首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A high-performance liquid chromatographic method has been developed for the determination of pipotiazine in human plasma and urine. After selective extraction, pipotiazine and the internal standard (7-methoxypipotiazine) are chromatographed on a column packed with Spherosil XOA 600 (5 μm) using a 7:3 (v/v) mixture of diisopropyl ether—isooctane (1:1, v/v) + 0.2% triethylamine and diisopropyl ether—methanol (1:1, v/v) + 0.2% triethylamine + 2.6% water. The eluted compounds are measured by fluorescence detection. The sensitivity of the method was established at 0.25 ng/ml pipotiazine in plasma and 2 ng/ml pipotiazine in urine (C.V. < 5%). The method has been successfully applied to a pharmacokinetic study following a single oral administration of 10 mg of pipotiazine.  相似文献   

2.
3.
A simple, rapid and sensitive method for the determination of iothalamic acid (IA) in both plasma and urine is reported. After extraction with ethyl acetate, IA was determined by strong anion-exchange high-performance liquid chromatography with ultraviolet detection at 254 nm. The lower limit of detection was 0.5 μg/ml. The average recovery was 73 and 57% from plasma and urine, respectively. Linearity was found over the investigated concentration range (up to 500 μg/ml for plasma and up to 10.0 mg/ml for urine). The reproducibility of the technique was good (coefficient of variation less than 6%) as was the precision and accuracy (coefficient of variation less than 2.5%). No interference from endogenous substances or any of the common drugs tested was found.  相似文献   

4.
5.
A high-pressure liquid chromatography (HPLC) method with ultraviolet detection was developed for the measurement of plasma free and total tazobactam and piperacillin. This method is simple and fast, requiring only 11 min for the HPLC run and a sample preparation of about 11 min for total drugs and 10 min for free drugs. The procedure for the assay involves the treatment of plasma with acetonitrile for total drugs determination, and the use of a centrifugal filter device to deproteinize plasma for free drugs determination. The HPLC column, a Hypersil-ODS, was equilibrated with an eluent mixture composed of acetonitrile–potassium phosphate (pH 2.6). CVs for repeatability of tazobactam and piperacillin measurements ranged from 4.30 to 6.60; CVs for reproducibility ranged from 5.60 to 9.40. Mean analytical recoveries ranged from 100.4 to 103%. A linear relationship was obtained between peak area and drugs concentration in the range studied (0–62.5 mg/L for tazobactam and 0–500 mg/L for piperacillin). The equation for regression line were y = 19x ? 1.4 for tazobactam and y = 1.7x ? 0.9 for piperacillin; correlation coefficients were >0.999. The lower limit of quantitation (LLQ) for standard samples was about 0.12 mg/L for tazobactam and 0.49 mg/L for piperacillin, respectively. The lower limit of detection (LLD) was 0.06 mg/L for tazobactam and 0.24 mg/L for piperacillin. This HPLC assay for tazobactam and piperacillin is sensitive and accurate, and provides a reliable determination of both free and total tazobactam and piperacillin in human plasma, thus allowing the determination of these analytes in patients receiving tazocillin therapy.  相似文献   

6.
7.
8.
A high-performance liquid chromatographic method has been developed for the determination of α-keto acids in human urine and plasma. These acids were prepurified using a column of hydrazide gel and derivatized with o-phenylenediamine into 2-quinoxalinol derivatives, which were extracted into ethyl acetate. The 2-quinoxialinol derivatives were separated by reversed-phase paired-ion chromatography using a 250 × 4 mm-i.d. column packed with LiChrosorb RP-8 (5 μm). This method is sensitive, selective, and reproducible. The α-keto acids in urine and plasma from normal individuals were determined.  相似文献   

9.
10.
A new reversed-phase high-performance liquid chromatography (RP-HPLC) method for the detection and quantification of tazobactam in serum and haemofiltration fluid is described. The assay for these biological fluids involves an extraction with diethyl ether followed by derivatization using 1,2,4-triazole. The mobile phase consisted of phosphate buffer-methanol and the detection wavelength was 325 nm. The limit of detection was 0.05 μg/ml in the two fluids and the calibration curves were linear over the range 0.1–50 μg/ml. For a tazobactam concentration equal to 1, 5 or 20 μg ml−1, the coefficients of variation were less than 5%. The assay was successfully applied to the analysis of samples from drug monitoring in a patient with renal insufficiency undergoing continuous venovenous haemofiltration (CVVH).  相似文献   

