paediatric use. The within-day precision and accuracy of the method were evaluated for three concentrations in spiked plasma samples. The coefficients of variation were less than 5% and the accuracy was nearly 100% for both drugs.  相似文献   

7.
A simple, fast and sensitive high-performance liquid chromatography (HPLC)-mass spectrometric (MS) method has been developed for simultaneous determination of amoxicillin and clavulanic acid in human plasma using terbutaline as internal standard. After precipitation of the plasma proteins with acetonitrile, the analytes were separated on a C(8) reversed-phase column with formic acid-water-acetonirile (2:1000:100) and detected using electrospray ionization (ESI) mass spectrometry in negative selected ion monitoring (SIM) mode. The method was validated and successfully applied to analysis of amoxicillin and clavulanic acid in clinical studies. The limit of quantitation, 0.12 microg/ml for amoxicillin and 0.062 microg/ml for clavulanic acid, was five times lower than that of the published HPLC-UV method.  相似文献   

8.
A simple high-performance liquid chromatographic (HPLC) method for the determination of flufenamic acid in rat plasma is described. After liquid-liquid extraction, the drug is separated by HPLC on a 5-μm octadecylsilica column (Nucleosil C18) with ultraviolet detection at 280 nm. Linear calibration graphs for flufenamic acid were constructed from 0.5 to 15 μg/ml. The method has been applied to a pharmacokinetic study in animals.  相似文献   

9.
A simple and sensitive high-performance liquid chromatographic (HPLC) method was developed for the determination of SCH 27899, an everninomycin antibiotic, in rat plasma. The method involved plasma protein precipation with acetonitrile, followed by reversed-phase HPLC analysis using a polymeric column and a mobile phase containing acetonitrile and ammonium phosphate, pH 7.8. The linear relationship between detector response and concentration was demonstrated with a correlation coefficient of larger than 0.996 at concentrations ranging from 0.2 to 100 μg/ml. The results showed that the HPLC method was accurate (bias ≤6%) and precise (coefficient of variation, C.V.≤6%). The limit of quantitation was 0.2 μg/ml with a C.V. of 2.6% and bias of 5%. SCH 27899 was stable in rat plasma at −20°C for at least 40 days. The HPLC method has been utilized for the determination of SCH 27899 in plasma samples from rats following single intravenous administration (3 mg/kg).  相似文献   

10.
A robust, fully automated assay procedure for the determination of rosiglitazone (I, BRL-49653) in human plasma has been developed. Plasma concentrations of I were determined using automated sequential trace enrichment of dialysates (ASTED) coupled to reversed-phase high-performance liquid chromatography. Sequential automated dialysis of human plasma samples was followed by concentration of the dialysate by trace enrichment on a C18 cartridge. Drug and internal standard, SB-204882 (II) were eluted from the trace enrichment cartridge by mobile phase (0.01 M ammonium acetate, pH 8–acetonitrile, 65:35, v/v) onto the HPLC column (a Novapak C18, 4 μm, 100×5 mm radial compression cartridge) protected by a Guard-Pak C18 cartridge. The compounds were detected by fluorescence detection, using an excitation wavelength of 247 nm, and emission wavelength of 367 nm. The lower limit of quantitation of the method was 3 ng/ml (200 μl aliquot) with linearity demonstrated up to 100 ng/ml. Within- and between-run precision and accuracy of determination were better than 10% across the calibration range. There was no evidence of instability of I in human plasma following three complete freeze–thaw cycles and samples can be safely stored for at least 7 months at −20°C. This method has been successfully utilised to provide pharmacokinetic data throughout the clinical development of rosiglitazone.  相似文献   

11.
A simple and sensitive high-performance liquid chromatograhic (HPLC) method for the determination of (+)-(S)-sotalol and (−)-(R)-sotalol in biological fluids was established. Following extraction with isopropyl alcohol from biological samples on a Sep-Pak C18 cartridge, the eluent was derivatized with 2,3,4,6-tetra-O-acetyl-β-d-glucopyranosol isothiocyanate (GITC). The diastereoisomeric derivatives are resolved by HPLC with UV detection at 225 nm. Calibration was linear from 0.022 to 4.41 μg/ml in human plasma and from 0.22 to 88.2 μg/ml in human urine for both (+)-(S)- and (−)-(R)-sotalol. The lower limit of determination was 0.022 μg/ml for plasma and 0.22 μg/ml for urine. The within-day and day-to-day coefficients of variation were less than 7.5% for each enantiomer at 0.09 and 1.8 μg/ml in plasma and at 0.44 and 4.4 μg/ml in urine. The method is also applicable to other biological specimens such as rat, mouse and rabbit plasma.  相似文献   

