首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
2.
Verticillium wilt (V. wilt), a notorious wilt disease caused by Verticillium dahliae, often leads to the reduction of eggplant (Solanum melongena L.) production. MiRNAs, as a class of small RNAs, can regulate gene expression and then affect growth and development in plants. MiR395 has been proven to respond to sulfate-deficient stress in Arabidopsis thaliana and sulfate is well known to have a close relationship with plant disease resistance. To explore the function of eggplant miR395, we examined its expression in V. dahliae-infected eggplant by qRT-PCR and found miR395 exhibited a gradual reduction trend with time after infection. We then expressed pre-miR395 from Arabidopsis thaliana in Suqi eggplant and resistance analysis showed that miR395 overexpressed plants were hypersensitive to V. dahliae infection. We further measured the content of GSH and activities of POD and SOD and the results indicated that the index of GSH/POD/SOD in the overexpressed plants was lower than that of the wild-type control under V. dahliae infection. These results suggest that miR395 plays a negative role in eggplant response to V. dahliae infection.  相似文献   

3.
Verticillium dahliae is a soil-borne phytopathogenic fungus that causes vascular wilt diseases in a wide variety of crop plants, resulting in extensive economic losses. In the past 5 years, progress has been made in elaborating the interaction between this hemibiotrophic fungus and its host plants. Some genes responsible for the vegetative growth and/or pathogenicity in V. dahliae have been identified. Plants have accrued a series of defense mechanisms, including inducible defense signaling pathways and some resistant genes to combat V. dahliae infection. Here, we have reviewed the progress in V. dahliae–plant interaction research.  相似文献   

4.

Background

In plants, the ubiquitin-proteasome system is emerging as a significant regulatory system throughout the plant lifecycle. The ubiquitination of a target protein requires the sequential actions of the E1, E2 and E3 enzymes, with the latter E3 enzyme conferring target selection in this process. There are a large number of predicted E3 enzymes in plant genomes, and very little is known about the functions of many of these predicted genes. Here we report here an analysis of two closely-related members of the Arabidopsis Plant U-box (PUB) family of E3 ubiquitin ligases, PUB43 and PUB44.

Principal Findings

Homozygous pub44/pub44 mutant seedlings were found displayed a seedling lethal phenotype and this corresponded with widespread cell death lesions throughout the cotyledons and roots. Interestingly, heterozygous PUB44/pub44 seedlings were wild-type in appearance yet displayed intermediate levels of cell death lesions in comparison to pub44/pub44 seedlings. In contrast, homozygous pub43/pub43 mutants were viable and did not show any signs of cell death despite the PUB43 gene being more highly expressed than PUB44. The PUB44 mutants are not classical lesion mimic mutants as they did not have increased resistance to plant pathogens. We also observed increased germination rates in mutant seeds for both PUB44 and PUB43 under inhibitory concentrations of abscisic acid. Finally, the subcellular localization of PUB44 was investigated with transient expression assays in BY-2 cells. Under varying conditions, PUB44 was observed to be localized to the cytoplasm, plasma membrane, or nucleus.

Conclusions

Based on mutant plant analyses, the Arabidopsis PUB43 and PUB44 genes are proposed to function during seed germination and early seedling growth. Given PUB44''s ability to shuttle from the nucleus to the plasma membrane, PUB44 may be active in different subcellular compartments as part of these biological functions.  相似文献   

5.
Cho SK  Ryu MY  Song C  Kwak JM  Kim WT 《The Plant cell》2008,20(7):1899-1914
Ubiquitination is involved in diverse cellular processes in higher plants. In this report, we describe Arabidopsis thaliana PUB22 and PUB23, two homologous U-box-containing E3 ubiquitin (Ub) ligases. The PUB22 and PUB23 genes were rapidly and coordinately induced by abiotic stresses but not by abscisic acid. PUB22- and PUB23-overexpressing transgenic plants were hypersensitive to drought stress. By contrast, loss-of-function pub22 and pub23 mutant plants were significantly more drought-tolerant, and a pub22 pub23 double mutant displayed even greater drought tolerance. These results indicate that PUB22 and PUB23 function as negative regulators in the water stress response. Yeast two-hybrid, in vitro pull-down, and in vivo coimmunoprecipitation experiments revealed that PUB22 and PUB23 physically interacted with RPN12a, a subunit of the 19S regulatory particle (RP) in the 26S proteasome. Bacterially expressed RPN12a was effectively ubiquitinated in a PUB-dependent fashion. RPN12a was highly ubiquitinated in 35S:PUB22 plants, but not in pub22 pub23 double mutant plants, consistent with RPN12a being a substrate of PUB22 and PUB23 in vivo. In water-stressed wild-type and PUB-overexpressing plants, a significant amount of RPN12a was dissociated from the 19S RP and appeared to be associated with small-molecular-mass protein complexes in cytosolic fractions, where PUB22 and PUB23 are localized. Overall, our results suggest that PUB22 and PUB23 coordinately control a drought signaling pathway by ubiquitinating cytosolic RPN12a in Arabidopsis.  相似文献   

