首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Supported liquid membrane (SLM) technique for sample work-up and enrichment was used for determination of tricyclic antidepressant drugs in urine by high-performance liquid chromatography (HPLC) with UV detection. The studied antidepressant drugs were amitriptyline, opipramol, noxiptyline and additionally diethazine was used as possible internal standard. Alkaline phosphoric buffer with urine sample, as the donor solution, was passed over the liquid membrane into which investigated substances were extracted. On the other side of the membrane, analyzed compounds were trapped due to creating non-extractable form in acidic acceptor solution. Enriched and cleaned up drugs were then injected into a HPLC system with ultraviolet detection to analyze of their concentration in acceptor solution. Optimum extraction efficiency was determined by changing acceptor and donor solutions pH, application of different flow rates of donor solution and by using different solvents in the membrane. Also, donor solution volume, extraction time and concentration of analytes were varied to check the linearity of extraction process. The highest extraction efficiency: 43% for opipramol, 56% for noxiptyline, 43% for amitriptyline and 42% for diethazine (R.S.D. values were <6% and n=3) was achieved when 0.05 M phosphate buffer pH 4.0 and 9.5 were used as donor and acceptor solutions, respectively, n-undecane with 5% tri-n-octylphosphine oxide (TOPO) was used as liquid membrane. Limit of quantification (LOQ) for tricyclic antidepressants after enrichment of 100ml of urine sample was about 1 ng/ml.  相似文献   

2.
Hollow fiber liquid-phase microextraction (HF-LPME) coupled with high-performance liquid chromatography was used to simultaneously determine three Aconitum alkaloids, including aconitine (AC), hypaconitine (HA) and mesaconitine (MA) in human urine sample. Analytes were extracted from 5 mL urine sample containing 1.0 mmol/L NaOH into 1-octanol membrane phase impregnated in the pores of hollow fiber wall, and then back extracted into acidified aqueous solution in the lumen of the hollow fiber. After extraction, 10 μL of the acceptor phase was analyzed directly by HPLC. In this method, some important extraction parameters, such as organic solvent, extraction time, stirring rate, pH of donor phase and acceptor phase, temperature, and the volume of acceptor phase were optimized. This method provided 98- to 288-fold enrichment factors within 60 min of extraction and good repeatability with RSDs of 0.99–7.22%. The calibration curves were linear over the ranges of 16.0–128.0 μg/L for AC, 11.0–88.0 μg/L for HA and 8.1–64.8 μg/L for MA in human urine sample, with correlation coefficients of 0.9949, 0.9969 and 0.9904, respectively. Limits of detection were from 0.7 to 1.5 μg/L, and recoveries from spiked urine sample varied from 84.4% to 106.2% for AC, 77.3% to 85.6% for HA and 90.1% to 100.8% for MA.  相似文献   

3.
Three phase liquid phase microextraction (three phase LPME) technique coupled with HPLC-UV has been applied as a sensitive and efficient sample preparation method to determine phenylacetic acid (PAA) as a biomarker of depressive disorders and phenylpropionic acid (PPA) in biological fluids. The compounds were extracted from 3.0 ml aqueous solution with the adjustment of pH at a fixed value in the range of 2.0-3.5 (donor solution) into an organic phase (1-hexanol) layered on the surface of the donor solution and finally back-extracted into 4.0 microl of the acceptor microdrop (pH 11.1) located at the end of the microsyringe needle. After a prescribed back-extraction time, the acceptor microdrop was withdrawn into the microsyringe and then directly injected into the HPLC system. In order to achieve maximum extraction efficiency, different parameters affecting the extraction conditions were optimized. At the optimum conditions (donor solution: 2.3M Na(2)SO(4), pH 2.0-3.5; organic membrane: 95 microl of 1-hexanol; acceptor solution: 4.0 microl of 0.1M NH(3)/NH(4)(+) with pH 11.1; donor solution temperature: 45-50 degrees C; extraction time: 20 min and back-extraction time: 12 min), up to 110-fold enrichment factor was obtained. The calibration curve for these analytes was linear in the range of 1-5000 microg/l with r(2)>0.998. The intraday and interday RSD% were below 6.5% and the limits of detection (LODs) for both analytes were 0.2 microg/l (based on S/N=3). The proposed technique is a low cost, simple and sensitive method with highly clean-up effect. Finally, this technique was successfully utilized for the detection of target analytes in human urine, serum and plasma.  相似文献   