12.
The reversed-phase HPLC methods were developed to determinate the covalently bound protein adducts of the novel anti-cancer drug 5,6-dimethylxanthenone-4-acetic acid (DMXAA) via its glucuronides after releasing aglycone by alkaline hydrolysis in human plasma and human serum albumin (HSA). An aliquot of 75 μl of the mixture was injected onto a Spherex C18 column (150×4.6 mm; 5 μm) at a flow-rate of 2.5 ml/min. The mobile phase comprising of acetonitrile:10 mM ammonium acetate buffer (24:76, v/v, pH 5.8) was used in an isocratic condition, and DMXAA was detected by fluorescence. The method was validated with respect to recovery, selectivity, linearity, precision, and accuracy. Calibration curves for DMXAA were constructed in the concentration range of 0.5–40 μM in washed blank human plasma or HSA prior to alkaline hydrolysis. The difference between the theoretical and calculated concentration and the relative standard deviation were less than 10% at all quality control (QC) concentrations. The limit of detection for the covalent adduct in human plasma or HSA is 0.20 μM. The methods presented good accuracy, precision and sensitivity for use in the preclinical and clinical studies.  相似文献   

13.
Ebastine (CAS 90729-43-4) is an antiallergic agent which selectively and potently blocks histamine H1-receptors in vivo. A simple and sensitive high-performance liquid chromatography (HPLC) method is described for the simultaneous determination of ebastine and its two oxidized metabolites, carebastine (CAS 90729-42-3) and hydroxyebastine (M–OH), in human plasma. After a pretreatment of plasma sample by solid-phase extraction, ebastine and its metabolites were analyzed on an HPLC system with ultraviolet detection at 254 nm. Chromatography was performed on a cyano column (250×4.0 mm I.D.) at 40 °C with the mobile phase of acetonitrile–methanol–0.012 M ammonium acetate buffer (20:30:48, v/v/v) at a flow rate of 1.2 ml/min. Accurate determinations were possible over the concentration range of 3–1000 ng/ml for the three compounds using 1 ml plasma samples. The intra- and inter-day assay accuracy of this method were within 100±15% of nominal values and the precision did not exceed 12.4% of relative standard deviation. The lower limits of quantitation were 3 ng/ml for ebastine and its metabolites in human plasma. This method was satisfactorily applied to the determination of ebastine and its two oxidized metabolites in human plasma after oral administration of ebastine.  相似文献   

14.
A sensitive high-performance liquid chromatographic method has been developed for the determination of the β2-selective adrenergic agonist fenoterol in human plasma. To improve the sensitivity of the method, fenoterol was derivatized with N-(chloroformyl)-carbazole prior to HPLC analysis yielding highly fluorescent derivatives. The assay involves protein precipitation with acetonitrile, liquid–liquid-extraction of fenoterol from plasma with isobutanol under alkaline conditions followed by derivatization with N-(chloroformyl)-carbazole. Reversed-phase liquid chromatographic determination of the fenoterol derivative was performed using a column-switching system consisting of a LiChrospher® 100 RP 18 and a LiChrospher® RP-Select B column with acetonitrile, methanol and water as mobile phase. The limit of quantitation in human plasma was 376 pg fenoterol/ml. The method was successfully applied for the assay of fenoterol in patient plasma.  相似文献   

