首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Corneal epithelial stem cells (CESCs) are essential for maintaining the ocular surface. However, the lack of surface markers for CESCs remains a serious obstacle in the identification of CESCs. Previously, we showed that rabbit limbal epithelial side population (rLE-SP) cells exhibited stem cell phenotypes including increased expression of CD61, a marker for mouse hematopoietic stem cells. Here, we demonstrate that nectin-3, an immunoglobulin-like cell-cell adhesion molecule, is highly expressed in rLE-SP cells. Additionally, nectin-3+ cells were significantly enriched among CD61+rLE-SP cells as compared to CD61rLE-SP cells. In mouse bone marrow side population cells, a correlation between expression of nectin-3 and CD61 was also observed. These data strongly suggest that nectin-3 may contribute to the identification of CESCs.  相似文献   

2.
In this review we evaluate evidence for three different hypotheses that explain how the corneal epithelium is maintained. The limbal epithelial stem cell(LESC)hypothesis is most widely accepted. This proposes that stem cells in the basal layer of the limbal epithelium, at the periphery of the cornea, maintain themselves and also produce transient(or transit) amplifying cells(TACs). TACs then move centripetally to the centre of the cornea in the basal layer of the corneal epithelium and also replenish cells in the overlying suprabasal layers. The LESCs maintain the corneal epithelium during normal homeostasis and become more active to repair significant wounds. Second, the corneal epithelial stem cell(CESC) hypothesis postulates that, during normal homeostasis, stem cells distributed throughout the basal corneal epithelium, maintain the tissue. According to this hypothesis, LESCs are present in the limbus but are only active during wound healing. We also consider a third possibility, that the corneal epithelium is maintained during normal homeostasis by proliferation of basal corneal epithelial cells without any input from stem cells. After reviewing the published evidence, we conclude that the LESC and CESC hypotheses are consistent with more of the evidence than the third hypothesis, so we do not consider this further. The LESC and CESC hypotheses each have difficulty accounting for one main type of evidence so we evaluate the two key lines of evidence that discriminate between them. Finally, we discuss how lineage-tracing experiments have begun to resolve the debate in favour of the LESC hypothesis. Nevertheless, it also seems likely that some basal corneal epithelial cells can act as long-term progenitors if limbal stem cell function is compromised. Thus, this aspect of the CESC hypothesis may have a lasting impact on our understanding of corneal epithelial maintenance, even if it is eventually shown that stem cells are restricted to the limbus as proposed by the LESC hypothesis.  相似文献   

3.
A strong cohort of evidence exists that supports the localisation of corneal stem cells at the limbus. The distinguishing characteristics of limbal cells as stem cells include slow cycling properties, high proliferative potential when required, clonogenicity, absence of differentiation marker expression coupled with positive expression of progenitor markers, multipotency, centripetal migration, requirement for a distinct niche environment and the ability of transplanted limbal cells to regenerate the entire corneal epithelium. The existence of limbal stem cells supports the prevailing theory of corneal homeostasis, known as the XYZ hypothesis where X represents proliferation and stratification of limbal basal cells, Y centripetal migration of basal cells and Z desquamation of superficial cells. To maintain the mass of cornea, the sum of X and Y must equal Z and very elegant cell tracking experiments provide strong evidence in support of this theory. However, several recent stud-ies have suggested the existence of oligopotent stem cells capable of corneal maintenance outside of the limbus. This review presents a summary of data which led to the current concepts of corneal epithelial homeostasis and discusses areas of controversy surrounding the existence of a secondary stem cell reservoir on the corneal surface  相似文献   

