首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the United States, influenza season typically begins in October or November, peaks in February, and tapers off in April. During the winter holiday break, from the end of December to the beginning of January, changes in social mixing patterns, healthcare-seeking behaviors, and surveillance reporting could affect influenza-like illness (ILI) rates. We compared predicted with observed weekly ILI to examine trends around the winter break period. We examined weekly rates of ILI by region in the United States from influenza season 2003–2004 to 2012–2013. We compared observed and predicted ILI rates from week 44 to week 8 of each influenza season using the auto-regressive integrated moving average (ARIMA) method. Of 1,530 region, week, and year combinations, 64 observed ILI rates were significantly higher than predicted by the model. Of these, 21 occurred during the typical winter holiday break period (weeks 51–52); 12 occurred during influenza season 2012–2013. There were 46 observed ILI rates that were significantly lower than predicted. Of these, 16 occurred after the typical holiday break during week 1, eight of which occurred during season 2012–2013. Of 90 (10 HHS regions x 9 seasons) predictions during the peak week, 78 predicted ILI rates were lower than observed. Out of 73 predictions for the post-peak week, 62 ILI rates were higher than observed. There were 53 out of 73 models that had lower peak and higher post-peak predicted ILI rates than were actually observed. While most regions had ILI rates higher than predicted during winter holiday break and lower than predicted after the break during the 2012–2013 season, overall there was not a consistent relationship between observed and predicted ILI around the winter holiday break during the other influenza seasons.  相似文献   

2.
Infectious disease surveillance systems provide information crucial for protecting populations from influenza epidemics. However, few have reported the nationwide number of patients with influenza-like illness (ILI), detailing virological type. Using data from the infectious disease surveillance system in Japan, we estimated the weekly number of ILI cases by virological type, including pandemic influenza (A(H1)pdm09) and seasonal-type influenza (A(H3) and B) over a four-year period (week 36 of 2010 to week 18 of 2014). We used the reported number of influenza cases from nationwide sentinel surveillance and the proportions of virological types from infectious agents surveillance and estimated the number of cases and their 95% confidence intervals. For the 2010/11 season, influenza type A(H1)pdm09 was dominant: 6.48 million (6.33–6.63), followed by types A(H3): 4.05 million (3.90–4.21) and B: 2.84 million (2.71–2.97). In the 2011/12 season, seasonal influenza type A(H3) was dominant: 10.89 million (10.64–11.14), followed by type B: 5.54 million (5.32–5.75). In conclusion, close monitoring of the estimated number of ILI cases by virological type not only highlights the huge impact of previous influenza epidemics in Japan, it may also aid the prediction of future outbreaks, allowing for implementation of control and prevention measures.  相似文献   

3.

Background

In this study, we assess how effective pandemic and trivalent 2009-2010 seasonal vaccines were in preventing influenza-like illness (ILI) during the 2009 A(H1N1) pandemic in France. We also compare vaccine effectiveness against ILI versus laboratory-confirmed pandemic A(H1N1) influenza, and assess the possible bias caused by using non-specific endpoints and observational data.

Methodology and Principal Findings

We estimated vaccine effectiveness by using the following formula: VE  =  (PPV-PCV)/(PPV(1-PCV)) × 100%, where PPV is the proportion vaccinated in the population and PCV the proportion of vaccinated influenza cases. People were considered vaccinated three weeks after receiving a dose of vaccine. ILI and pandemic A(H1N1) laboratory-confirmed cases were obtained from two surveillance networks of general practitioners. During the epidemic, 99.7% of influenza isolates were pandemic A(H1N1). Pandemic and seasonal vaccine uptakes in the population were obtained from the National Health Insurance database and by telephonic surveys, respectively. Effectiveness estimates were adjusted by age and week. The presence of residual biases was explored by calculating vaccine effectiveness after the influenza period. The effectiveness of pandemic vaccines in preventing ILI was 52% (95% confidence interval: 30–69) during the pandemic and 33% (4–55) after. It was 86% (56–98) against confirmed influenza. The effectiveness of seasonal vaccines against ILI was 61% (56–66) during the pandemic and 19% (−10–41) after. It was 60% (41–74) against confirmed influenza.

