首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Contractile dysfunction of the respiratory muscles plays an important role in the genesis of respiratory failure during sepsis. Nitric oxide (NO), a free radical that is cytotoxic and negatively inotropic in the heart and skeletal muscle, is produced in large amounts during sepsis by a NO synthase inducible (iNOS) by LPS and/or cytokines. The aim of this study was to investigate whether iNOS was induced in the diaphragm of Escherichia coli endotoxemic rats and whether inhibition of iNOS induction or of NOS synthesis attenuated diaphragmatic contractile dysfunction. Rats were inoculated intravenously (IV) with 10 mg/kg of E. coli endotoxin (LPS animals) or saline (C animals). Six hours after LPS inoculation animals showed a significant increase in diaphragmatic NOS activity (L-citrulline production, P < 0.005). Inducible NOS protein was detected by Western-Blot in the diaphragms of LPS animals, while it was absent in C animals. LPS animals had a significant decrease in diaphragmatic force (P < 0.0001) measured in vitro. In LPS animals, inhibition of iNOS induction with dexamethasone (4 mg/kg IV 45 min before LPS) or inhibition of NOS activity with N(G)-methyl-L-arginine (8 mg/kg IV 90 min after LPS) prevented LPS-induced diaphragmatic contractile dysfunction. We conclude that increased NOS activity due to iNOS was involved in the genesis of diaphragmatic dysfunction observed in E. coli endotoxemic rats.  相似文献   

4.
The objective of our study was to determine the role of ibuprofen in protecting neutropenic rats from cardiopulmonary injury due to endotoxemia. We hypothesized that ibuprofen would offer pulmonary protection by altering cytokine production. Neutropenic rats received E. coli lipopolysaccharide (LPS) alone or ibuprofen and LPS. After 4 h, arterial blood gases, heart rate and blood pressure were measured. Blood and bronchoalveolar lavage fluid (BALF) were collected for TNF- alpha and MIP-2 concentrations. Lung tissue for iNOS mRNA and myeloperoxidase were obtained. The ibuprofen group had decreased heart rate and better oxygenation. Ibuprofen suppressed TNF- alpha and MIP-2 production in blood and MIP-2 concentrations in BALF. Lung mRNA for iNOS was higher in the ibuprofen group. Neutrophil infiltration in the lung was similar in both groups. Ibuprofen attenuated cardiopulmonary dysfunction by decreasing the early cytokine response. The balance of vasodilator to vasoconstrictor production in the lung may favor vasodilation as shown by increased iNOS mRNA and suppression of thromboxane.  相似文献   

5.
6.
Oxidative stress and impaired bioactivity of vascular nitric oxide (NO) play an important role in the pathogenesis of macro- as well as microangiopathic complications in diabetes mellitus. To determine the cause of this impaired bioactivity, we tested the effect of long-term hyperglycemia and antioxidative treatment on tissue-specific endothelial (e)NOS- and inducible (i)NOS-expression and the main target of NO action, cGMP, in diabetic rats. After 4 weeks of hyperglycemia, eNOS-mRNA expression was significantly down-regulated in all tissues tested. In contrast, iNOS-mRNA was significantly up-regulated and tissue generation of cGMP significantly increased. Treatment with alpha-lipoicacid reversed changes of NOS-isoform expression as well as cGMP-concentration without changing blood glucose levels. In addition, oxidative stress significantly decreased in diabetic rats treated with alpha-lipoicacid. Together, diabetes regulates NOS-isoforms differentially by down-regulating eNOS and up-regulating iNOS. In addition, our data suggest that the cause of impaired endothelial vasodilatation in experimental diabetes is not degradation or inactivation of NO. On the contrary, these results support the concept of decreased reactivity of the vascular smooth muscle to NO or increased NO activity as a possible vascular damaging agent, e.g., by inducing apoptosis in vascular cells. Furthermore, our data show that antioxidative treatment is capable of reversing changes in the NO-cGMP system and may therefore be an important therapeutic option for preventing vascular damage in diabetes mellitus.  相似文献   