4.
角膜缘干细胞是角膜上皮更新与修复的来源,角膜上皮受损严重常会导致角膜盲。尽管近几年通过角膜缘干细胞移植术(LSCT)治愈角膜上皮受损的临床应用已被推广,但是对于角膜缘干细胞移植受损机体后的修复机理并不明确。为了实现角膜缘干细胞移植后的活体追踪,使用G418筛选标记有Venus荧光蛋白的角膜缘干细胞株(GLSC-V),并以其为种子细胞接种于去上皮羊膜上,体外培养21d构建成荧光角膜上皮植片。荧光倒置显微镜下观察GLSC-V的细胞质和细胞核均有绿色荧光表达,在体外培养荧光至少持续3个月。免疫荧光检测GLSC-V细胞P63、Integrinβ1均呈阳性表达,对GLSC-V细胞及未转染的GLSCs进行半定量RT-PCR检测显示,两组细胞皆未表达终末分化角膜上皮细胞基因k3、k12,GLSC-V中p63及pcna较未转染组细胞略上调,venus强表达。经HE染色观察构建的人工角膜组织由5~6层上皮细胞组成,组织中上表皮细胞个数少、体积大且呈扁平状;基底部细胞密集、体积小且成立方状。经免疫荧光检测仅组织基底部最基层细胞表达P63,上表皮细胞不表达。该人工角膜与正常角膜上皮组织结构特性相似,可用于移植,为研究角膜缘干细胞修复严重受损角膜上皮机理奠定基础。  相似文献   

5.
Corneal epithelial stem cells are believed to reside in the basal layer of the limbal epithelium, but no definitive cell surface markers have been identified. For keratinocytes, stem/progenitor cells are known to be enriched by cell surface markers, integrin α6 and CD71, as a minor subpopulation which shows high integrin α6 and low CD71 expressions (α6bri/CD71dim). In the present study, we investigated the possibility that corneal epithelial stem cells can be enriched by integrin α6 and CD71. The α6bri/CD71dim cells were separated by fluorescence-activated cell sorting, as a minor subpopulation of the limbal epithelial cells. They were enriched for relatively small cells, showing a higher clonogenic capacity and expression of stem cell markers, but a lower expression of differentiation markers, compared to other cell populations. The cells were localized immunohistochemically in the basal region of the limbal epithelium. These results indicate that the α6bri/CD71dim subpopulation enriched corneal epithelial stem cells.  相似文献   

6.
We isolated a stem cell subpopulation from human lung cancer A549 cells using FACS/Hoechst 33342. This side population (SP), which comprised 24% of the total cell population, totally disappeared after treatment with the selective ABCG 2 inhibitor fumitremorgin C. In a repopulation study, isolated SP and non-SP cells were each able to generate a heterogeneous population of SP and non-SP cells, but this repopulation occurred more rapidly in SP cells than non-SP. An MTT assay and cell cycle distribution analysis reveal a similar profile between SP and non-SP groups. However, in the presence of doxorubicin (DOX) and methotrexate (MTX), SP cells showed significantly lower Annexin V staining when compared to non-SP cells. Taken together, these results demonstrate that SP cells have an active regeneration capacity and high anti-apoptotic activity compared with non-SP cells. Furthermore, our GeneChip® data revealed a heightened mRNA expression of ABCG2 and ABCC2 in SP cells. Overall these data explain why the SP of A549 has a unique ability to resist DOX and MTX treatments. Therefore, we suggest that the expression of the ABCG2 transporter plays an important role in the multidrug resistance phenotype of A549 SP cells.  相似文献   

7.
Stem cells have been identified using the DNA-binding dye Hoechst 33342 and flow cytometry (FCM) in various tissues known as the side population (SP). The present study shows, for the first time, the presence of side population cells in human deciduous dental pulp cells (DPCs). Flow cytometric identification revealed that 2% of human deciduous DPCs were SP cells and that this SP profile disappeared in the presence of verapamil. The SP marker ABCG2 protein was localized to DPCs in the cell membrane by immunofluorescence staining, and flow cytometric analysis demonstrated that 3.6% of DPCs were ABCG2-positive. Furthermore, quantitative real-time PCR proved that ABCG2 mRNA expression in DPCs isolated from human exfoliated deciduous teeth was higher than in DPCs from permanent teeth. Our findings demonstrate that DPCs from human exfoliated deciduous teeth contain a higher proportion of the SP phenotype than permanent teeth and that they may constitute a stem cell population.  相似文献   