Conclusions

The effectiveness of pandemic vaccines in preventing confirmed pandemic A(H1N1) influenza on the field was high, consistently with published findings. It was significantly lower against ILI. This is unsurprising since not all ILI cases are caused by influenza. Trivalent 2009-2010 seasonal vaccines had a statistically significant effectiveness in preventing ILI and confirmed pandemic influenza, but were not better in preventing confirmed pandemic influenza than in preventing ILI. This lack of difference might be indicative of selection bias.  相似文献   

4.

Background

Acute respiratory illnesses and influenza-like illnesses (ILI) are a significant source of morbidity and mortality worldwide. Despite the public health importance, little is known about the etiology of these acute respiratory illnesses in many regions of South America. In 2006, the Peruvian Ministry of Health (MoH) and the US Naval Medical Research Center Detachment (NMRCD) initiated a collaboration to characterize the viral agents associated with ILI and to describe the clinical and epidemiological presentation of the affected population.

Methodology/Principal Findings

Patients with ILI (fever ≥38°C and cough or sore throat) were evaluated in clinics and hospitals in 13 Peruvian cities representative of the four main regions of the country. Nasal and oropharyngeal swabs, as well as epidemiological and demographic data, were collected from each patient. During the two years of this study (June 2006 through May 2008), a total of 6,835 patients, with a median age of 13 years, were recruited from 31 clinics and hospitals; 6,308 were enrolled by regular passive surveillance and 527 were enrolled as part of outbreak investigations. At least one respiratory virus was isolated from the specimens of 2,688 (42.6%) patients, with etiologies varying by age and geographical region. Overall the most common viral agents isolated were influenza A virus (25.1%), influenza B virus (9.7%), parainfluenza viruses 1, 2, and 3, (HPIV-1,-2,-3; 3.2%), herpes simplex virus (HSV; 2.6%), and adenoviruses (1.8%). Genetic analyses of influenza virus isolates demonstrated that three lineages of influenza A H1N1, one lineage of influenza A H3N2, and two lineages of influenza B were circulating in Peru during the course of this study.

Conclusions

To our knowledge this is the most comprehensive study to date of the etiologic agents associated with ILI in Peru. These results demonstrate that a wide range of respiratory pathogens are circulating in Peru and this fact needs to be considered by clinicians when treating patients reporting with ILI. Furthermore, these data have implications for influenza vaccine design and implementation in South America.  相似文献   

5.
In France, the 2011–2012 influenza epidemic was characterized by the circulation of antigenically drifted influenza A(H3N2) viruses and by an increased disease severity and mortality among the elderly, with respect to the A(H1N1)pdm09 pandemic and post-pandemic outbreaks. Whether the epidemiology of influenza in France differed between the 2011–2012 epidemic and the previous outbreaks is unclear. Here, we analyse the age distribution of influenza like illness (ILI) cases attended in general practice during the 2011–2012 epidemic, and compare it with that of the twelve previous epidemic seasons. Influenza like illness data were obtained through a nationwide surveillance system based on sentinel general practitioners. Vaccine effectiveness was also estimated. The estimated number of ILI cases attended in general practice during the 2011–2012 was lower than that of the past twelve epidemics. The age distribution was characteristic of previous A(H3N2)-dominated outbreaks: school-age children were relatively spared compared to epidemics (co-)dominated by A(H1N1) and/or B viruses (including the 2009 pandemic and post-pandemic outbreaks), while the proportion of adults over 30 year-old was higher. The estimated vaccine effectiveness (54%, 95% CI (48, 60)) was in the lower range for A(H3N2) epidemics. In conclusion, the age distribution of ILI cases attended in general practice seems to be not different between the A(H3N2) pre-pandemic and post-pandemic epidemics. Future researches including a more important number of ILI epidemics and confirmed virological data of influenza and other respiratory pathogens are necessary to confirm these results.  相似文献   

6.

Introduction

The 2011−12 trivalent influenza vaccine contains a strain of influenza B/Victoria-lineage viruses. Despite free provision of influenza vaccine among target populations, an epidemic predominated by influenza B/Yamagata-lineage viruses occurred during the 2011−12 season in Taiwan. We characterized this vaccine-mismatched epidemic and estimated influenza vaccine effectiveness (VE).

