首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The previously reported combination of an on-line high-performance liquid chromatography (LC)/electron spin resonance (ESR) system with mass spectrometric analysis (MS) created a unique technique to identify a variety of lipid-derived radicals ((.)L(d)) formed from in vitro lipid peroxidation (Iwahashi et al. [20]). To improve the sensitivity, resolution, and reliability of this method for in vitro and in vivo studies, we have investigated the effects of mobile phase pH, modifiers, and columns on the chromatographic separation of linoleic acid-derived radical adducts. Using tetrahydrofuran (THF) and 0.1% glacial acetic acid (HOAc) in an H(2)O/acetonitrile (ACN) mobile phase greatly increased the resolution and retention reproducibility of lipid radical adducts in LC/ESR. In addition, these modifications allowed the elimination of an ESR tuning problem and the synchronization of UV and ESR detection of radical adducts in on-line LC/ESR, neither of which had been possible previously. Analyte purity was therefore increased, thus increasing the reliability of radical detection via on-line LC/ESR as well as radical identification via MS analysis. For the first time, POBN adducts of linoleic carbon-centered pentadienyl radicals (L(.)) were detected and identified. The optimization of chromatography in the LC/ESR and MS combination provided a reliable and sensitive way for the detection and identification of expected radical adducts in vitro and in vivo.  相似文献   

2.
Iron is involved in the formation of oxidants capable of damaging membranes, protein, and DNA. Using 137Cs gamma radiation, we investigated the release of iron from ferritin and concomitant lipid peroxidation by radiolytically generated reducing radicals, superoxide and the carbon dioxide anion radical. Both radicals released iron from ferritin with similar efficiencies and iron mobilization from ferritin required an iron chelator. Radiolytically generated superoxide anion resulted in peroxidation of phospholipid liposomes as measured by malondialdehyde formation only when ferritin was included as an iron source and the released iron was found to be chelated by the phospholipid liposomes.  相似文献   

3.
4-Hydroxynonenal and 4-hydroxyhexenal are cytotoxic aldehydic products of lipid peroxidation with high biological activity. Peroxidation of n - 6 fatty acids produces 4-hydroxynonenal, but the origin of 4-hydroxyhexenal has been uncertain. We now present evidence that 4-hydroxyhexenal is generated by oxidation of docosahexaenoic acid, the most abundant n-3 fatty acid in tissues.  相似文献   

4.
Mitochondria are the major sites of ATP synthesis through oxidative phosphorylation, a process that is weakened by proton leak. Uncoupling proteins are mitochondrial membrane proteins specialized in inducible proton conductance. They dissipate the proton electrochemical gradient established by the respiratory chain at the expense of reducing substrates. Several physiological roles have been suggested for uncoupling proteins, including roles in the control of the cellular energy balance and in preventive action against oxidative stress. This review focuses on new leads emerging from comparative proteomics about the involvement of uncoupling protein in the mitochondrial physiology. A brief overview on uncoupling proteins and on proteomics applied to mitochondria is also presented herein.  相似文献   

5.
Electron spin resonance (ESR) and electron nuclear double resonance (ENDOR) measurements were performed for the cation radicals obtained from the model compounds of α-, β-, γ- and δ-tocopherol (vitamin E) by oxidizing the tocopherol precursors in an AlCl3-CH2Cl2 solution. The proton hyperfine coupling constants g-values were precisely determined. The ENDOR spectra of the cation radicals of α-, β-, γ- and δ-tocopherol models in CH2Cl2 at ?100°C clearly show 10, 6, 6 and 12 different proton hyperfine couplings, respectively. By varying the temperature, the ESR spectra of the α- and δ-tocopherol model cations exhibit line-width alternation phenomena characteristic of the hindered rotation of the OH group. However, neither the β- nor the γ-tocopherol model cation radical ESR spectra show any sign of an alternative line-width effect. These results are interpreted by assuming that the β- and γ-tocopherol model cations are stabilized in the trans and cis conformations, respectively. On tocopherol model cations are stabilized in the trans and cis conformations, respectively. On the other hand, both the α- and δ-tocopherol model cations exist as cis and trans isomers.  相似文献   