7.
8.
K W Kang  Y M Pak  N D Kim 《Nitric oxide》1999,3(3):265-271
Diethylmaleate (DEM) and buthionine sulfoximine (BSO), glutathione (GSH)-depleting agents, reduced the metabolic activity and the protein level of iNOS in both macrophages and hepatocytes activated by lipopolysaccharide (LPS). In this study, we examined the effects of DEM and BSO on iNOS expression in LPS-treated mice under the assumption that the level of GSH may alter the expression of nitric oxide synthase. Serum levels of interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) were also determined. DEM markedly decreased the levels of hepatic GSH in response to LPS. Treatment of mice with DEM significantly reduced serum nitrite/nitrate levels and hepatic iNOS protein and mRNA induction by LPS. Although BSO inhibited the level of hepatic GSH in LPS-treated mice, the agent did not alter serum nitrite/nitrate levels and hepatic iNOS expression. DEM completely inhibited an increase of serum IL-1beta level by LPS, whereas BSO failed to inhibit it. Neither DEM nor BSO significantly affected the induction of serum TNF-alpha level by LPS. These results showed that DEM and BSO differentially affect the expression of iNOS in endotoxemic mice, suggesting the possibility that suppression of iNOS expression by DEM may be associated with the inhibition of IL-1beta but not of TNF-alpha.  相似文献   

9.
Interleukin-1beta (IL-1beta) induces the release of nitric oxide (.NO) and prostaglandin E2 (PGE2) by chondrocytes and this effect can be reversed with the application of dynamic compression. Previous studies have indicated that integrins may play a role. In addition, IL-1beta upregulates the expression of iNOS and COX-2 mRNA via upstream activation of p38 MAPK. The current study examines the involvement of these pathways in mediating .NO and PGE2 release in IL-1beta stimulated bovine chondrocytes subjected to dynamic compression. Bovine chondrocytes were seeded in agarose constructs and cultured with 0 or 10 ng.ml(-1) IL-1beta with or without the application of 15% dynamic compressive strain at 1 Hz. Selected inhibitors were used to interrogate the role of alpha5beta1 integrin signalling and p38 MAPK activation in mediating the release of .NO and PGE2 in response to both IL-1beta and dynamic compression. The relative expression levels of iNOS and COX-2 were assessed using real-time quantitative PCR. Nitrite, a stable end product of .NO, was measured using the Griess assay and PGE2 release was measured using an enzyme immunoassay. IL-1beta enhanced .NO and PGE2 release and this effect was reversed by the application of dynamic compression. Co-incubation with an integrin binding peptide (GRGDSP) abolished the compression-induced effect. Real-time quantitative PCR analysis revealed that IL-1beta enhanced iNOS and COX-2 mRNA levels, with the maximum expression at 6 or 12 hours. Dynamic compression reduced this effect via a p38 MAPK sensitive pathway. These results suggest that dynamic compression acts to abrogate of .NO and PGE2 release by directly influencing the expression levels of iNOS and COX-2.  相似文献   

10.
Summary. By screening nucleotide databases, sequences containing the complete genes of the human cationic amino acid transporters (hCATs) 1, 2 and 4 were identified. Analysis of the genomic organization revealed that hCAT-2 consists of 12 translated exons and most likely of 2 untranslated exons. The splice variants hCAT-2A and hCAT-2B use exon 7 and 6, respectively. The hCAT-2 gene structure is closely related to the structure of hCAT-1, suggesting that they belong to a common gene family. hCAT-4 consists of only 4 translated exons and 3 short introns. Exons of identical size and highly homologous to exon 3 of hCAT-4 are present in hCAT-1 and hCAT-2. Received September 8, 2000 Accepted January 8, 2001  相似文献   

11.
The study was designed to investigate the effect of nimesulide on lipopolysaccharide (LPS)-induced proinflammatory oxidants production by rat alveolar macrophages (AMs). Effects of LPS and nimesulide on antioxidant defense and the expression of inducible nitric oxide synthase (iNOS) were also studied. It was found that nimesulide could scavenge superoxide anions (O2*-), nitric oxide (NO*) and total oxidant burden induced by LPS in AMs in vitro. Approximately 850 nmoles of nimesulide had activity equivalent to one IU of superoxide dismutase (SOD). Further, to confirm the in vitro observation, Male Wistar rats were orally administered with nimesulide (9 mg/kg b. wt. twice daily) for one week followed by intratracheal instillation of 2 microg LPS to stimulate lung inflammation. AMs from bronchoalveolar lavage fluid were collected 18 h after instillation of LPS. Nimesulide pretreatment could inhibit O2*-, NO() and lipid peroxidation in AMs. Nimesulide also suppressed LPS-induced iNOS expression in AMs in vivo and in vitro. Nimesulide could also normalize LPS-induced changes in the levels of superoxide dismutase (SOD), glutathione reductase (GR) and reduced glutathione (GSH) in AMs. Inhibition in production of oxidants in LPS-challenged AMs by nimesulide could be one of the pathways for its anti-inflammatory action.  相似文献   