Methods

Influenza activity was monitored through sentinel viral surveillance, emergency department (ED) and outpatient influenza-like illness (ILI) syndromic surveillance, and case-based surveillance of influenza with complications and deaths. VE against laboratory-confirmed influenza was evaluated through a case-control study on ILI patients enrolled into sentinel viral surveillance. Logistic regression was used to estimate VE adjusted for confounding factors.

Results

During July 2011−June 2012, influenza B accounted for 2,382 (72.5%) of 3,285 influenza-positive respiratory specimens. Of 329 influenza B viral isolates with antigen characterization, 287 (87.2%) were B/Yamagata-lineage viruses. Proportions of ED and outpatient visits being ILI-related increased from November 2011 to January 2012. Of 1,704 confirmed cases of influenza with complications, including 154 (9.0%) deaths, influenza B accounted for 1,034 (60.7%) of the confirmed cases and 103 (66.9%) of the deaths. Reporting rates of confirmed influenza with complications and deaths were 73.5 and 6.6 per 1,000,000, respectively, highest among those aged ≥65 years, 50−64 years, 3−6 years, and 0−2 years. Adjusted VE was −31% (95% CI: −80, 4) against all influenza, 54% (95% CI: 3, 78) against influenza A, and −66% (95% CI: −132, −18) against influenza B.

Conclusions

This influenza epidemic in Taiwan was predominated by B/Yamagata-lineage viruses unprotected by the 2011−12 trivalent vaccine. The morbidity and mortality of this vaccine-mismatched epidemic warrants careful consideration of introducing a quadrivalent influenza vaccine that includes strains of both B lineages.  相似文献   

7.
8.

Background

The World Health Organisation recommends outpatient influenza-like illness (ILI) and inpatient severe acute respiratory illness (SARI) surveillance. We evaluated two influenza surveillance systems in South Africa: one for ILI and another for SARI.

Methodology

The Viral Watch (VW) programme has collected virological influenza surveillance data voluntarily from patients with ILI since 1984 in private and public clinics in all 9 South African provinces. The SARI surveillance programme has collected epidemiological and virological influenza surveillance data since 2009 in public hospitals in 4 provinces by dedicated personnel. We compared nine surveillance system attributes from 2009–2012.

Results

We analysed data from 18,293 SARI patients and 9,104 ILI patients. The annual proportion of samples testing positive for influenza was higher for VW (mean 41%) than SARI (mean 8%) and generally exceeded the seasonal threshold from May to September (VW: weeks 21–40; SARI: weeks 23–39). Data quality was a major strength of SARI (most data completion measures >90%; adherence to definitions: 88–89%) and a relative weakness of the VW programme (62% of forms complete, with limited epidemiologic data collected; adherence to definitions: 65–82%). Timeliness was a relative strength of both systems (e.g. both collected >93% of all respiratory specimens within 7 days of symptom onset). ILI surveillance was more nationally representative, financially sustainable and expandable than the SARI system. Though the SARI programme is not nationally representative, the high quality and detail of SARI data collection sheds light on the local burden and epidemiology of severe influenza-associated disease.

Conclusions

To best monitor influenza in South Africa, we propose that both ILI and SARI should be under surveillance. Improving ILI surveillance will require better quality and more systematic data collection, and SARI surveillance should be expanded to be more nationally representative, even if this requires scaling back on information gathered.  相似文献   

9.

Background

The 2008–09 influenza season was the time in which the Department of Veterans Affairs (VA) utilized an electronic biosurveillance system for tracking and monitoring of influenza trends. The system, known as ESSENCE or Electronic Surveillance System for the Early Notification of Community-based Epidemics, was monitored for the influenza season as well as for a rise in influenza cases at the start of the H1N1 2009 influenza pandemic. We also describe trends noted in influenza-like illness (ILI) outpatient encounter data in VA medical centers during the 2008–09 influenza season, before and after the recognition of pandemic H1N1 2009 influenza virus.