8.
Parity-induced mammary epithelial cells (PI-MECs) are defined as a pregnancy hormone-responsive cell population that activates the promoter of late milk protein genes during the second half of pregnancy and lactation. However, unlike their terminally differentiated counterparts, these cells do not undergo programmed cell death during post-lactational remodeling of the gland. We previously demonstrated that upon transplantation into an epithelial-free mammary fat pad, PI-MECs exhibited two important features of multipotent mammary epithelial progenitors: a) self-renewal, and b) contribution to ductal and alveolar morphogenesis. In this new report, we introduce a new method to viably label PI-MECs. Using this methodology, we analyzed the requirement of ovarian hormones for the maintenance of this epithelial subtype in the involuted mammary gland. Furthermore, we examined the expression of putative stem cell markers and found that a portion of GFP-labeled PI-MECs were part of the CD24(+)/CD49f(high) mammary epithelial subtype, which has recently been suggested to contain multipotent stem cells. Subsequently, we demonstrated that isolated PI-MECs were able to form mammospheres in culture, and upon transplantation, these purified epithelial cells were capable of establishing a fully functional mammary gland. These observations suggest that PI-MECs contain multipotent progenitors that are able to self renew and generate diverse epithelial lineages present in the murine mammary gland.  相似文献   

9.
Dou J  Jiang C  Wang J  Zhang X  Zhao F  Hu W  He X  Li X  Zou D  Gu N 《Cell biology international》2011,35(3):227-234
CSCs (cancer stem cells) are a small subset of cells within a tumour that possesses the characteristics of stem cells and are considered to be responsible for resistance to chemoradiation. Identification of CSCs through stem cell characteristics might have relevant clinical implications. In this study, SP (side population ) cells were sorted from a human ovarian cancer cell line by FACS to determine whether cancer stem cell-like SP cells were present. A very small fraction of SP cells (2.6%) was detected in A2780 cells. SP cells possessed the following characteristics: highly proliferative activity, marked ability for self-renewal in soft agar and culture medium, high expression of ABCG2, drug resistance to vinblastine in vitro, and strong tumourigenic potential in Balb/c nude mice. It is concluded that there exists in the A2780 cell line a small number of SP cells with high expression of ABCG2. The cells have the characteristics of cancer stem-like cells, and identification and cloning of such human SP cells can help in improving therapeutic approaches to ovarian cancer in patients.  相似文献   

10.
Zebrafish (Danio rerio) has emerged as a powerful genetic model for the study of vertebrate hematopoiesis. However, methods for detection and isolation of hematopoietic stem cells (HSCs) have not yet been reported. In mammals, the combination of Hoechst 33342 staining with flow cytometry can be used for separation of a bone marrow side population (SP), which is highly enriched for HSCs. We applied a similar procedure to hematopoietic kidney marrow cells from adult zebrafish, and identified a segregated cohort of SP cells, which demonstrate a set of features typical of stem cells. SP cells show extremely low scatter characteristics, and are small in size with a minimum of cytoplasm. Treatment of zebrafish kidney marrow cells with reserpine or fumitremorgin C, which inhibit the ABCG2 transporter responsible for Hoechst 33342 efflux, caused a clear reduction in the number of SP cells. Consistent with the quiescent state of HSCs, the SP cells are strongly resistant to the myelosuppressive agent 5-fluorouracil. In addition, SP cells specifically demonstrate higher expression of genes known to be markers of HSCs of mammals. Hence, our results show that the SP phenotype is conserved between mammals and teleosts, and the properties of the zebrafish SP cells indicate a significant enrichment for HSCs. These rapid flow cytometric methods for purification of HSCs from zebrafish may greatly facilitate genetic analysis of stem cells using the advantages of this vertebrate model.  相似文献   