4.
The application of supported liquid membrane (SLM) extraction for the enrichment of short peptides is presented. The extraction efficiency is dependent on the pH of donor phase and salt concentration in acceptor phase. Moreover, the extraction efficiency is also influenced by the peptide amino-acid sequence and hydrophobicity.  相似文献   

5.
Liquid phase microextraction by back extraction (LPME-BE) combined with high performance liquid chromatography (HPLC)-fluorescence detection was developed for the determination of tramadol in human plasma. Tramadol was extracted from 2 mL of basic sample solution (donor phase) with pH 11.5 through a micro liter-size organic solvent phase (100 microL n-octane) for 25 min and finally into a 3.5 microL acidic aqueous acceptor microdrop with pH 2.5 suspended in the organic phase from the tip of a HPLC microsyringe needle for 15 min with the stirring rate of 1250 rpm. After extraction for a period of time, the microdrop was taken back into the syringe and injected into HPLC. Effected the experimental parameters such as the nature of the extracting solvent and its volume, sample temperature, stirring rate, volume of the acceptor phase, pH and extraction time on LPME-BE efficiency was investigated. At the optimized condition, enrichment factor of 366 and detection limit (LOD) of 0.12 microg L(-1) were obtained. The calibration curve was linear (r=0.999) in the concentration range of 0.3-130 microg L(-1). Within-day relative standard deviation RSD (S/N=3) and between-day RSD were 3.16% and 6.29%, respectively. The method was successfully applied to determine the concentration of tramadol in the plasma and urine samples and satisfactory results were obtained.  相似文献   

6.
A method based on hollow fiber supported liquid membrane extraction coupled with a gas chromatograph equipped with flame ionization detector (GC-FID) was developed for the determination of six short-chain fatty acids including acetic acid, propionic acid, i-butyric acid, n-butyric acid, i-valeric acid and n-valeric acid in serum. Hollow fiber supported liquid membrane extraction was employed for preconcentration and clean-up of the samples. The fatty acids were extracted from the acidic donor (diluted serum) into a liquid membrane formed in the wall of the hollow fiber with 10% tri-n-octylphoshphine oxide (TOPO) in di-n-hexyl ether, and then extracted back into a basic acceptor solution filled in the lumen of the hollow fiber. After being acidified with HCl, the acceptor was directly analyzed by GC-FID. The acceptor concentration, donor pH, membrane liquid and extracting time were optimized giving an enrichment factor up to 155 times. The good linearity (r(2)>0.980), reasonable recovery (87.2-121%), and satisfactory intra-assay (8.2-11.5%) and inter-assay (6.1-11.6%) precision illustrated the good performance of the present method. Limits of detection (LOD) ranged from 0.04 to 0.24 microM and limits of quantification (LOQ) varied from 0.13 to 0.80 microM.  相似文献   

7.
A method based on liquid-liquid-liquid microextraction combined with corona discharge ion mobility spectrometry was developed for the analysis of amantadine in human urine and plasma samples. Amantadine was extracted from alkaline aqueous sample as donor phase through a thin phase of organic solvent (n-dodecane) filling the pores of the hollow fiber wall and then back extracted into the organic acceptor phase (methanol) located in the lumen of the hollow fiber. All variables affecting the extraction of analyte including acceptor organic solvent type, concentration of NaOH in donor phase, ionic strength of the sample and extraction time were studied. The linear range was 20-1000 and 5-250 ng/mL for plasma and urine, respectively (r(2)≥0.990). The limits of detection were calculated to be 7.2 and 1.6 ng/mL for plasma and urine, respectively. The relative standard deviation was lower than 8.2% for both urine and plasma samples. The enrichment factors were between 45 and 54. The method was successfully applied for the analysis of amantadine in urine and plasma samples.  相似文献   