Methodology/Principal Findings

We determined prevalence of ILI coded visits using VA''s ESSENCE for 2008–09 seasonal influenza (Sept. 28, 2008–April 25, 2009 corresponding to CDC 2008–2009 flu season weeks 40–16) and the early period of pandemic H1N1 2009 (April 26, 2009–July 31, 2009 corresponding to CDC 2008–2009 flu season weeks 17–30). Differences in diagnostic ICD-9-CM code frequencies were analyzed using Chi-square and odds ratios. There were 649,574 ILI encounters captured representing 633,893 patients. The prevalence of VA ILI visits mirrored the CDC''s Outpatient ILI Surveillance Network (ILINet) data with peaks in late December, early February, and late April/early May, mirroring the ILINet data; however, the peaks seen in the VA were smaller. Of 31 ILI codes, 6 decreased and 11 increased significantly during the early period of pandemic H1N1 2009. The ILI codes that significantly increased were more likely to be symptom codes. Although influenza with respiratory manifestation (487.1) was the most common code used among 150 confirmed pandemic H1N1 2009 cases, overall it significantly decreased since the start of the pandemic.

Conclusions/Significance

VA ESSENCE effectively detected and tracked changing ILI trends during pandemic H1N1 2009 and represents an important temporal alerting system for monitoring health events in VA facilities.  相似文献   

10.

Introduction

Clinical and etiological characteristics of influenza-like illness (ILI) in outpatients is poorly understood in the southern temperate region of China. We conducted laboratory-based surveillance of viral etiology for ILI outpatients in Shanghai from January 2011 to December 2013.

Materials and Methods

Clinical and epidemiological data from ILI outpatients, both children and adults, were collected. A total of 1970 nasopharyngeal swabs were collected and tested for 12 respiratory viruses using multiplex RT-PCR, and the data were analyzed anonymously.

Results

All 12 respiratory viruses were detected in the specimens. At least one virus was detected in 32.4% of 1970 specimens analyzed, with 1.1% showing co-infections. The most frequently detected agents were influenza A (11.7%), influenza B (9.6%), and rhinoviruses (3.1%).Other viruses were present at a frequency less than 3.0%. We observed a winter peak in the detection rate in ILI patients during 3 years of surveillance and a summer peak in 2012. HCoV, HADV, and HMPV were detected more frequently in children than in adults. Patients infected with influenza virus experienced higher temperatures, more coughs, running noses, headaches and fatigue than patients infected with other viruses and virus-free patients (p<0.001).

Conclusions

The spectrum, seasonality, age distribution and clinical associations of respiratory virus infections in children and adults with influenza-like illness were analyzed in this study for the first time. To a certain extent, the findings can provide baseline data for evaluating the burden of respiratory virus infection in children and adults in Shanghai. It will also provide clinicians with helpful information about the etiological patterns of outpatients presenting with complaints of acute respiratory syndrome, but further studies should be conducted, and longer-term laboratory-based surveillance would give a better picture of the etiology of ILI.  相似文献   

11.

Objectives

Severe influenza can lead to Intensive Care Unit (ICU) admission. We explored whether ICU data reflect influenza like illness (ILI) activity in the general population, and whether ICU respiratory infections can predict influenza epidemics.

Methods

We calculated the time lag and correlation between ILI incidence (from ILI sentinel surveillance, based on general practitioners (GP) consultations) and percentages of ICU admissions with a respiratory infection (from the Dutch National Intensive Care Registry) over the years 2003–2011. In addition, ICU data of the first three years was used to build three regression models to predict the start and end of influenza epidemics in the years thereafter, one to three weeks ahead. The predicted start and end of influenza epidemics were compared with observed start and end of such epidemics according to the incidence of ILI.

Results

Peaks in respiratory ICU admissions lasted longer than peaks in ILI incidence rates. Increases in ICU admissions occurred on average two days earlier compared to ILI. Predicting influenza epidemics one, two, or three weeks ahead yielded positive predictive values ranging from 0.52 to 0.78, and sensitivities from 0.34 to 0.51.

Conclusions

ICU data was associated with ILI activity, with increases in ICU data often occurring earlier and for a longer time period. However, in the Netherlands, predicting influenza epidemics in the general population using ICU data was imprecise, with low positive predictive values and sensitivities.  相似文献   

12.

Background

Studies that aimed at comparing the clinical presentation of influenza patients across virus types and subtypes/lineages found divergent results, but this was never investigated using data collected over several years in a countrywide, primary care practitioners-based influenza surveillance system.

Methods

The IBVD (Influenza B in Vircases Database) study collected information on signs and symptoms at disease onset from laboratory-confirmed influenza patients of any age who consulted a sentinel practitioner in France. We compared the clinical presentation of influenza patients across age groups (0–4, 5–14, 15–64 and 65+ years), virus types (A, B) and subtypes/lineages (A(H3N2), pandemic A(H1N1), B Victoria, B Yamagata).