6.
In this study, we comparatively analyzed the 115 Hsp70 genes identified in Gossypium raimondii, Gossypium hirsutum and Gossypium arboreum genomes. Those Hsp70 genes unequally distributed among chromosomes in A and D genome of cotton (Gossypium spp.), and were classified into 29 groups according to the homology of them. Based on the localization information of the orthologs in Arabidopsis, the Hsp70 proteins were predicted to locate in cytosol, endoplasmic reticulum, mitochondrion or chloroplast. Homologous analysis indicated the evolutionary conservation of Hsp70 in cotton. In addition, those Hsp70 genes were differently expressed in Suyuan-045, Hai-7124 and TM-1, which were highly resistant, resistant, and sensitive to Verticillium dahliae respectively. The expressions of 26 Hsp70 genes were induced by Verticillium dahliae except for Hsp70-07/16/25/26, and the result suggested the potential involvement of them in responding to Verticillium wilt. Hsp70-08/30/31 was highly expressed in both Suyuan-045 and Hai-7124, and it was hypothesized that they might be involved in the resistance to the invasion of Verticillium dahliae. 144h after inoculation with Verticillium dahliae, the expression of Hsp70-13/14/15 was only up-regulated in Suyuan-045, and it was assumed that they might be involved in resistance to the extension of Verticillium dahliae. Further study on those Hsp70 genes would be valuable to reveal the role of them in Verticillium wilt resistance.  相似文献   

7.
Verticillium wilt of olive, caused by Verticillium dahliae Kleb., is the most severe disease affecting this crop in most olive growing countries. In this study, the presence of viable structures of V. dahliae in dried inflorescences from wilted olive shoots was investigated. The pathogen was found inside peduncles and flowers, by assessing the number of typical star‐shaped microsclerotial colonies formed onto the modified sodium polypectate agar medium. Microsclerotia of V. dahliae were observed inside the peduncles under the stereoscopic microscope. The presence of microsclerotia in these easily decomposable olive tissues shows that infected inflorescences can act as a source of inoculum for Verticillium wilt epidemics.  相似文献   

8.
Verticillium wilt of potato is caused by the fungus pathogen Verticillium dahliae. Present sRNA sequencing data revealed that miR482 was in response to V. dahliae infection, but the function in potato is elusive. Here, we characterized potato miR482 family and its putative role resistance to Verticillium wilt. Members of the potato miR482 superfamily are variable in sequence, but all variants target a class of disease‐resistance proteins with nucleotide binding site (NBS) and leucine‐rich repeat (LRR) motifs. When potato plantlets were infected with V. dahliae, the expression level of miR482e was downregulated, and that of several NBS‐LRR targets of miR482e were upregulated. Transgenic potato plantlets overexpressing miR482e showed hypersensitivity to V. dahliae infection. Using sRNA and degradome datasets, we validated that miR482e targets mRNAs of NBS‐LRR disease‐resistance proteins and triggers the production of trans‐acting (ta)‐siRNAs, most of which target mRNAs of defense‐related proteins. Thus, the hypersensitivity of transgenic potato could be explained by enhanced miR482e and miR482e‐derived ta‐siRNA‐mediated silencing on NBS‐LRR‐disease‐resistance proteins. It is speculated that a miR482‐mediated silencing cascade mechanism is involved in regulating potato resistance against V. dahliae infection and could be a counter defense action of plant in response to pathogen infection.  相似文献   

9.
The ubiquitination pathway is involved in a variety of cellular processes in plant growth, development, and immune responses. However, the function of this pathway in connecting plant development and innate immunity is still largely unknown. Recently, we characterized the U-box/ARM E3 ubiquitin ligase PUB13, which regulates both immune responses and flowering time in Arabidopsis. Here, we show that the rice Spl11 gene can complement the cell death and flowering functions of PUB13 in the pub13 mutant. In addition, HFR1, which functions mainly in photomorphogenesis, was identified as one of the PUB13-interacting proteins through yeast two-hybrid screening and pull-down assays. Because the flowering phenotype of pub13 depends on photoperiod, we propose that PUB13 may regulate HFR1 to fine-tune photomorphogenesis and flowering time in Arabidopsis.  相似文献   