11.
Limbal stem cell (LSC) deficiency causes progressive loss of vision but may be treated by transplant of autologous LSCs. Cryopreservation has the potential to indefinitely extend the lifespan of LSCs allowing re-transplant in case of graft failure. In this study, we aimed to identify the optimal cryoprotectant and cryoprotectant concentration for LSC cultures. Suspension cultures derived from cadaveric corneoscleral rims were cooled to 4 °C with Me2SO, propylene glycol or ethylene glycol at a concentration of 5%, 10% or 15%. Cell tolerance was measured in terms of membrane integrity, colony-forming efficiency and alamarBlue® reduction. Increasing cryoprotectant concentration above 5% reduced membrane integrity, metabolism and colony-forming efficiency. Cryoprotectant choice did not significantly influence these characteristics. Cells demonstrating Side Population were maintained after cryopreservation with 5% propylene glycol in vapour phase liquid nitrogen for 1 week, indicating that cryopreservation of LSCs with relatively low cryoprotectant concentration (5%) has promise in low-temperature eye banking.  相似文献   

12.
Side population (SP) cells within tumors are a small fraction of cancer cells with stem-like properties that can be identified by flow cytometry analysis based on their high ability to export certain compounds such as Hoechst 33342 and chemotherapeutic agents. The existence of stem-like SP cells in tumors is considered as a key factor contributing to drug resistance, and presents a major challenge in cancer treatment. Although it has been recognized for some time that tumor tissue niches may significantly affect cancer stem cells (CSCs), the role of key nutrients such as glucose in the microenvironment in affecting stem-like cancer cells and their metabolism largely remains elusive. Here we report that SP cells isolated from human cancer cells exhibit higher glycolytic activity compared to non-SP cells. Glucose in the culture environment exerts a profound effect on SP cells as evidenced by its ability to induce a significant increase in the percentage of SP cells in the overall cancer cell population, and glucose starvation causes a rapid depletion of SP cells. Mechanistically, glucose upregulates the SP fraction through ATP-mediated suppression of AMPK and activation of the Akt pathway, leading to elevated expression of the ATP-dependent efflux pump ABCG2. Importantly, inhibition of glycolysis by 3-BrOP significantly reduces SP cells in vitro and impairs their ability to form tumors in vivo. Our data suggest that glucose is an essential regulator of SP cells mediated by the Akt pathway, and targeting glycolysis may eliminate the drug-resistant SP cells with potentially significant benefits in cancer treatment.  相似文献   

13.
Epithelial-mesenchymal transition (EMT) is associated with cancer malignancies such as invasion, metastasis, and drug resistance. In this study, HCT116 human colorectal cancer cells were transduced with SLUG or SNAIL retroviruses, and EMT cells with mesenchymal morphology were established. The EMT cells showed a high invasive activity and resistance to several anticancer agents such as methotrexate, SN-38, and cisplatin. Furthermore, they contained about 1–10% side population (SP) cells that were not stained by Hoechst 33342. This SP phenotype was not stable; the isolated SP cells generated both SP and non-SP cells, suggesting a potential for differentiation. Gene expression analysis of SP cells suggested the alteration of genes that are involved in epigenetic changes. Therefore, we examined the effect of 74 epigenetic inhibitors, and found that two inhibitors, namely I-BET151 and bromosporine, targeting the bromodomain and extra-terminal motif (BET) proteins, decreased the ratio of SP cells to <50% compared with the control, without affecting the immediate efflux of Hoechst 33342 by transporters. In addition, compared with the parental cells, the EMT cells showed a higher sensitivity to I-BET151 and bromosporine. This study suggests that EMT development and SP phenotype can be independent events but both are regulated by BET inhibitors in SLUG- or SNAIL-transducted HCT116 cells.  相似文献   