Results

Overall, 14,423 influenza cases (23.9% of which were influenza B) were included between 2003–2004 and 2012–2013. Influenza A and B accounted for over 50% of total influenza cases during eight and two seasons, respectively. There were minor differences in the distribution of signs and symptoms across influenza virus types and subtypes/lineages. Compared to patients aged 0–4 years, those aged 5–14 years were more likely to have been infected with type B viruses (OR 2.15, 95% CI 1.87–2.47) while those aged 15–64 years were less likely (OR 0.83, 95% CI 0.73–0.96). Males and influenza patients diagnosed during the epidemic period were less likely to be infected with type B viruses.

Conclusions

Despite differences in age distribution, the clinical illness produced by the different influenza virus types and subtypes is indistinguishable among patients that consult a general practitioner for acute respiratory infections.  相似文献   

13.

Background

The disease burden associated with influenza in developing tropical and subtropical countries is poorly understood owing to the lack of a comprehensive disease surveillance system and information-exchange mechanisms. The impact of influenza on outpatient visits, hospital admissions, and deaths has not been fully demonstrated to date in south China.

Methods

A time series Poisson generalized additive model was used to quantitatively assess influenza-like illness (ILI) and influenza disease burden by using influenza surveillance data in Zhuhai City from 2007 to 2009, combined with the outpatient, inpatient, and respiratory disease mortality data of the same period.

Results

The influenza activity in Zhuhai City demonstrated a typical subtropical seasonal pattern; however, each influenza virus subtype showed a specific transmission variation. The weekly ILI case number and virus isolation rate had a very close positive correlation (r = 0.774, P < 0.0001). The impact of ILI and influenza on weekly outpatient visits was statistically significant (P < 0.05). We determined that 10.7% of outpatient visits were associated with ILI and 1.88% were associated with influenza. ILI also had a significant influence on the hospitalization rates (P < 0.05), but mainly in populations <25 years of age. No statistically significant effect of influenza on hospital admissions was found (P > 0.05). The impact of ILI on chronic obstructive pulmonary disease (COPD) was most significant (P < 0.05), with 33.1% of COPD-related deaths being attributable to ILI. The impact of influenza on the mortality rate requires further evaluation.

Conclusions

ILI is a feasible indicator of influenza activity. Both ILI and influenza have a large impact on outpatient visits. Although ILI affects the number of hospital admissions and deaths, we found no consistent influence of influenza, which requires further assessment.  相似文献   

14.
15.

Background

There is limited information about the epidemiology of influenza in Africa. We describe the epidemiology and seasonality of influenza in Morocco from 1996 to 2009 with particular emphasis on the 2007–2008 and 2008–2009 influenza seasons. Successes and challenges of the enhanced surveillance system introduced in 2007 are also discussed.

Methods

Virologic sentinel surveillance for influenza virus was initiated in Morocco in 1996 using a network of private practitioners that collected oro-pharyngeal and naso-pharyngeal swabs from outpatients presenting with influenza-like-illness (ILI). The surveillance network expanded over the years to include inpatients presenting with severe acute respiratory illness (SARI) at hospitals and syndromic surveillance for ILI and acute respiratory infection (ARI). Respiratory samples and structured questionnaires were collected from eligible patients, and samples were tested by immunofluorescence assays and by viral isolation for influenza viruses.

Results

We obtained a total of 6465 respiratory specimens during 1996 to 2009, of which, 3102 were collected during 2007–2009. Of those, 2249 (72%) were from patients with ILI, and 853 (27%) were from patients with SARI. Among the 3,102 patients, 98 (3%) had laboratory-confirmed influenza, of whom, 85 (87%) had ILI and 13 (13%) had SARI. Among ILI patients, the highest proportion of laboratory-confirmed influenza occurred in children less than 5 years of age (3/169; 2% during 2007–2008 and 23/271; 9% during 2008–2009) and patients 25–59 years of age (8/440; 2% during 2007–2009 and 21/483; 4% during 2008–2009). All SARI patients with influenza were less than 14 years of age. During all surveillance years, influenza virus circulation was seasonal with peak circulation during the winter months of October through April.