8.
A novel solid-phase extraction (SPE) method and HPLC method were developed for the determination of methadone and its metabolite from spiked human urine. For sample cleanup, a spiked urine sample was pretreated with phosphoric acid followed by a well-thought-out SPE method using a 10-mg Oasis HLB 96-well extraction plate. In this SPE method, the concentration of methanol as well as the pH are optimized to preferentially isolate the analytes of interest from the sample matrix. Low elution volumes (200 μl) are achieved; this eliminates evaporation and reconstitution of the sample solution. Recoveries from human urine matrix were greater than 91% with RSD values less than 4.5%. For the HPLC analysis, the separation was obtained using a SymmetryShield RP18 column with a mobile phase of 0.1% TFA–methanol (60:40, v/v). Good peak shapes were obtained without the need of addition of any competing reagent to the mobile phase. Additionally, significant signal-to-noise enrichment was achieved by diluting the final SPE eluates four-fold with water.  相似文献   

9.
Ultrasound-assisted ionic liquid dispersive liquid-liquid microextraction (UA IL-DLLME) coupled with high-performance liquid chromatography (HPLC) has been developed for the determination of celastrol in human urine samples. In the microextraction procedure, ionic liquid (IL) was used as extraction solvent and dispersed into the aqueous sample solution as fine droplets by means of dispersive solvent and ultrasonication which promoted the analyte to migrate into IL phase more easily. Several important parameters affecting the extraction efficiency were studied and optimized, including the type and volume of extraction solvent and dispersive solvent, sample pH, ultrasonication time, cooling time, centrifugation time and salting-out effect. Under the optimized conditions, 110-fold enrichment factor was obtained and the limit of detection (LOD) was 1.6 μg/L at a signal-to-noise ratio of 3. The calibration curve was linear over the range of 10-1000 μg/L for celastrol in human urine sample, with a correlation coefficient of 0.9980. Intra- and inter-assay precision were 0.43% and 2.78%, respectively. The proposed method was successfully applied to the real human urine samples and good spiked recoveries in the range of 93.2-109.3% were obtained.  相似文献   

10.
Progesterone in saliva was monitored using a new method called magnetic particle-based immuno supported liquid membrane assay (m-ISLMA) in a sequential injection (SI) setup, allowing automatic sample cleanup, analyte enrichment, and detection in a single analysis unit. Progesterone (Ag) diffuses from a continuous flowing sample - the donor - into a supported organic liquid membrane (SLM), based on analyte partitioning (solubility) between the aqueous donor and the organic phase. The Ag is re-extracted from the SLM into a second stagnant aqueous acceptor, containing antibodies (Ab) immobilized on magnetic beads, held at the bottom of the acceptor by a magnet. Due to the formation of strong Ag-Ab-bead complexes and a large excess of Ab-beads, the Ag is accumulated and selectively enriched in the acceptor. The extracted progesterone was quantified by injecting into the acceptor a horseradish peroxidase (HRP) labeled analyte tracer, the substrate (luminol, H(2)O(2), and p-iodophenol), and finally detection of the generated chemiluminescence by a photomultiplier tube. After optimization of experimental parameters (e.g., sample flow rate, extraction time, type of organic solvent and antibody-bead concentration in the acceptor), a detection limit of 8.50+/-0.17 fgL(-1) and a dynamic range between 35 fgL(-1) and 10 pgL(-1) was reached. The progesterone level of saliva for three subjects (women in different period of ovarian cycle) was investigated, and the corresponding progesterone concentrations detected with m-ISLMA coincided well with the expected values.  相似文献   