12.
Exhaled nitric oxide in isolated pig lungs   总被引:7,自引:0,他引:7  
  相似文献   

13.
We examined the effects of endotoxin on nitric oxide formation in isolated rat hepatocytes in primary culture. Endotoxin was administered either in vivo, by continuous infusion for 30 or 3 h, or in vitro, on cultured cells. The spontaneous production of nitrites in hepatocytes from in vivo ET-infused rats was lower than equivalent saline controls in the absence of added stimuli. However in vitro addition of endotoxin in culture to hepatocytes from 30 h ET-infused rats greatly enhanced production relative to saline controls. This effect was mimicked by TNF alpha, and activators of protein kinase C (PMA and Ca2+ ionophore A23187). The effects of ET were blocked by NMMA, dexamethasone and protein synthesis inhibitors Actinomycin D and cycloheximide. No in vitro effect of ET was observed in the 3 h infusion model. The results show that chronic exposure to sub-lethal levels of ET primes liver parenchymal cells for the production of nitric oxide, when exposed in vitro to ET or TNF alpha.  相似文献   

14.
In inflammation, nitric oxide (NO) acts as a pro-inflammatory mediator, which is synthesized by inducible nitric oxide synthase (iNOS) in response to pro-inflammatory agents such as lipopolysaccharide (LPS). Quercetin (Qt) has anti-inflammatory properties through its ability to inhibits nitric oxide production and iNOS expression in different cellular types. In the present study, we evaluated the effect of a semi-synthetic acetyl (quercetin-3,5,7,3′-tetraacetyl: TAQt) Qt derivative and two natural sulphated (quercetin-3-acetyl-7,3′,4′-trisulphate: ATS and quercetin-3,7,3′,4′-tetrasulphate: QTS) Qt derivatives on the LPS-induced NO production and iNOS expression in J774A.1 cells. Our results demonstrate that only TAQt inhibited the NO production by decreasing the iNOS mRNA and protein levels. In addition, we showed that TAQt blocked the LPS-induced nuclear NF-κB translocation by inhibiting the IκB-α degradation. Hence, as TAQt inhibited the LPS-induced iNOS expression and NO production, it could therefore be considered as a potential therapeutic agent for the treatment of inflammatory diseases related with the NO system.  相似文献   

15.
16.
Mitochondrial nitric oxide synthase is not eNOS, nNOS or iNOS   总被引:6,自引:0,他引:6  
Recent studies indicated that there is a distinct mitochondrial nitric oxide synthase (mtNOS) enzyme, which may be identical to the other known NOS isoforms. We investigated the possible involvement of the endothelial, the neuronal, and the inducible NOS isoforms (eNOS, nNOS, iNOS, respectively) in mitochondrial NO production. Mouse liver mitochondria were prepared by Percoll gradient purification from wild-type and NOS knockout animals. NOS activity was measured by the arginine conversion assay, NO production of live mitochondria was visualized by the fluorescent probe DAF-FM with confocal microscopy and measured with flow cytometry. Western blotting or immunoprecipitation was performed with 12 different anti-NOS antibodies. Mitochondrial NOS was purified by arginine, 2,5 ADP and calmodulin affinity columns. We observed NO production and NOS activity in mitochondria, which was not attenuated by classic NOS inhibitors. We also detected low amounts of eNOS protein in the mitochondria, however, NO production and NOS activity were intact in eNOS knockout animals. Neither nNOS nor iNOS were present in the mitochondria. Furthermore, we could not find mitochondrial targeting signals in the sequences of either NOS proteins. Taken together, the presented data do not support the hypothesis that any of the known NOS enzymes are present in the mitochondria in physiologically relevant levels.  相似文献   