Conclusion

Influenza results in both mild and severe respiratory infections in Morocco, and accounted for a large proportion of all hospitalizations for severe respiratory illness among children 5 years of age and younger.  相似文献   

16.

Background

The effectiveness of the 2011–2012 seasonal influenza vaccine was evaluated in adult Korean populations with regard to how well it could prevent laboratory-confirmed influenza and influenza-related complications.

Materials and Methods

A retrospective case-control and retrospective cohort study was conducted among patients who visited four selected hospitals from September 2011 to May 2012. The analysis included 1,130 laboratory-confirmed influenza patients. For each influenza case, one control patient was chosen at a ratio of 1:1. A control was defined as an age group-matched patient who visited the same hospital with influenza-like illness within 48 hours of symptom onset but for whom laboratory tests were negative for influenza. Age group and visit date were matched between the cases and controls. Vaccine effectiveness (VE) was defined as [100 × (1-odds ratio for influenza in vaccinated versus non-vaccinated persons)]. The patients with laboratory-confirmed influenza were followed for at least one month through reviewing the medical records and conducting a telephone interview.

Results

The VE of the 2011–2012 seasonal influenza vaccine was 3.8% [95% confidence interval (CI), -16.5% to 20.6%] for preventing laboratory-confirmed influenza, -16.1% (95% CI, -48.3 to 9.1) for influenza A and 26.2% (95% CI, -2.6 to 46.2) for influenza B. The age-specific adjusted VE was 0.3% (95% CI, -29.4 to 23.1) among participants aged 19 to 49 years, 11.9% (95% CI, -34.3 to 42.2) among those aged 50 to 64 years and -3.9% (-60.1 to 32.5) among those aged ≥65 years. The adjusted VE for preventing any influenza-related complications was -10.7% (95% CI, -41.1% to 42.2%).

Conclusions

The 2011–2012 seasonal influenza vaccine was not effective in preventing laboratory-confirmed influenza or influenza-related complications in adult Korean populations.  相似文献   

17.
To complement traditional influenza surveillance with data on disease occurrence not only among care-seeking individuals, the Swedish Institute for Communicable Disease Control (SMI) has tested an Internet-based monitoring system (IMS) with self-recruited volunteers submitting weekly on-line reports about their health in the preceding week, upon weekly reminders. We evaluated IMS acceptability and to which extent participants represented the Swedish population. We also studied the agreement of data on influenza-like illness (ILI) occurrence from IMS with data from a previously evaluated population-based system (PBS) with an actively recruited random sample of the population who spontaneously report disease onsets in real-time via telephone/Internet, and with traditional general practitioner based sentinel and virological influenza surveillance, in the 2011–2012 and 2012–2013 influenza seasons. We assessed acceptability by calculating the participation proportion in an invited IMS-sample and the weekly reporting proportion of enrolled self-recruited IMS participants. We compared distributions of socio-demographic indicators of self-recruited IMS participants to the general Swedish population using chi-square tests. Finally, we assessed the agreement of weekly incidence proportions (%) of ILI in IMS and PBS with cross-correlation analyses. Among 2,511 invited persons, 166 (6.6%) agreed to participate in the IMS. In each season, 2,552 and 2,486 self-recruited persons participated in the IMS respectively. The weekly reporting proportion among self-recruited participants decreased from 87% to 23% (2011–2012) and 82% to 45% (2012–2013). Women, highly educated, and middle-aged persons were overrepresented among self-recruited IMS participants (p<0.01). IMS (invited and self-recruited) and PBS weekly incidence proportions correlated strongest when no lags were applied (r = 0.71 and r = 0.69, p<0.05). This evaluation revealed socio-demographic misrepresentation and limited compliance among the self-recruited IMS participants. Yet, IMS offered a reasonable representation of the temporal ILI pattern in the community overall during the 2011–2012 and 2012–2013 influenza seasons and could be a simple tool for collecting community-based ILI data.  相似文献   

18.

Background

School aged children are a key link in the transmission of influenza. Most cases have little or no interaction with health services and are therefore missed by the majority of existing surveillance systems. As part of a public engagement with science project, this study aimed to establish a web-based system for the collection of routine school absence data and determine if school absence prevalence was correlated with established surveillance measures for circulating influenza.