11.
A chemiluminescent (CL) based micro-immuno supported liquid membrane assay (mu-ISLMA) has been developed that enables clean up, enrichment and detection of simazine in a single miniaturised cartridge system. The mu-ISLM cartridge contains a supported liquid membrane (SLM) sandwiched between a donor and an acceptor plate (channel volumes 1.65 microL), the latter being covered by a thin layer of gold on to which anti-simazine antibodies were covalently immobilised via a self assembled monolayer (SAM) of either dithiobis(11-aminoundecane, hydrochloride) (DTAU) or beta-mercaptoethylamine (beta-MEA). The mu-ISLMA based on DTAU was characterised by both a high apparent extraction efficiency (E(app) = 136%) and high apparent enrichment factor (E(e)(app) = 544), which resulted in a very high sensitivity for simazine (LOD = 0.1 ng L(-1)). The paper discusses the influence of the different SAMs and three different anti-simazine-antibody preparations (polyclonal, affinity purified polyclonal and monoclonal) on the extraction parameters and assay sensitivity. The influence of the sample matrix (e.g. mineral water, orange juice and milk) on the simazine mu-ISLMA was also investigated.  相似文献   

12.
The demand for automation of liquid-liquid extraction (LLE) in drug analysis combined with the demand for reduced sample preparation time has led to the recent development of liquid-phase microextraction (LPME) based on disposable hollow fibres. In LPME, target drugs are extracted from aqueous biological samples, through a thin layer of organic solvent immobilised within the pores of the wall of a porous hollow fibre, and into an microl volume of acceptor solution inside the lumen of the hollow fibre. After extraction, the acceptor solution is subjected directly to a final analysis either by high performance liquid chromatography (HPLC), capillary electrophoresis (CE), mass spectrometry (MS), or capillary gas chromatography (GC) without any further treatments. Hollow fibre-based LPME may provide high enrichment of drugs and excellent sample clean-up, and probably has a broad application potential within the area of drug analysis. This review focuses on the principle of LPME, and recent applications of three-phase, two-phase, and carrier mediated LPME of drugs from plasma, whole blood, urine, and breast milk.  相似文献   

13.
A solid-phase extraction (SPE) method for sample clean-up followed by a reversed-phase HPLC procedure for the assay of alinastina (pINN) in biological fluids is reported. The effects of the sample pH, composition of the washing and elution solvents and the nature of the SPE cartridge on recovery were evaluated. The selectivity of SPE was examined using spiked rat urine and plasma samples and the CH and PH cartridges gave rise to the cleanest extracts. The recoveries obtained in spiked rat urine and plasma samples were 91.2±2.7 and 99.9±2.8%, respectively. The proposed SPE method coupled off-line with a reserved-phase HPLC system with fluorimetric detection was applied to the quantitation of alinastine in real rat urine samples. The analytical method was also applied and validated for the determination of alinastine in dog plasma. The recovery from spiked dog plasma samples using the PH cartridge was around 65%. The within-day and between-day precisions were 7 and 12%, respectively. The detection and quantitation limits in dog plasma were 0.024 and 0.078 μg/ml, respectively.  相似文献   

14.
A simple, rapid and sensitive method based on dispersive liquid-liquid microextraction (DLLME) combined with high-performance liquid chromatography-ultraviolet detection (HPLC-UV) was used to determine opium alkaloids in urine samples. Some effective parameters on extraction were studied and optimized. Under the optimum conditions, enrichment factors and recoveries for different opiates are in the range of 63.0-104.5 and 31.5-52.2%, respectively. The calibration graphs are linear in the range of 0.50-500 μg L(-1) and limit of detections (LODs) are in the range of 0.2-10 μg L(-1). The relative standard deviations (RSDs) for 200 μg L(-1) of morphine, codeine and thebaine, 5.0 μg L(-1) of papaverine and 10.0 μg L(-1) of noscapine in diluted urine sample are in the range of 2.8-6.1% (n=7). The relative recoveries of urine samples spiked with alkaloids are 84.3-106.0%. The obtained results show that DLLME combined with HPLC-UV is a fast and simple method for the determination of opium alkaloids in urine samples.  相似文献   