14.
15.
Increasingly more evidence shows that TSCs possess the characteristics of stem-like cells. However, a link between stem cells and TSCs remains to be shown. We have sorted SP cells and non-SP cells from the B16F10 cell lines by FACS, and then studied their cellular biological characteristics by using a SFCM culture method, proliferative assay in vitro, clone formation assays in soft agar and normal media, tumorigenic assays in C57BL/6 mice, and resistance to chemotherapy assay in vitro, the quantitative detecting expression of ABCG2 and their CD phenotype analysis by a FCM. We detected 0.96% SP cells in the B16F10 cells and found that they had obvious differences in characteristics from non-SP cells. They possessed a marked capacity for self-renewal in soft agar and culture medium, strong tumorigenic potential in C57BL/6 mice, apparent resistance to vinblastin in vitro, upregulated ABCG2 expression, and a high expression of CD44+CD133+CD24+ phenotypes. We conclude that there were a few of SP cells that had the characteristics of tumor stem-like cells which may provide a useful tool and a readily accessible source for further study when specific TSCs markers are unknown.  相似文献   

16.
Malignant mesothelioma (MM) is an aggressive and therapy-resistant neoplasm arising from the pleural mesothelial cells and usually associated with long-term asbestos exposure. Recent studies suggest that tumors contain cancer stem cells (CSCs) and their stem cell characteristics are thought to confer therapy-resistance. However, whether MM cell has any stem cell characteristics is not known. To understand the molecular basis of MM, we first performed serial transplantation of surgical samples into NOD/SCID mice and established new cell lines. Next, we performed marker analysis of the MM cell lines and found that many of them contain SP cells and expressed several putative CSC markers such as CD9, CD24, and CD26. Interestingly, expression of CD26 closely correlated with that of CD24 in some cases. Sorting and culture assay revealed that SP and CD24+ cells proliferated by asymmetric cell division-like manner. In addition, CD9+ and CD24+ cells have higher potential to generate spheroid colony than negative cells in the stem cell medium. Moreover, these marker-positive cells have clear tendency to generate larger tumors in mouse transplantation assay. Taken together, our data suggest that SP, CD9, CD24, and CD26 are CSC markers of MM and could be used as novel therapeutic targets.  相似文献   

17.
BACKGROUND An in vitro injury model mimicking a corneal surface injury was optimised using human corneal epithelial cells(hCEC).AIM To investigate whether corneal-stroma derived stem cells(CSSC) seeded on an amniotic membrane(AM) construct manifests an anti-inflammatory, healing response.METHODS Treatment of hCEC with ethanol and pro-inflammatory cytokines were compared in terms of viability loss, cytotoxicity, and pro-inflammatory cytokine release, in order to generate the in vitro injury. This resulted in an optimal injury of 20%(v/v) ethanol for 30 s with 1 ng/mL interleukin-1(IL-1) beta. Co-culture experiments were performed with CSSC alone and with CSSC-AM constructs.The effect of injury and co-culture on viability, cytotoxicity, IL-6 and IL-8 production, and IL1 B, TNF, IL6, and CXCL8 mRNA expression were assessed.RESULTS Co-culture with CSSC inhibited loss of hCEC viability caused by injury. Enzyme linked immunosorbent assay and polymerase chain reaction showed a significant reduction in the production of IL-6 and IL-8 pro-inflammatory cytokines, and reduction in pro-inflammatory cytokine mRNA expression during co-culture with CSSC alone and with the AM construct. These results confirmed the therapeutic potential of the CSSC and the possible use of AM as a cell carrier for application to the ocular surface.CONCLUSION CSSC were shown to have a potentially therapeutic anti-inflammatory effectwhen treating injured hCEC, demonstrating an important role in corneal regeneration and wound healing, leading to an improved knowledge of their potential use for research and therapeutic purposes.  相似文献   