15.
We describe a sensitive determination of aspirin (ASA) and its three metabolites (salicylic acid [SA], 2,3-dihydroxybenzoic acid [2,3-DHBA], and 2,5-dihydroxybenzoic acid [gentisic acid (GA)]) in rat plasma. Analysis was carried out by on-line solid-phase extraction (SPE) using a methylcellulose-immobilized-strong anion-exchanger (MC-SAX), followed by liquid chromatography (LC) coupled with UV detection. The lower limits of quantitation for ASA and SA were 60 ng/mL in 100 microL of plasma, respectively. This method was validated with respect to intra- and inter-day precision, accuracy, and linearity up to concentrations of 20,000 ng/mL for ASA, SA, 2,3-DHBA and gentisic acid, respectively. The method was successfully applied to an analysis of the pharmacokinetics of ASA and SA in rats.  相似文献   

16.
A simple method for the measurement of the active leflunomide metabolite A77 1726 in human plasma by HPLC is presented. The sample workup was simple, using acetonitrile for protein precipitation. Chromatographic separation of A77 1726 and the internal standard, alpha-phenylcinnamic acid, was achieved using a C(18) column with UV detection at 305 nm. The assay displayed reproducible linearity for A77 1726 with determination coefficients (r2) > 0.997 over the concentration range 0.5-60.0 microg/ml. The reproducibility (%CV) for intra- and inter-day assays of spiked controls was <5%. The limit of quantification was 0.8 microg/ml. The average absolute recovery was approximately 100%. This assay is suitable for the determination of A77 1726 in plasma of patients taking leflunomide, and is simpler to use than other HPLC methods reported previously.  相似文献   

17.
A simple and sensitive isocratic high-performance liquid chromatographic (HPLC) method with UV detection for the quantitation of perillic acid, a major circulating metabolite of perillyl alcohol and d-limonene, in plasma is described. Sample preparation involved protein precipitation and subsequent transfer and dilution with 10 mM NaHCO3. The mobile phase consisted of acetonitrile (36%) and 0.05 M ammonium acetate buffer pH 5.0 (64%). Separations were achieved on a C18 column and the effluent monitored for UV absorption at the analytes' respective UVmax. Separation was excellent with no interference from endogenous plasma constituents. This method was found suitable for quantifying drug concentrations in the range of 0.25 to 200.0 μg/ml using a 0.05-ml plasma sample, and was used to study the plasma pharmacokinetics of perillic acid in mice.  相似文献   

18.
A column-switching high-performance liquid chromatography method with ultraviolet detection at 210 nm has been developed for the determination of N-(trans-4-isopropylcyclohexylcarbonyl)-d-phenylalanine (AY4166, I) in human plasma. Plasma samples were prepared by solid-phase extraction with Sep-Pak Light tC18, followed by HPLC. The calibration graph for I was linear in the range 0.1–20 μg/ml. The limit of quantitation of I, in plasma, was 0.05 μg/ml. The recovery of spiked I (0.5 μg/ml) to drug-free plasma was over 92% and the relative standard deviation of spiked I (0.5 μg/ml) compared to drug-free plasma was 4.3% (n = 8).  相似文献   

19.
A column-switching high-performance liquid chromatography method with ultraviolet detection at 210 nm has been developed for the determination of N-(trans-4-isopropylcyclohexylcarbonyl)-d-phenylalanine (AY4166, I) in human plasma. Plasma samples were prepared by solid-phase extraction with Sep-Pak Light tC18, followed by HPLC. The calibration graph for I was linear in the range 0.1–20 μg/ml. The limit of quantitation of I, in plasma, was 0.05 μg/ml. The recovery of spiked I (0.5 μg/ml) to drug-free plasma was over 92% and the relative standard deviation of spiked I (0.5 μg/ml) compared to drug-free plasma was 4.3% (n = 8).  相似文献   

20.
A high-performance liquid chromatographic method for the determination of naproxen in plasma is described. The technique is based on the single extraction of the drug from acidified plasma with chloroform using 2-naphthalene acetic acid as internal standard. The chromatographic system consisted of a column packed with Spherisorb ODS (5 μm); the mobile phase was acetonitrile—phosphoric acid (pH 3) (45:55, v/v).The method can accurately measure plasma naproxen concentrations down to 1 μg/ml using 100 μl of sample, with no interference from endogenous compounds. The coefficients of variation of the method at 120 μg/ml and 1 μg/ml are 2.8 and 21.6%, respectively, and the calibration curve is linear. The method described is very suitable for routine clinical and pharmacokinetic studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号