15.
A simple, sensitive, and inexpensive singe-drop microextraction (SDME) followed by gas chromatography and flame-ionization detection (GC-FID) was developed for determination of nicotine, anabasine, and cotinine in human urine and saliva samples. The target compounds were extracted from alkaline aqueous sample solution into an organic acceptor drop suspended on the tip of a 25-μL GC microsyringe in the aqueous sample solution. This microsyringe was also used for direct injection after extraction. Under optimized experimental conditions, calibration plots were found to be linear in the range of 0.5–25.0, 0.5–65.0, and 0.5–45.0 mg L?1 for nicotine, anabasines and cotinine, respectively. The method detection limit values were in the range of 0.33–0.45 mg L?1. Intra-day and inter-day precisions for peak area ratios were in the range of 1.3–9.2% and 2.0–7.0%, respectively. The proposed procedure was successfully applied to the determination of analytes in spiked urine and saliva samples with satisfactory results. The mean relative recoveries of spiked water samples ranged over 71.2–111.0%, with relative standard deviations varying from 2.3% to 10.0%.  相似文献   

16.
A quantitative method using liquid chromatography-tandem mass spectrometry (LC-MS-MS) was developed for the simultaneous determination of 23 endogenous steroids in primate urine. The introduced method includes estrone, pregnandiol, cortisol, testosterone and several human urinary glucocorticoid and androgen metabolites. As the method is intended for the analysis of steroid hormones in behavioral studies on wild-living primates, it was adapted for a sample volume of 200microL urine. The sample preparation consisted of an enzymatic hydrolysis of steroid glucuronides using beta-glucuronidase from E. coli followed by a solvolytic cleavage of steroid sulfates employing sulfuric acid/ethyl acetate. The extraction of steroids from urine was optimized with respect to pH during extraction, type of ether and the amount of enzyme necessary for complete hydrolysis of glucuronides. The recovery of steroids spiked into urine before hydrolysis was 58.9-103.7% with an intra-day precision of 2.7-14.3% and an inter-day precision of 2.9-14.8%. Detection limits ranged from 0.1-0.5ng/mL. The reproducibility of the whole sample preparation process was also demonstrated for unspiked urine (CV 1.2-16.5%). The proportion of steroid hormone excreted as sulfate was determined for 21 steroids in chimpanzee urine. The solvolysis proved to be essential for all investigated steroids except for pregnandiol, tetrahydrocortisol and tetrahydrocortisone, which were found to be less then 10% in the solvolysis fraction.  相似文献   

17.
In the present work, the applicability of hollow fiber-based liquid phase microextraction (HF-LPME) was evaluated for the extraction and preconcentration of valerenic acid prior to its determination by reversed-phase HPLC/UV. The target drug was extracted from 5.0 mL of aqueous solution with pH 3.5 into an organic extracting solvent (dihexyl ether) impregnated in the pores of a hollow fiber and finally back extracted into 10 μ L of aqueous solution with pH 9.5 located inside the lumen of the hollow fiber. In order to obtain high extraction efficiency, the parameters affecting the HF-LPME, including pH of the donor and acceptor phases, type of organic phase, ionic strength, the volume ratio of donor to acceptor phase, stirring rate and extraction time were studied and optimized. Under the optimized conditions, enrichment factor up to 446 was achieved and the relative standard deviation (RSD) of the method was 4.36% (n = 9). The linear range was 7.5-850 μg L?1 with correlation coefficient (r2=0.999), detection limits was 2.5 μg L?1 and the LOQ was 7.5 μg L?1. The proposed method was evaluated by extraction and determination of valerenic acid in some Iranian wild species of Valerianaceae.  相似文献   