10.
Verticillium wilt is a plant vascular disease caused by the soilborne fungus Verticillium dahliae that severely limits cotton production. In a previous study, we screened Bacillus cereus YUPP-10, an efficient antagonistic bacterium, to uncover mechanisms for controlling verticillium wilt. Here, we report a novel antimicrobial cyclodextrin glycosyltransferase (CGTase) from YUPP-10. Compared to other CGTases, six different conserved domains were identified, and six mutants were constructed by gene splicing with overlap extension PCR. Functional analysis showed that domain D was important for hydrolysis activity and domains A1 and C were important for inducing disease resistance. Direct effects of recombinant CGTase on V. dahliae included reduced mycelial growth, spore germination, spore production, and microsclerotia germination. In addition, CGTase also elicited cotton's innate defence reactions. Transgenic Arabidopsis thaliana lines that overexpress CGTase showed higher resistance to verticillium wilt. Transgenic CGTase A. thaliana plants grew faster and resisted disease better. CGTase overexpression enabled a burst of reactive oxygen species production and activated pathogenesis-related gene expression, indicating that the transgenic cotton was better prepared to protect itself from infection. Our work revealed that CGTase could inhibit the growth of V. dahliae, activate innate immunity, and play a major role in the biocontrol of fungal pathogens.  相似文献   

11.
12.
13.
Four Verticillium dahliae isolates (V76, TS‐2, PH, and V44) were used in screening four cotton cultivars (Pima S‐7, Acala Prema, M‐315 and Acala 44). Pima S‐7 and Acala Prema gave the highest resistance reactions and Acala 44 was the most susceptible. Isolate V76 of V. dahliae was the most virulent. An interspecific cross between the resistant cv Pima S‐7 (Gossypium barbadense) and the susceptible cv. Acala 44 (G. hirsutum) was made and the F2 population phenotyped for Verticillium wilt effect. Phenotyping of plant reaction to the disease was quantified by using a set of six growth parameters (number of healthy leaves, number of nodes, leaf weight, stem weight, leaf to stem ratio, and total shoot weight) measured 3 weeks after inoculation. The F2 phenotypic distribution of these parameters suggests that distribution is towards resistance and polygenic. Transgressive segregation also was observed. The number of healthy leaves and total shoot weight were found to be the best indicators of resistance. Results obtained in this study will be useful to quantify resistance to V. dahliae and identify the best parameters to phenotype in genetic studies.  相似文献   

14.
Verticillium wilt caused by soilborne fungus Verticillium dahliae could significantly reduce cotton yield. Here, we cloned a tomato Ve homologous gene, Gbve1, from an island cotton cultivar that is resistant to Verticillium wilt. We found that the Gbve1 gene was induced by V. dahliae and by phytohormones salicylic acid, jasmonic acid, and ethylene, but not by abscisic acid. The induction of Gbve1 in resistant cotton was quicker and stronger than in Verticillium-susceptible upland cotton following V. dahliae inoculation. Gbve1 promoter-driving GUS activity was found exclusively in the vascular bundles of roots and stems of transgenic Arabidopsis. Virus-induced silencing of endogenous genes in resistant cotton via targeting a fragment of the Gbve1 gene compromised cotton resistance to V. dahliae. Furthermore, we transformed the Gbve1 gene into Arabidopsis and upland cotton through Agrobacterium-mediated transformation. Overexpression of the Gbve1 gene endowed transgenic Arabidopsis and upland cotton with resistance to high aggressive defoliating and non-defoliating isolates of V. dahliae. And HR-mimic cell death was observed in the transgenic Arabidopsis. Our results demonstrate that the Gbve1 gene is responsible for resistance to V. dahliae in island cotton and can be used for breeding cotton varieties that are resistant to Verticillium wilt.  相似文献   

15.
Lipids are major and essential constituents of plant cells and provide energy for various metabolic processes. However, the function of the lipid signal in defence against Verticillium dahliae, a hemibiotrophic pathogen, remains unknown. Here, we characterized 19 conserved stearoyl-ACP desaturase family proteins from upland cotton (Gossypium hirsutum). We further confirmed that GhSSI2 isoforms, including GhSSI2-A, GhSSI2-B, and GhSSI2-C located on chromosomes A10, D10, and A12, respectively, played a dominant role to the cotton 18:1 (oleic acid) pool. Suppressing the expression of GhSSI2s reduced the 18:1 level, which autoactivated the hypersensitive response (HR) and enhanced cotton Verticillium wilt and Fusarium wilt resistance. We found that low 18:1 levels induced phenylalanine ammonia-lyase-mediated salicylic acid (SA) accumulation and activated a SA-independent defence response in GhSSI2s-silenced cotton, whereas suppressing expression of GhSSI2s affected PDF1.2-dependent jasmonic acid (JA) perception but not the biosynthesis and signalling cascade of JA. Further investigation showed that structurally divergent resistance-related genes and nitric oxide (NO) signal were activated in GhSSI2s-silenced cotton. Taken together, these results indicate that SA-independent defence response, multiple resistance-related proteins, and elevated NO level play an important role in GhSSI2s-regulated Verticillium wilt resistance. These findings broaden our knowledge regarding the lipid signal in disease resistance and provide novel insights into the molecular mechanism of cotton fungal disease resistance.  相似文献   

16.