17.
The effects of changing perfusate flow on lung nitric oxide (NO) production and pulmonary arterial pressure (Ppa) were tested during normoxia and hypoxia and after N(G)-monomethyl-L-arginine (L-NMMA) treatment during normoxia in both blood- and buffer-perfused rabbit lungs. Exhaled NO (eNO) was unaltered by changing perfusate flow in blood-perfused lungs. In buffer-perfused lungs, bolus injections of ACh into the pulmonary artery evoked a transient increase in eNO from 67 +/- 3 (SE) to 83 +/- 7 parts/billion with decrease in Ppa, whereas perfusate NO metabolites (pNOx) remained unchanged. Stepwise increments in flow from 25 to 150 ml/min caused corresponding stepwise elevations in eNO production (46 +/- 2 to 73 +/- 3 nl/min) without changes in pNOx during normoxia. Despite a reduction in the baseline level of eNO, flow-dependent increases in eNO were still observed during hypoxia. L-NMMA caused declines in both eNO and pNOx with a rise in Ppa. Pulmonary vascular conductance progressively increased with increasing flow during normoxia and hypoxia. However, L-NMMA blocked the flow-dependent increase in conductance over the range of 50-150 ml/min of flow. In the more physiological conditions of blood perfusion, eNO does not reflect endothelial NO production. However, from the buffer perfusion study, we suggest that endothelial NO production secondary to increasing flow, may contribute to capillary recruitment and/or shear stress-induced vasodilation.  相似文献   

18.
We investigated the source(s) for exhaled nitric oxide (NO) in isolated, perfused rabbits lungs by using isozyme-specific nitric oxide synthase (NOS) inhibitors and antibodies. Each inhibitor was studied under normoxia and hypoxia. Only nitro-L-arginine methyl ester (L-NAME, a nonselective NOS inhibitor) reduced exhaled NO and increased hypoxic pulmonary vasoconstriction (HPV), in contrast to 1400W, an inhibitor of inducible NOS (iNOS), and 7-nitroindazole, an inhibitor of neuronal NOS (nNOS). Acetylcholine-mediated stimulation of vascular endothelial NOS (eNOS) increased exhaled NO and could only be inhibited by L-NAME. Selective inhibition of airway and alveolar epithelial NO production by nebulized L-NAME decreased exhaled NO and increased hypoxic pulmonary artery pressure. Immunohistochemistry demonstrated extensive staining for eNOS in the epithelia, vasculature, and lymphatic tissue. There was no staining for iNOS but moderate staining for nNOS in the ciliated cells of the epithelia, lymphoid tissue, and cartilage cells. Our findings show virtually all exhaled NO in the rabbit lung is produced by eNOS, which is present throughout the airways, alveoli, and vessels. Both vascular and epithelial-derived NO modulate HPV.  相似文献   

19.
In our previous studies, we showed that a finasteride-induced DHT deficiency may cause changes in the morphology of the seminiferous epithelium without any morphological alteration of the epididymis. In this study, we demonstrated the constitutive immunoexpression of inducible nitric oxide synthase (iNOS) in the testis and epididymis of Wistar rats treated with finasteride for 28 days (the duration of two cycles of the seminiferous epithelium) and 56 days (the duration of one spermatogenesis). We noted that a 56-day finasteride treatment mainly caused a decrease in the level of circulating DHT, as well as a statistically insignificant decrease in the level of T. The hormone deficiency also led to a change in the iNOS immnoexpression in the testis and epididymis of the finasteride-treated rats. In vitro, DHT did not modify NO production by the epithelial cells of the caput epididymis even when stimulated with LPS and IFNγ, but it did give rise to an increase in NO production by the epithelial cells of the cauda epididymis without the stimulation. DHT did not have a statistically significant influence on estradiol production by cultured, LPS- and IFNγ-stimulated epithelial cells from the caput and cauda epididymis. In conclusion, our data clearly indicates that a finasterideinduced DHT deficiency intensifies the constitutive expression of iNOS in most rat testicular and epididymal cells, so it can be expected that the expression of inducible nitric oxide synthase (iNOS) could be regulated by DHT. On the other hand, the profile of the circulating DHT and T levels strongly suggests that the regulation of constitutive iNOS expression is complex and needs more detailed study.  相似文献   

20.
Increased nitric oxide synthase expression in aorta of cirrhotic rats.   总被引:2,自引:0,他引:2  
H Liu  D Song  S S Lee 《Life sciences》1999,64(19):1753-1759
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号