18.
This work evaluates the utility of solid-phase microextraction (SPME) in the analysis of amphetamines by liquid chromatography (LC) after chemical derivatization of the analytes. Two approaches have been tested and compared, SPME followed by on-fiber derivatization of the extracted amphetamines, and solution derivatization followed by SPME of the derivatives formed. Both methods have been applied to measure amphetamine (AP), methamphetamine (MA), and 3,4-methylenedioxymethamphetamine (MDMA), using the fluorogenic reagent 9-fluorenylmethyl chloroformate (FMOC) and carbowax-templated resin (CW-TR)-coated fibers. Data on the application of the proposed methods for the analysis of different kind of samples are presented. When analyzing aqueous solutions of the analytes, both approaches gave similar analytical performance, but the sensitivity attainable with the solution derivatization/SPME method was better. The efficiencies observed when processing spiked urine samples by the SPME/on-fiber derivatization approach were very low. This was because the extraction of matrix components into the fiber coating prevented the extraction of the reagent. In contrast, the efficiencies obtained for spiked urine samples by the solution derivatization/SPME approach were similar to those obtained for aqueous samples. Therefore, the later method would be the method of choice for the quantification of amphetamines in urine.  相似文献   

19.
The clinical utility of a one-step extraction procedure based on the retention of a diphenyl boronate-catecholamine complex on a C18 solid-phase extraction sorbent was investigated for the measurement of urinary catecholamines. Although recoveries with the extraction procedure were optimal over a relatively broad pH range (7.5-9.5), analytical factors such as sample loading and elution flow-rates, wash step and elution conditions, the concentration of catecholamines in urine to be extracted and the type of C18 sorbent used for extraction were found to influence the efficiency of this procedure and would therefore need to be controlled for optimal recoveries. Under optimal conditions the recovery of noradrenaline, adrenaline and dopamine from spiked urine was high and reproducible (mean recoveries were >85% for all catecholamines). The effectiveness of sample clean-up step was demonstrated by reverse phase, ion pair high-performance liquid chromatography with electrochemical detection. The method described was found to be suitable for the routine measurement of catecholamines in urine in clinical biochemistry laboratories. It has a high sample extraction throughput (40/h) and has adequate precision (between batch CV<8%) and sensitivity (LOD<30 nmol/l; LOQ<65 nmol/l) for all the catecholamines measured. The method has acceptable accuracy, showing a mean bias of 6.6% for noradrenaline, 7.3% for adrenaline and 6.8% for dopamine from the mean value of laboratories (N=69) participating in an External Quality Assurance scheme for greater than 12 months.  相似文献   

20.
In this study, electromembrane extraction (EME) combined with cyclodextrin (CD)‐modified capillary electrophoresis (CE) was applied for the extraction, separation, and quantification of propranolol (PRO) enantiomers from biological samples. The PRO enantiomers were extracted from aqueous donor solutions, through a supported liquid membrane (SLM) consisting of 2‐nitrophenyl octyl ether (NPOE) impregnated on the wall of the hollow fiber, and into a 20‐μL acidic aqueous acceptor solution into the lumen of hollow fiber. Important parameters affecting EME efficiency such as extraction voltage, extraction time, pH of the donor and acceptor solutions were optimized using a Box‐Behnken design (BBD). Then, under these optimized conditions, the acceptor solution was analyzed using an optimized CD‐modified CE. Several types of CD were evaluated and best results were obtained using a fused‐silica capillary with ammonium acetate (80 mM, pH 2.5) containing 8 mM hydroxypropyl‐β‐CD as a chiral selector, applied voltage of 18 kV, and temperature of 20°C. The relative recoveries were obtained in the range of 78–95%. Finally, the performance of the present method was evaluated for the extraction and determination of PRO enantiomers in real biological samples. Chirality 26:260–267, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号