6.
7.
A novel cyclic nitrone spin trap, 5-tert-butoxycarbonyl 5-methyl-1-pyrroline N-oxide (BMPO) as a pure white solid has been synthesized for the first time. BMPO offers several advantages over the existing spin traps in the detection and characterization of thiyl radicals, hydroxyl radicals, and superoxide anions in biological systems. The corresponding BMPO adducts exhibit distinct and characteristic electron spin resonance (ESR) spectral patterns. Unlike the 5,5-dimethyl-1-pyrroline N-oxide (DMPO)-derived superoxide adduct, the BMPO superoxide adduct does not non-enzymatically decompose to the BMPO hydroxyl adduct. This feature is clearly perceived as a definite advantage of BMPO in its biological applications. In addition, the ESR spectrum of the BMPO glutathionyl adduct (BMPO/*SG) does not fully overlap with the spectrum of its hydroxyl adduct. This spectral feature is again distinctly different from that of DMPO because the ESR spectral lines of DMPO glutathionyl and hydroxyl radical adducts largely overlap. Finally, the ESR spectra of BMPO-derived adducts exhibit a much higher signal-to-noise ratio in biological systems. These favorable chemical and spectroscopic features make BMPO ideal for the detection of superoxide anions, hydroxyl and thiyl radicals in biochemical oxidation and reduction.  相似文献   

8.
9.
Dermal exposure to cumene hydroperoxide (CumOOH) during manufacturing processes is a toxicological issue for the industry. Its genotoxicity, mutagenic action, ability to promote skin tumour, capacity to induce epidermal hyperplasia, and aptitude to induce allergic and irritant skin contact dermatitis are well known. These toxic effects appear to be mediated through the activation to free radical species such as hydroxyl, alkoxyl, and alkyl radicals characterised basically by electron paramagnetic resonance (EPR) and spin-trapping (ST) techniques. To be a skin sensitiser CumOOH needs to covalently bind to skin proteins in the epidermis to form the antigenic entity triggering the immunotoxic reaction. Cleavage of the O–O bond allows formation of unstable CumO?/CumOO? radicals rearranging to longer half-life specific carbon-centred radicals R? proposed to be at the origin of the antigen formation. Nevertheless, it is not still clear which R? is precisely formed in the epidermis and thus involved in the sensitisation process. The aim of this work was to elucidate in conditions closer to real-life sensitisation which specific R? are formed in a 3D reconstructed human epidermis (RHE) model by using 13C-substituted CumOOH at carbon positions precursors of potentially reactive radicals and EPR-ST. We demonstrated that most probably methyl radicals derived from β-scission of CumO? radicals occur in RHE through a one-electron reductive pathway suggesting that these could be involved in the antigen formation inducing skin sensitisation. We also describe a coupling between nitroxide radicals and β position 13C atoms that could be of an added value to the very few examples existing for the coupling of radicals with 13C atoms.  相似文献   

10.
1. Xanthine oxidase acting aerobically upon acetaldehyde was found to cause the peroxidation of linolenate. This was demonstrated by increased absorbance at 233 nm due to diene conjugation and by the detection of a lipid peroxide spot on the thin layer chromatograms. 2. Superoxide dismutase inhibited this lipid peroxidation, as did catalase, thus indicating that both O2- and H2O2 were essential intermediates. Scavengers of singlet oxygen also inhibited the peroxidation of linolenate, whereas scavengers of hydroxyl radical did not. These effects, which were observed in the absence of iron salts, led to the proposal that O2- and H2O2 can directly give rise to a singlet oxygen, as follows: O2- + H2O2 leads to OH- + OH. + O2. 3. This proposal was further supported through the use of 2,5-dimethylfuran, as an indicating scavenger of singlet oxygen. Thus, when this compound was exposed to a known source of singlet oxygen, it gave a product which was detectable by thin layer chromatography. This product was also observed when 2,5-dimethylfuran was exposed to the xanthine oxidase system, in which case its accumulation was prevented by superoxide dismutase or by catalase, but not by scavengers of hydroxyl radical.  相似文献   

11.
The peroxidation of membrane phospholipids induced in vitro by ascorbic acid or by dialuric acid (hydroxybarbituric acid) does not occur in the absence of traces of metal ions. Peroxidation induced by adding iron salts to phospholipids can either be promoted or inhibited by the chelators EDTA, diethylenetriaminepenta-acetic acid and bathophenanthrolinesulphonate, depending on the ratio [chelator]/[iron salt]. The iron chelator desferrioxamine inhibits peroxidation at all concentrations tested, and it also inhibits the iron-catalysed formation of hydroxyl radicals (OH.) from superoxide (O2-.). Since desferrioxamine is approved for clinical use, it might prove a valuable tool in the treatment of inflammation, poisoning by autoxidizable molecules and radiation damage.  相似文献   

12.
Haem and non-haem iron-containing proteins stimulate lipid peroxidation with the formation of fluorescent lipid complexes. This process requires the presence of lipid hydroperoxides which release ferrozine-reactive iron from haem-containing proteins. Stimulation of lipid peroxidation by the released iron is inhibited by the iron chelator desferrioxamine. Copper ions, although more stimulatory towards fluorescent lipid complex formation than iron ions, do not stimulate lipid peroxidation when tightly bound at the active centre of proteins, but are reactive when loosely bound to albumin and histidine.  相似文献   