Methods

We collected data for two influenza seasons (2011/12 and 2012/13). The primary outcome was daily school absence prevalence (weighted to make it nationally representative) for children aged 11 to 16. School absence prevalence was triangulated graphically and through univariable linear regression to Royal College of General Practitioners (RCGP) influenza like illness (ILI) episode incidence rate, national microbiological surveillance data on the proportion of samples positive for influenza (A+B) and with Rhinovirus, RSV and laboratory confirmed cases of Norovirus.

Results

27 schools submitted data over two respiratory seasons. During the first season, levels of influenza measured by school absence prevalence and established surveillance were low. In the 2012/13 season, a peak of school absence prevalence occurred in week 51, and week 1 in RCGP ILI surveillance data. Linear regression showed a strong association between the school absence prevalence and RCGP ILI (All ages, and 5–14 year olds), laboratory confirmed cases of influenza A & B, and weak evidence for a linear association with Rhinovirus and Norovirus.

Interpretation

This study provides initial evidence for using routine school illness absence prevalence as a novel tool for influenza surveillance. The network of web-based data collection platforms we established through active engagement provides an innovative model of conducting scientific research and could be used for a wide range of infectious disease studies in the future.  相似文献   

19.

Background

There is little information about influenza among the Pakistani population. In order to assess the trends of Influenza-like-Illness (ILI) and to monitor the predominant circulating strains of influenza viruses, a country-wide lab-based surveillance system for ILI and Severe Acute Respiratory Illness (SARI) with weekly sampling and reporting was established in 2008. This system was necessary for early detection of emerging novel influenza subtypes and timely response for influenza prevention and control.

Methods

Five sentinel sites at tertiary care hospitals across Pakistan collected epidemiological data and respiratory samples from Influenza-like illness (ILI) and severe acute respiratory illness (SARI) cases from January 2008 to December 2011. Samples were typed and sub-typed by Real-Time RT-PCR assay.

Results

A total of 6258 specimens were analyzed; influenza virus was detected in 1489 (24%) samples, including 1066 (72%) Influenza type A and 423 (28%) influenza type B viruses. Amongst influenza A viruses, 25 (2%) were seasonal A/H1N1, 169 (16%) were A/H3N2 and 872 (82 %) were A(H1N1)pdm09. Influenza B virus circulation was detected throughout the year along with few cases of seasonal A/H1N1 virus during late winter and spring. Influenza A/H3N2 virus circulation was mainly observed during summer months (August-October).

Conclusions

The findings of this study emphasize the need for continuous and comprehensive influenza surveillance. Prospective data from multiple years is needed to predict seasonal trends for vaccine development and to further fortify pandemic preparedness.  相似文献   

20.

Background

There is a lack of recent studies examining recording of influenza-like illness (ILI) in primary care in the UK over time and according to population characteristics. Our aim was to determine time trends and socio-demographic patterns of ILI recorded consultations in primary care.

Methods

We used The Health Improvement Network (THIN) UK primary care database and extracted data on all ILI consultations between 1995 and 2013. We estimated ILI recorded consultation rates per 100,000 person-weeks (pw) by age, gender, deprivation and winter season. Negative binomial regression models were used to examine time trends and the effect of socio-demographic characteristics. Trends in ILI recorded consultations were compared to trends in consultations with less specific symptoms (cough or fever) recorded.

Results

The study involved 7,682,908 individuals in 542 general practices. The ILI consultation rate decreased from 32.5/100,000 pw (95% confidence interval (CI) 32.1, 32.9) in 1995–98 to 15.5/100,000 pw (95% CI 15.4, 15.7) by 2010–13. The decrease occurred prior to 2002/3, and rates have remained largely stable since then. Declines were evident in all age groups. In comparison, cough or fever consultation rates increased from 169.4/100,000 pw (95% CI 168.6, 170.3) in 1995–98 to 237.7/100,000 pw (95% CI 237.2, 238.2) in 2010–13. ILI consultation rates were highest among individuals aged 15–44 years, higher in women than men, and in individuals from deprived areas.

Conclusion

There is substantial variation in ILI recorded consultations over time and by population socio-demographic characteristics, most likely reflecting changing recording behaviour by GPs. These results highlight the difficulties in using coded information from electronic primary care records to measure the severity of influenza epidemics across time and assess the relative burden of ILI in different population subgroups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号