11.
A method is described for the determination of urinary hippuric acid by high-performance liquid chromatography. The method used ethyl acetate extraction for partial clean-up of the urine. The separation was carried out on a reversed-phase column using 20% methanol in 0.01 M aqueous potassium phosphate containing 0.5% acetic acid as a mobile phase. The column effluent was monitored with a UV detector at 254 nm. Hippuric acid was separated from other normal urine constituents in less than 10 min. Metabolites of xylene and styrene did not interfere with the assay. Analytical recoveries from urine were excellent and peak height and concentration were linearly related.  相似文献   

12.
Polyethylene glycols (PEGs) are non-ionic, water-soluble synthetic polymers which have been widely used for many applications. Since they are of very low toxicity and are readily excreted in urine, PEGs in the molecular weight range 400–6000 have been used extensively in the study of intestinal physiology in man. A high-performance liquid chromatographic (HPLC) method has been developed for the determination of PEG 600 in human urine, which includes a pre-column derivatisation step. The dibenzoate derivatives of PEG 600 can be quantitatively prepared, and this, coupled with ultraviolet detection at 230 nm, has greatly improved the limit of detection for the determination of PEGs by HPLC. A suitable extraction procedure has also been developed which enabled PEG levels in urine to be monitored with much greater sensitivity than any previously reported method.  相似文献   

13.
Ambroxol has been determined in biological fluids using a rapid and sensitive high-performance liquid chromatographic method. The samples prepared from plasma by liquid—liquid extraction were analysed on reversed-phase silica gel by competing-ion chromatography with ultraviolet detection. The method was applied to the determination of ambroxol levels in twelve healthy volunteers after oral administration of 90 mg of ambroxol in tablets of Mucosolvan and Ambrosan.  相似文献   

14.
15.
Tramadol has been determined in human plasma samples using a sensitive high-performance liquid chromatographic method. The plasma samples were extracted with tert.-butylmethyl ether in one-step liquid-liquid extraction (recovery 86%) and analyses of the extracts were performed on reversed-phase silica gel using ion-pair chromatography (verapamil as an internal standard) and fluorescence detection. The method was applied to the determination of tramadol levels in twelve healthy volunteers after oral administration of 100 mg of tramadol in capsules of Protradon and Tramal.  相似文献   

16.
A sensitive, selective, and rapid high-performance liquid chromatographic procedure was developed for the determination of isoxicam in human plasma and urine. Acidified plasma or urine were extracted with toluene. Portions of the organic extract were evaporated to dryness, the residue dissolved in tetrahydrofuran (plasma) or acetonitrile (urine) and chromatographed on a μBondapak C18 column preceded by a 4–5 cm × 2 mm I.D. column packed with Corasil C18. Quantitation was obtained by UV spectrometry at 320 nm. Linearity in plasma ranged from 0.2 to 10 μg/ml. Recoveries from plasma samples seeded with 1.8, 4 and 8 μg/ml isoxicam were 1.86 ± 0.077, 4.10 ± 0.107 and 8.43 ± 0.154 μg/ml with relative standard deviations of 3.3%, 2.5% and 5.4%, respectively. The linearity in urine ranged from 0.125 to 2 μg/ml. The precision of the method was 3.3–9.0% relative standard deviation over the linear range.  相似文献   

17.
Iobitridol is a new non-ionic, low-osmolality contrast medium for urography and angiography. We have developed a method for determining iobitridol in body fluids using high-performance liquid chromatography with ultraviolet detection. The method, which is specific and reproducible, does not require an internal standard. Determinations can be carried out in body fluids against a set of standards in ethanol. The method was validated for the quantification of iobitridol in biological samples obtained during pharmacokinetic studies.  相似文献   

18.
Sensitive and specific high-performance liquid chromatographic methods with fluorescence detection are described for the determination of the metabolites of mox sylyte (4-(2-dimethylaminoethoxy)-5-isopropyl-2-methylphenyl acetate) in human plasma and urine. Deacetylmoxisylyte glucuroconjugate (DAM-G) was hydrolysed enzymatically using β-glucuronidase and quantified as the difference between the DAM concentrations determined after and before hydrolysis. The two sulphate derivatives (deacetylmoxisy;yte sulphoconjugate, DAM-S and monomethyldeacetylmoxisylyte sulphoconjugate, MDAM-S), were analysed without prior hydrolysis. Their extraction from plasma and urine, as well as that of DAM from plasma, involved the use of C18 cartridges adapted on a Benchmate workstation. DAM in urine was quantified after liquid-liquid extraction. The two methods were validated for specificity, linearity, intra- and inter-day precision and accuracy. Precision was generally ≤15% and accuracy ≤12%. In plasma, the limits of quantification were 2.5 ng/ml for DAM and 2.8 ng/ml for the two sulphates; in urine, they were 40 ng/ml for DAM and 200 ng/ml for the sulphates. These methods were used for pharmacokinetic studies in healthy subjects.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号