13.
The technique of free radical spin trapping has been applied to demonstrate the formation of free radicals produced during the metabolism of halothane by rat liver hepatocytes under hypoxic conditions. The results obtained support previous findings that reported sex differences in the metabolic activation of halothane by rats in vivo. Cell viability under hypoxic conditions, as judged by trypan blue staining and lactate dehydrogenase release, shows a correlation with the extent of metabolism of halothane as measured by electron spin resonance spectroscopy. The extent of lipid peroxidation was measured by diene conjugation, malondialdehyde production and chemiluminescence. The latter technique allowed the demonstration of lipid peroxidation during incubations of hepatocytes under aerobic conditions. The magnitude of the aerobic chemiluminescence showed a similar sex dependency to the extent of free radical formation under hypoxic conditions. Cell viability measurements show that halothane metabolism in both hypoxic and aerobic conditions can lead to cell death. Consequently, oxidative lipid damage could be a cause of cell damage, as judged by cell viability, additional to covalent binding.  相似文献   

14.
Either chemical or enzymatic oxidation of catechols or catecholamines in the presence of nucleophiles (amino acids, peptides, and proteins) leads to the production of ring-substituted o-semiquinones which have been detected by ESR spin stabilization techniques. In many cases, radicals have been completely characterized and structures assigned. Chemical considerations point to a mechanism involving addition of nucleophile to o-quinone, followed by oxidation of product to o-semiquinone. These results confirm that addition occurs in oxidizing polyhydroxy aromatic systems, probably via o-quinone, in a reaction considered to account for much of the toxicity found for catechols and catecholamines.  相似文献   

15.
Superoxide generation, assessed as the rate of acetylated cytochrome c reduction inhibited by superoxide dismutase, by purified NADPH cytochrome P-450 reductase or intact rat liver microsomes was found to account for only a small fraction of their respective NADPH oxidase activities. DTPA-Fe3+ and EDTA-FE3+ greatly stimulated NADPH oxidation, acetylated cytochrome c reduction, and O(2) production by the reductase and intact microsomes. In contrast, all ferric chelates tested caused modest inhibition of acetylated cytochrome c reduction and O(2) generation by xanthine oxidase. Although both EDTA-Fe3+ and DTPA-Fe3+ were directly reduced by the reductase under anaerobic conditions, ADP-Fe3+ was not reduced by the reductase under aerobic or anaerobic conditions. Desferrioxamine-Fe3+ was unique among the chelates tested in that it was a relatively inert iron chelate in these assays, having only minor effects on NADPH oxidation and/or O(2) generation by the purified reductase, intact microsomes, or xanthine oxidase. Desferrioxamine inhibited microsomal lipid peroxidation promoted by ADP-Fe3+ in a concentration-dependent fashion, with complete inhibition occurring at a concentration equal to that of exogenously added ferric iron. The participation of O(2) generated by the reductase in NADPH-dependent lipid peroxidation was also investigated and compared with results obtained with a xanthine oxidase-dependent lipid peroxidation system. NADPH-dependent peroxidation of either phospholipid liposomes or rat liver microsomes in the presence of ADP-Fe3+ was demonstrated to be independent of O(2) generation by the reductase.  相似文献   

16.
Electron spin resonance (ESR) spectra of radicals obtained from two analogues of the antiprotozoal drug nifurtimox by electrolytic and Trypanosoma cruzi reduction were analyzed. The electrochemistry of these compounds was studied using cyclic voltammetry. STO 3-21G ab initio and INDO molecular orbital calculations were performed to obtain the optimized geometries and spin distribution, respectively. The antioxidant effect of glutathione on the nitroheterocycle radical was evaluated. DMPO spin trapping was used to investigate the possible formation of free radicals in the trypanosome microsomal system. Nitro1 and Nitro2 nitrofuran analogues showed better antiparasitic activity than nifurtimox. Nitro2 produced oxygen redox cycling in T. cruzi epimastigotes. The ESR signal intensities were consistent with the trapping of either the hydroxyl radical or the Nitro2 analogue radicals. These results are in agreement with the biological observation that Nitro2 showed anti-Chagas activity by an oxidative stress mechanism.  相似文献   

17.
Ocimum sanctum, the Indian holy basil, has significant ability to scavenge highly reactive free radicals. Shade dried leaf powder of the plant was extracted with water and alcohol, and then fractionated with different solvents. Both extracts and their fractions have in vitro anti-lipidperoxidative activity at very low concentrations. In vivo, hypercholesterolemia-induced erythrocyte lipid peroxidation activity was inhibited by aqueous extracts of Ocimum in a dose-dependent manner in male albino rabbits. Aqueous extract feeding also provided significant liver and aortic tissue protection from hypercholesterolemia-induced peroxidative damage.  相似文献   