Background

Development of Verticillium wilt in olive, caused by the soil-borne fungus Verticillium dahliae, can be influenced by biotic and environmental factors. In this study we modeled i) the combined effects of biotic factors (i.e., pathotype virulence and cultivar susceptibility) and abiotic factors (i.e., soil temperature) on disease development and ii) the relationship between disease severity and several remote sensing parameters and plant stress indicators.

Methodology

Plants of Arbequina and Picual olive cultivars inoculated with isolates of defoliating and non-defoliating V. dahliae pathotypes were grown in soil tanks with a range of soil temperatures from 16 to 32°C. Disease progression was correlated with plant stress parameters (i.e., leaf temperature, steady-state chlorophyll fluorescence, photochemical reflectance index, chlorophyll content, and ethylene production) and plant growth-related parameters (i.e., canopy length and dry weight).

Findings

Disease development in plants infected with the defoliating pathotype was faster and more severe in Picual. Models estimated that infection with the defoliating pathotype was promoted by soil temperatures in a range of 16 to 24°C in cv. Picual and of 20 to 24°C in cv. Arbequina. In the non-defoliating pathotype, soil temperatures ranging from 16 to 20°C were estimated to be most favorable for infection. The relationship between stress-related parameters and disease severity determined by multinomial logistic regression and classification trees was able to detect the effects of V. dahliae infection and colonization on water flow that eventually cause water stress.

Conclusions

Chlorophyll content, steady-state chlorophyll fluorescence, and leaf temperature were the best indicators for Verticillium wilt detection at early stages of disease development, while ethylene production and photochemical reflectance index were indicators for disease detection at advanced stages. These results provide a better understanding of the differential geographic distribution of V. dahliae pathotypes and to assess the potential effect of climate change on Verticillium wilt development.  相似文献   

17.
Verticillium wilt of potato is a persistent problem in the USA and worldwide. The disease, which is caused primarily by the fungus Verticillium dahliae, is difficult to manage, causes yield losses, and contaminates soil for subsequent plantings. Control strategies based on host resistance are seen as long-term, stable solutions, but difficult to achieve given the genetic nature of the host and the challenges associated with resistance evaluations. To provide breeders with marker-assisted selection opportunities, we generated a pair of cleaved amplified polymorphic sequence molecular markers within the coding region of Ve2, a potato gene with homology to the tomato Ve1 gene that confers resistance to V. dahliae. The position of the marker was determined according to the consensus sequences of Ve2 homologs of wild Solanum species with resistance to V. dahliae. Marker testing indicated their broad applicability, being able to track the resistance to V. dahliae in progeny containing genetic information derived from species S. chacoense, S. brevicaule, S. berthaultii, S. tarijense, and S. tuberosum. Furthermore, the two isolates of V. dahliae used in our inoculation experiments differed in virulence and demonstrated specificity for some wild potato species. Experimentation leading to the development of the markers and tests of their usefulness against a wide range of diploid potato germplasm is presented.  相似文献   

18.
A collection of 24 isolates of Verticillium dahliae and 10 isolates of Verticillium longisporum originating from nine different host plants and from several geographic regions was tested for host specificity on 11 economically important crops such as potato, tomato, strawberry, linseed, three legumes and four Brassica species. In order to reveal host specificity the potential of each isolate to induce disease and affect plant yield was recorded for all isolate–host combinations. The collected data were statistically processed by means of a cluster analysis. As a result, the host range of individual isolates was found to be more dependent on the vegetative compatibility group (VCG) of the isolate than on its original host plant provenance. Twenty‐two out of 24 V. dahliae isolates belonged to either VCG 2B or 4B. VCG 2B isolates showed specificity for legumes, strawberry, potato and linseed, whereas VCG 4B was specifically virulent on potato, strawberry and linseed. Subgroups within VCG 2B and 4B almost lacking any host preference were designated 2B* and 4B*. Three isolates from VCG 2B*, however, severely attacked tomato which is a host outside the authentic host range of VCG 2B. The pathogenicity of V. longisporum isolates was restricted to cruciferous hosts. Conversely, cruciferous plants were not affected by isolates from VCGs 2B and 4B of V. dahliae. This lack of cross‐infectivity of certain subpopulations of V. dahliae and of V. longisporum may be useful in the management of this soil‐borne wilt disease.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号