18.
Cancer stem cells are a distinct cellular population that is believed to be responsible for tumor initiation and maintenance. Recent data suggest that solid tumors also contain another type of stem cells, the mesenchymal stem cells or multipotent mesenchymal stromal cells (MSCs), which contribute to the formation of tumor-associated stroma.The Hoechst 33342 efflux assay has proved useful to identify a rare cellular fraction, named Side Population (SP), enriched in cells with stem-like properties. Using this assay, we identified SP cells in a prostate cancer xenograft containing human prostate cancer cells and mouse stromal cells. The SP isolation, subculture and sequential sorting allowed the generation of single-cell-derived clones of murine origin that were recognized as MSC by their morphology, plastic adherence, proliferative potential, adipogenic and osteogenic differentiation ability and immunophenotype (CD45, CD81+ and Sca-1+). We also demonstrated that SP clonal cells secrete transforming growth factor β1 (TGF-β1) and that their inhibition reduces proliferation and accelerates differentiation.These results reveal the existence of SP cells in the stroma of a cancer xenograft, and provide evidence supporting their MSC nature and the role of TGF-β1 in maintaining their proliferation and undifferentiated status. Our data also reveal the usefulness of the SP assay to identify and isolate MSC cells from carcinomas.  相似文献   

19.
The side population (SP) phenotype has been reported as a method to identify hematopoietic stem cells in the bone marrow based upon differential staining with the fluorescent dye, Hoechst 33342. This technique has drawn great interest in the stem cell community, as it may provide a simple approach to the enrichment of progenitor cells from a variety of normal and malignant tissues. The frequency of these cells and their performance in functional assays has varied considerably within the literature. To investigate mechanisms that may contribute to the SP phenotype, we measured the fluorescence emission of Hoechst-stained bone marrow cells as a function of both time and dye concentration using a custom flow cytometer and data acquisition software. These measurements demonstrate that all nucleated cells within the bone marrow undergo an identical staining pattern at varying rates, even under conditions previously reported to abrogate the SP. Therefore, the SP phenotype is not unique to stem cells, but rather represents a transient feature of marrow cells exposed to Hoechst 33342 for varying amounts of time. We propose that heterogeneity of SP-defined populations may be a consequence of the rate at which differing cell populations accumulate Hoechst 33342. Further, we suggest that dye uptake kinetics will likely be an important factor for optimal use of Hoechst 33342 in isolating stem cells.  相似文献   

20.
Side population (SP) cells are highly able to exclude the Hoechst 33342 dye through membrane transporters, a feature associated with cell immaturity and therefore proposed as a marker of stem cells. Herein we demonstrate that the adipose tissue derived stromal vascular fraction (SVF) contains a novel population of non-haematopoietic “side population” (SPCD45) cells. Simultaneous qRT-PCR of 64 genes revealed that the freshly isolated SPCD45 was highly enriched for cells expressing genes related to stem cells, the Notch pathway, and early vascular precursors. Notably, the expression of smooth muscle actin, C-met and Cd34 together with Angpt2, Flk1, VE-cadherin, and Cd31 suggested a phenotypic resemblance to pericytes and aorta-derived mesoangioblasts. Recent evidence suggests that cells residing within the vascular niche may participate in regeneration of skeletal muscle and although skeletal muscle repair mainly relies on the satellitecell, several reports have shown that vessel-associated cells may adopt a myogenic phenotype when exposed to a muscle environment. In accordance with these findings, we also observed invitro myogenic specification of SPCD45 cells when cocultured with myoblasts. Furthermore, immediate intramuscular engraftment of non-cultured SPCD45 cells gave rise to myofibres andcells lining blood vessels, whereas the SVF only provided donor derived mononuclear cells. We therefore conclude that the SPCD45 fraction of adipose-derived SVF is enriched for cells expressing vascular associated markers and that the myogenic differentiation potential of these cells does not depend on prior in vitro expansion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号