18.
Probucol, a clinically used cholesterol lowering and antioxidant drug, was investigated for possible protection against lipid peroxidation and DNA damage induced by iron nitrilotriacetate (Fe-NTA) plus hydrogen peroxide (H2O2). Fe-NTA is a potent nephrotoxic agent and induces acute and subacute renal proximal tubular necrosis by catalyzing the decomposition of H2O2-derived production of hydroxyl radicals, which are known to cause lipid peroxidation and DNA damage. Fe-NTA is associated with a high incidence of renal adenocarcinoma in rodents. Lipid peroxidation and DNA damage are the principal manifestation of Fe-NTA induced toxicity, which could be mitigated by probucol. Incubation of renal microsomal membrane and/or calf thymus DNA with H2O2 (40 mM) in the presence of Fe-NTA (0.1 mM) induces renal microsomal lipid peroxidation and DNA damage to about 2.4-fold and 5.9-fold, respectively, as compared to control (P < 0.05). Induction of renal microsomal lipid peroxidation and DNA damage was inhibited by probucol in a concentration-dependent manner. In lipid peroxidation protection studies, probucol treatment showed a concentration-dependent inhibition (10-34% inhibition; P < 0.05) of Fe-NTA plus H2O2-induced lipid peroxidation as measured by thiobarbituric acid reacting species' (TBARS) formation in renal microsomes. Similarly, in DNA damage protection studies, probucol treatment also showed a concentration-dependent strong inhibition (36-71% inhibition; P < 0.05) of DNA damage. From these studies, it was concluded that probucol inhibits peroxidation of microsomal membrane lipids and DNA damage induced by Fe-NTA plus H2O2. However, because the lipid peroxidation and DNA damage studied here are regarded as early markers of carcinogenesis, we suggest that probucol may be developed as a cancer chemopreventive agent against renal carcinogenesis and other adverse effects of Fe-NTA exposure in experimental animals, in addition to being a cholesterol-lowering drug, useful for the control of hypercholestrolemia.  相似文献   

19.
The contamination of water environments by pathogenic viruses has raised concerns about outbreaks of viral infectious diseases in our society. Because conventional water and wastewater treatment systems are not effective enough to inactivate or remove pathogenic viruses, a new technology for virus removal needs to be developed. In this study, the virus-binding proteins (VBPs) in a bacterial culture derived from activated sludge were successfully recovered. The recovery of VBPs was achieved by applying extracted crude proteins from a bacterial culture to an affinity column in which a custom-made peptide of capsid protein from the poliovirus type 1 (PV1) Mahoney strain (H(2)N-DNPASTTNKDKL-COOH) was immobilized as a ligand. VBPs exhibited the ability to adsorb infectious particles of PV1 Sabin 1 as determined by enzyme-linked immunosorbent assay. The evaluation of surface charges of VBPs with ion-exchange chromatography found that a majority of VBP molecules had a net negative charge under the conditions of affinity chromatography. On the other hand, a calculated isoelectric point implied that the viral peptide in the affinity column was also charged negatively. As a result, the adsorption of the VBPs to the viral peptide in the affinity column occurred with a strong attractive force that was able to overcome the electrostatic repulsive force. Two-dimensional electrophoresis revealed that the isolated VBPs include a number of proteins, and their molecular masses were widely distributed but smaller than 100 kDa. Amino acid sequences of N termini of five VBPs were determined. Homology searches for the N termini against all protein sequences in the National Center for Biotechnology Information (NCBI) database showed that the isolated VBPs in this study were newly discovered proteins. These VBPs that originated with bacteria in activated sludge might be stable, because they are existing in the environment of wastewater treatments. Therefore, a virus removal technology utilizing VBPs as viral adsorbents can be developed, since it is possible to replicate VBPs by protein cloning techniques.  相似文献   

20.
Infection of leaves of Arabidopsis thaliana with conidial suspensions of the necrotrophic pathogen Botrytis cinerea resulted in a large decrease in the level of ascorbic acid and increases in intensity of a single-peak free radical and Fe(III) (g=4.27) signals in electron paramagnetic resonance (EPR) spectra. These changes were not confined to the spreading lesions or associated areas of chlorosis, but extended to other apparently healthy tissues in the infected leaves. They are, therefore, consistent with the existence of high levels of oxidative stress being generated as a result of the infection process. The expected accompanying increases in levels of the aldehydic products of lipid peroxidation, malondialdehyde (MDA) and 4-hydroxy-2-nonenal (4-HNE), were not observed, and in the case of MDA the levels in tissue from infected plants were appreciably lower than in the healthy controls. These last findings are surprising and demonstrate a difference in the response of A. thaliana to infection with B. cinerea compared with tissues from other plant families studied previously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号